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Abstract In this paper, in view of microscopic surface topography characteristic, the relationship of micro-
scopic surface topography characteristic and the dynamic characteristic of macroscopic system is established,
and the influence of fractal contact stiffness on the stability and nonlinearity ofmodal coupling system is studied
based on microscopic surface topography. According to the fractal characteristic of metal surface machined,
the normal and tangential contact stiffness fractal models of joint surfaces are established and verified. In this
paper, a critical two-degree-of-freedom modal coupling model is listed, the fractal contact stiffness obtained
is embedded into oscillatory differential equation to study the influence of the coupling between friction coef-
ficient and stiffness ratio of joint surfaces and the coupling between natural frequency and stiffness ratio of
joint surfaces on the system stability, and the influence of fractal contact stiffness on the limit cycle of system
is further analyzed. The above theoretical analysis can provide a reference for the design of suitable surface
topography in the engineering.

Keywords Joint surfaces · Contact stiffness · Fractal theory · Oscillation system

1 Introduction

Practice proves that the surface topography and contact behavior of mechanical components have a crucial
influence on their properties of wear, fatigue strength, corrosion resistance and so on. The dynamic properties
and vibration noise problem of the whole machine system depend on the contact stiffness, contact damping
and thermolability to a large extent. Therefore, the estimate and analysis on the dynamic characteristics can
make important contribution on promoting the whole property of the mechanical equipment. The rough metal
surface machined is characterized by fractal [1,2], that is to say, the partial surface topography and the whole
surface topography of surface present the characteristic of self-similarity [3,4], so the fractal theories are
usually applied to the three-dimensional description of joint surfaces and contact modeling.

The phenomenon of vibration and noise caused by frictionwidely exist in themechanical system, especially
the vibration and noise of automotive brake, a rather classical phenomenon, which has been studied for many
years. The mechanism study related to the phenomenon is mainly concluded to several mechanisms below:
stick-slip theory [5,6], the theory of negative slop of friction force-relative sliding velocity [7], sprag-slip
theory [8] and modal coupling theory [9,10].

The dynamic properties of mechanical system should be studied from the perspective of mechanical joint
surfaces, and many scholars found that the contact surface topography had an important influence on the
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system vibration and noise by experiments. Eriksson et al. [11] found that the surface topography of brake
pad had an important impact on brake squeal, and brake pad with many small asperities was more liable to
generate the problem of vibration and noise than that with little large asperities. Chen et al. [12] analyzed the
problem of vibration and noise in the process of metal reciprocating sliding from the perspective of tribology,
analyzed the surface topography of friction part where the noise appeared, and found that grinding crack had
close relationship with noise. Okayama et al. [13] researched the groan noise after the brake and indicated
that asperities on the surface of brake pad were the main factor that caused groan noise. The experiment that
surface of brake disk was modified indicated that the tendency of brake squeal could be decreased obviously
[14]. Rusli et al. [15] built the model of L-shaped beam and studied the influence of contact surface topography
on vibration friction characteristics of beam by experiment. Fuadi et al. [16,17] combined the experimental
research with theoretical analysis, and proposed two control conditions that could simplify system: the stiffness
ratio and the index of low-frequency stick-slip vibration. When both of two coefficients were greater than a
certain limited value, system would generate stick-slip vibration. They also analyzed the change of contact
stiffness which perhaps have influence on the appearance or disappearance of creep-groan. Their research
ideas and results have important guiding significance.

These literatures above mostly focus on the influence of surface topography of joint surfaces on brake
system from the perspective of experiment, but in nature, it is the influence of contact stiffness and damping
of joint surfaces on system dynamics. Those previous literatures [9,10,18–20] mostly focus on the influence
of structural parameters of macroscopic system on vibration and noise, but rarely refer to the perspective of
microscopic contactmodeling of rough surface, that is to say, firstly, the contact stiffnessmodel of joint surfaces
of modal coupling oscillation system is built based on the fractal theory; then, the influence of microscopic
fractal contact stiffness on the dynamical properties of system is analyzed. Therefore, this paper aims at building
the contact stiffness estimationmodel of joint surfaces based on fractal theory, startingwithmicroscopic surface
topography contact properties, building a bridge between themicroscopic surface topography andmacroscopic
system dynamical properties theoretically.

2 Modeling of contact stiffness

2.1 Critical contact area of asperity

The asperities of rough surface are regarded as spheres, so the contact between two rough planes is regarded
as the contact among a series of hemispheroids [21]. As shown in Fig. 1, two asperities generate extrusion
deformation under the external force. According to the classical Hertz contact theory, the contact between two
asperities is equivalent to the contact between a rigid plane and a rough asperity.

Under the external force, the elastic deformation value of asperity is given by [22]

δ =
(
3π pa
4E

)2

R (1)

where pa is the average pressure endured by asperity; E is equivalent elastic modulus, and its expression is
Eq. (2); R is equivalent curvature radius of asperity, and its expression is Eq. (3).

E = 1(
1−ν21
E1

+ 1−ν22
E2

) (2)
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where E1, E2 and ν1, ν2 are the elastic modulus and Poisson’s ratio of two contagious asperities, respectively.

R = 1(
1
R1

+ 1
R2

) (3)

where R1, R2 are the curvature radius of asperity respectively.
In Fig. 1, the cross-sectional area of equivalent asperity and rigid plane is given by

A = πr ′2 = π
[
R2 − (R − δ)2

] ≈ 2πRδ (4)

In Fig. 1, the right-angled triangle ode exists the following relationship by the Pythagorean Theorem,
expressed as

R2 = r ′2 + (R − δ)2 (5)

Equation (5) can be transformed into

R = δ

2
+ r ′2

2δ
(6)

As the R is much larger than the loaded deformation δ, there is R >> δ/2, and the approximate expression
of Eq. (6) is given by

R ≈ r ′2

2δ
(7)

According to Hertz theory, the relation between the load and deformation value of single asperity at the
stage of elastic strain is expressed as

Pe(δ) = 4

3
ER0.5δ1.5 (8)

When the asperity is in Hertz elastic contact, the radius r of the actual contact area is given by

r =
(
3PeR

4E

)1/3

(9)

Substitution of Eq. (8) into Eq. (9) can obtain

r = (Rδ)0.5 (10)

Substitution of Eq. (7) into Eq. (10) can obtain

r = 1√
2
r ′ (11)

According to the Eqs. (11) and (4), the actual contact area of the equivalent asperity and the equivalent
rigid plane is given by

a = πr2 = 1

2
πr ′2 = πRδ (12)

After beingmachined, the surface topography ofmetal is characterized by fractal, so the classicW–M func-
tion [23,25] is used to describe the self-similarity characteristic of surface topography. But it is unreasonable
that the two-dimensional fractal curve is used to describe the real three-dimensional surface topography [24].
Given this, Yan and Komvopoulos [25] improved the traditionalW–M function to describe three-dimensional
fractal surface topography. The improved W–M function is given by

z(x, y) = L

(
G

L

)(D−2) (
ln γ

M

)1/2 M∑
m=1

nmax∑
n=0

γ (D−3)n

{
cosφm,n − cos

[
2πγ n(x2+y2)1/2

L ×
cos

(
tan−1

( y
x

) − πm
M

) + φm,n

]}

(13)
where L is the sample length of surface topography; D is the fractal dimension of three-dimensional topography
(2 < D < 3); G is fractal roughness; D and G are obtained by the measurement of surface topography; γ
(γ > 1, it is generally taken as 1.5) is a parameter that determines the density of frequency; M is the number of
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surface peak ridge superposition; n is the frequency index, nmax = Int
[
log (L/Ls) / log γ

]
; Ls is theminimum

cut-off length; x and y are the Cartesian coordinate of the surface asperity; φm,n is random phase.
In order to determine the deformation value of asperity loaded, Eq. (13) is simplified to Eq. (14) by Yan et

al. [25], given by

z(x) = GD−2(ln γ )0.5(2r ′)
[
cosφ1,n0 − cos

(πx

r ′ − φ1,n0

)]
(14)

The deformation δ of the asperity can be defined by Eq. (14), which is equal to the amplitude difference
between peak and trough of the cosine function. That is, when the cosφ1,n0 is 1 and cos

(
πx
r ′ − φ1,n0

)
is −1,

we can get the deformation of asperity δ, given by

δ = 2GD−2(ln γ )0.5(2r ′)3−D (15)

Substitute of Eq. (12) into Eq. (15) can obtain

δ = 2(11−3D)/2G(D−2)(ln γ )0.5π(D−3)/2a(3−D)/2 (16)

Substitute of Eq. (16) into Eq. (12) can obtain the curvature radius expressed by area a, given by

R = 2(3D−11)/2π(1−D)/2G(2−D)a(D−1)/2(ln γ )−0.5 (17)

When two rough surfaces contactingwith each other under oscillating load generate relative slip, the critical
contact pressure at the yield of asperity is given by [22,26,27]

pm = 1.1kμσy (18)

where σy is the yield strength of softer material; kμ is a frictional correction factor and its expression is shown
below [28].

kμ =
{
1 − 0.228μm 0 ≤ μm ≤ 0.3
0.932 exp [−1.58(μm − 0.3)] 0.3 < μm ≤ 0.9 (19)

where μm is dynamic friction coefficient.
Substitute of Eq. (18) into Eq. (1) can obtain the critical elastic deformation of asperity, given by

δe =
(
3.3πkμφ

4

)2

R (20)

where φ = σy/E represents characteristic coefficient of material.
According to Eqs. (12), (17) and (20), the critical elastic deformation area of asperity is given by

ae = 2(3D−11)/(2−D)

(
33kμφ

40

)2/(2−D)

π(4−D)/(2−D)(ln γ )1/(D−2)G2 (21)

2.2 Normal contact load of asperity

The plastic average pressure of single asperity under normal load is given by

ppre(δ) = H (22)

where H represents the hardness of softer material.
According to Eq. (22), the normal load of single asperity at the stage of plastic deformation is given by

Pp(a) = λσya (23)

where λ = H/σy is a defined parameter.
Substitute of Eqs. (16) and (17) into Eq. (8) can obtain the elastic contact load expressed by contact area

a, given by

Pe(a) = 1

3
Eπ(D−4)/22(15−3D)/2(ln γ )1/2GD−2a(4−D)/2 (24)
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2.3 Normal contact stiffness

The relationship between the area distribution function of asperity n(a) [25] of joint surfaces and themaximum
contact area of asperity al is expressed as

n(a) = D − 1

2
a0.5D−0.5
l a−0.5D−0.5, 0 < a ≤ al, 2 < D < 3 (25)

The load of single asperity at the stage of elastic deformation and plastic deformation is obtained, respec-
tively, above, and the total normal contact load of whole joint surfaces is the sum of the elastic contact load
and plastic contact load.

Therefore, given that the denominator is 0 or not, the classification discussion of total normal contact load
equation is conducted. When al > ae and D �= 2.5, the total normal contact load is given by

P =
ae∫
0

Ppn(a)da +
al∫

ae

Pe(a)n(a)da = D − 1

3 − D
λσya

(D−1)/2
l a(3−D)/2

e

+ D − 1

15 − 6D
2(15−3D)/2E(ln γ )1/2GD−2π(D−4)/2a(D−1)/2

l

(
a(5−2D)/2
l − a(5−2D)/2

e

)
(26)

When al > ae and D = 2.5, the total normal contact load is given by

P =
ae∫
0

Ppn(a)da +
al∫

ae

Pe(a)n(a)da = 3λσya
3/4
l a1/4e

+1

4
E215/4π−3/4(ln γ )1/2G1/2a3/4l (ln al − ln ae) (27)

The actual contact area Ar of the whole joint surfaces can be obtained by

Ar =
ae∫
0

n(a)ada +
al∫

ae

n(a)ada = D − 1

3 − D
al (28)

According to the definition of stiffness, the normal stiffness of single asperity at the stage of elastic
deformation is given by

kn = dPe
dδ

= 4E

3π0.5

4 − D

3 − D
a0.5 (29)

According to the distribution function n(a) of the whole surface, the normal contact stiffness of the whole
surface is given by

Kn =
al∫

ae

ken(a)da = 4

3

(D − 1)(4 − D)

(2 − D)(3 − D)
Eπ−0.5a(D−1)/2

l

(
a(2−D)/2
l − a(2−D)/2

e

)
(30)

The dimensionless form of Eq. (30) is expressed as

K ∗
n = 4

3

(4 − D)

(2 − D)

(
D − 1

3 − D

)(3−D)/2

π−0.5A∗(D−1)/2
r

[(
3 − D

D − 1
A∗
r

)(2−D)/2

− a∗(2−D)/2
e

]
(31)

where K ∗
n = Kn/

(
E

√
Aa

)
, A∗

r = Ar/Aa, a∗
e = ae/Aa.
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2.4 Tangential contact stiffness

According to the study of literature [29], the limit of tangential load of single asperity is given by

Q = 8aσy

(6 − 3ν)π
+ 8 (2ν − 1)

π (6 − 3ν)
p (32)

At the stage of fully plastic flow, asperity cannot bear tangential load, so in the process of calculating the
total tangential load of asperity, the elastic deformation is only considered.

According to Eqs. (25) and (32), when D �= 2.5, the tangential load is given by

Qe =
al∫

ae

[
8a

π(6 − 3ν)
σy + 8(2ν − 1)

π(6 − 3ν)
Pe

]
n(a)da

= 8(D − 1)σy
π(3 − D)(6 − 3ν)

a(D−1)/2
l

(
a(3−D)/2
l − a(3−D)/2

e

)

+8(D − 1)(2ν − 1)E

3(5 − 2D)(6 − 3ν)
2(15−3D)/2π(D−6)/2(ln γ )1/2GD−2a(D−1)/2

l

[
a(5−2D)/2
l − a(5−2D)/2

e

]
(33)

When D = 2.5, the tangential load is given by

Qe = 24σy
π(6 − 3ν)

a3/4l

(
a1/4l − a1/4e

) (2ν − 1)E

(6 − 3ν)
219/4π−7/4(ln γ )1/2G1/2a3/4l (ln al − ln ae) (34)

The tangential contact stiffness of single asperity is expressed as [30,31]

kt = 8G
√
a

(2 − ν)
√

π

(
1 − 1

μ

Qe

P

)1/3

(35)

Similarly, according to Eqs. (25) and (35), the tangential contact stiffness of the whole joint surfaces is
expressed as

Kt =
al∫

ae

ktn(a)da = 8G(D − 1)√
π(2 − D)(2 − ν)

(
1 − 1

μ

Qe

P

)1/3

a(D−1)/2
l

[
a(2−D)/2
l − a(2−D)/2

e

]
(36)

where G is equivalent elastic shear modulus, G = E
2(1+ν)

.
The dimensionless form of Eq. (36) is expressed as

K ∗
t = 8√

π(2 − ν)(2 + 2ν)

(D − 1)(3−D)/2(3 − D)(D−1)/2

2 − D

(
1 − 1

μ

Q∗
e

P∗

)1/3

× A∗(D−1)/2
r

[(
3 − D

D − 1
A∗
r

)(2−D)/2

− a∗(2−D)/2
e

]
(37)

where K ∗
t = Kt/

(
G

√
Aa

)
, Q∗

e = Qe/(E Aa), P∗ = P/(E Aa).

2.5 Model validation and simulation

Equations (30) and (36) represent the normal stiffness and tangential stiffness deduced based on the fractal
theory, respectively. In order to verify the accuracy of the twomodels, they are compared with the test results in
the literature [32] where the normal stiffness and tangential stiffness of machine tool support joints are studied.
The main test methods in literature [32] are as follows: firstly, the binding site of the machine’s supporting
foundation is equivalent to spring damping system of three directions, and it is dynamics modeled, then the
modal frequency and damping ratio of the bed are obtained by modal test, and finally, the equivalent stiffness
of the binding site of the machine’s supporting foundation is identified. In order to identify any supported state
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Table 1 Parameters of machine tool support joints

Parameter Value

Equivalent elastic modulus E /Pa 1.1538 × 1011

Poisson’s ratio ν 0.3
Fractal dimension D 2.4241
Fractal roughness G/m 5.1372 × 10−5

Yield strength σy/Pa 2.35 × 108

Scale parameters γ 1.5
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Fig. 2 Comparison of theoretical and experimental curves

of the foundations, the positive pressure of foundation is changed, so we can get the test stiffness curves under
different loads. Thematerial is carbon steelQ235, themass is 2800kg, the elasticmodulus is E = 2.1×1011 Pa,
the hardness is H = 1.96× 109 Pa, and the Poisson’s ratio is ν = 0.3. These two important fractal parameters
of the rough surface are the fractal dimension D and the fractal roughness G, and they can be obtained by
the power spectral density (PSD) function method. The surface topography is measured by the T1000 stylus
profilometer whose lateral resolution is 0.6µm and the stylus radius is 2µm. The sampling length is 10mm.
The contour curve obtained is analyzed by the PSD analysis, then the two-dimensional fractal dimension
Ds = 1.4241, and the fractal roughness G = 5.1372 × 10−5 m are obtained. The three-dimensional fractal
dimension [24] is expressed as D = Ds +1. The concrete engineering parameters are shown in Table 1. When
the external load is P = 2.5 kN, the parameters in Table 1 are substituted into Eqs. (21), (26) and (30) to obtain
the normal stiffness Kn = 5.282 × 107 N/m. The different external load P corresponds to different Kn. The
same can be done for the tangential stiffness. The theoretical curves of different stiffness data in MATLAB
R2014a are compared with the experimental curves in literature [32]. As shown in Fig. 2, the overall trend of
the theoretical prediction is consistent with that of the experimental test and their results are close, so we can
build the whole system dynamical model based on the fractal stiffness model.

In order to obtain the changing trend of dimensionless normal and tangential contact stiffness with fractal
dimension D and dimensionless fractal roughness G∗(G∗ = G/

√
Aa), according to Eqs. (31) and (37), the

simulation relationship diagram can be obtained.
As shown in Figs. 3 and 4, with D and G∗ increasing, the dimensionless normal contact stiffness and

tangential contact stiffness tend to monotonically increase and decrease, respectively. That the larger D means
more high frequency components of three-dimensional surface topography so the surface is much finer in the
macroscopic view; that the larger G∗ means amplitude of three-dimensional surface topography is larger so
the surface is more rough. The reason is that the surface is more smooth, the actual contact area is much larger,
and the contact stiffness is much larger. On the contrary, the surface is more rough, the actual contact area is
much smaller, and the contact stiffness is much smaller.
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3 Model of oscillation system

3.1 Physical model

In order to study the influence of contact stiffness on self-excited system based on fractal theory, a two-degree-
of-freedom mass-belt system is studied and its physical model is shown in Fig. 5. The model is firstly used
to study the vibration and noise of drum brake by Hultén [33,34]; then, it is used to study the influence of
damping on system by Sinou et al. [10,18,19]. In this paper, the models of literatures [10,18,19,33,34] are
slightly improved. In Fig. 5, K1, K2 and C1, C2 are the stiffness and damping of system, respectively; Kn and
Kt are the fractal contact stiffness and fractal tangential contact stiffness, respectively, which can be obtained
by the first section. The system includes the external force F , the angle α, which is 45◦, and the speed of belt
V . The mass block is always in contact with the belt in the x1 and x2 direction under the force F . In order
to simplify problems, the literatures [9,10] assume that the direction of friction is constant. But actually the
direction of friction is variable and the simplification may lead to the neglect of nonlinear characteristic caused
by changing the direction of friction. Given this, in this paper, the Stribeck friction model between the mass
block and belt which is widely applied to the contact modeling is considered [35–37].
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The expression of Stribeck friction model is shown below.

μ(νr) = μssgn(νr) − 3(μs − μm)

2νm
νr + (μs − μm)

2ν3m
ν3r (38)

where μ(vr) is friction factor, νr is the relative sliding speed, μs is the corresponding friction factor when
νr =0, (νm, μm) represents the minimum point of friction curve. In Fig. 6, the curve corresponding to νr <0
shows that the direction of friction changes with the relative sliding speed changing.

As shown in Fig. 5, the dynamic equation of the system is given by

MẌ + CẊ + KX = F (39)

whereM =
[
m 0
0 m

]
, C =

[
C1 0
0 C2

]
, K =

[
K1 + Kt 0
0 K2 + Kn

]
, F =

[ √
2
2 F + μ(ν1)Knx2

−
√
2
2 F − μ(ν2)Ktx1

]
, X =

[
x1
x2

]
,

νi = V − ẋi , (i = 1, 2).
In Fig. 5, the external force F can cause static displacement of system. When ẍ1 = ẍ2 = 0, ẋ1 = ẋ2 = 0,

the static equilibrium point of the whole system is expressed as:

x01 =
√
2
2 F(K2 + Kn) −

√
2
2 FKn(μs − κ1V + κ2V 3)

(K2 + Kn)(K1 + Kt) + KtKn(μs − κ1V + κ2V 3)2
, x02 = (K1 + Kt)x01 −

√
2
2 F

Kn(μs − κ1V + κ2V 3)
(40)
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Setting the static balance point as the new coordinate origin and substitute of x ′
1 = x1 − x01, x ′

2 = x2 − x02
into Eq. (39) can obtain the following equation.[

m 0

0 m

][
ẍ ′
1

ẍ ′
2

]
+

[
C1 0

0 C2

] [
ẋ ′
1

ẋ ′
2

]
+

[
K1 + Kt −μ(ν1)Kn

μ(ν2)Kt K2 + Kn

][
x ′
1

x ′
2

]

=
⎡
⎣

√
2
2 F − (K1 + Kt)x01 + μ(ν1)Knx02

−
√
2
2 F − μ(ν2)Ktx01 − (K2 + Kn)x02

⎤
⎦

(41)
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stiffness ratio on real part. b Relationship between stiffness ratio and real part. c Influence of friction coefficient and stiffness
ratio on imaginary part
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3.2 Stability analysis

Given the homogeneous form of Eq. (41), it is linearly processed to obtain

[
m 0

0 m

] [
ẍ ′
1

ẍ ′
2

]
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[
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0 C2

] [
ẋ ′
1

ẋ ′
2
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K1 + Kt −μ(ν1)Kn

μ(ν2)Kt K2 + Kn

][
x ′
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x ′
2

]
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[
0

0

]
(42)

The both sides of Eq. (42) are divided by mass m, and the damping ratio is defined as ξi = Ci
2ωi m

(i = 1, 2),

and the natural frequency is defined as ω2
i = Ki

m (i = 1, 2).
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(43)

In the process of analyzing stability of system, according to complex modal analysis theory, the real part
of eigenvalue 	 of system is greater than zero, which shows that the system is unstable; otherwise, the system
is stable.
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Fig. 8 Influence of friction coefficient and stiffness ratio of joint surfaces on stability (8Kn). a Influence of friction coefficient
and stiffness ratio on real part. b Relationship between stiffness ratio and real part. c Influence of friction coefficient and stiffness
ratio on imaginary part
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3.2.1 Influence of friction coefficient and stiffness ratio of joint surfaces on stability

In order to reveal the influence of the contact stiffness determined by the surface topography parameters on the
stability and nonlinearity of the system, we adopt the following parameters to carry out simulation analysis.
Setting m = 1Kg, ω1 = 2000π rads−1, ω2 = 1600π rads−1, ξ1 = 0.001, ξ2 = 0.007. Kn is normal contact
stiffness based on the fractal theory, and Kn = 4 × 108 N/m can be obtained by these given parameters, D =
2.4, G = 1.342×10−8 m, E = 1.154×1011 Pa, ν= 0.3, σy = 3.55×108 Pa, γ= 1.5, P= 1.9073×103 N,
and Eqs. (26) and (30). The ratio of tangential stiffness to normal stiffness of joint surfaces is defined as the
stiffness ratio κ . Figure 7 shows the relationship among characteristic real part (growth rate), friction coefficient
μand stiffness ratio κ . Figure 8 shows the relationship among characteristic imaginary part (frequency), friction
coefficientμ and stiffness ratio κ . The normal contact stiffness in Fig. 8 is eight times bigger than that in Fig. 7.
As shown in Figs. 7a and 8a, that the real part is greater than zero indicates unstable region in which brake disk
usually generates the vibration and noise. The unstable region of system corresponds to coupling frequencies
region in Figs. 7c and 8c. The lower layer is the first natural frequency of system, the higher layer is the second
natural frequency of system, and they gradually tend to coupling with μ and κ increasing. When κ is smaller
and μ is larger, the system is liable to generate lower frequency noise; when κ is larger and μ is smaller, the
system is liable to generate higher frequency noise. When the normal contact stiffness increases by a factor of
eight, the changing trends of Figs. 7 and 8 are nearly the same, but according to their own y-axis, the coupling
frequency and the area of unstable region obviously increase with the normal stiffness increasing. With Kn
changing, Hopf bifurcation point (κ = 0.15) is changeless.
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Fig. 9 Influence of natural frequency ratio and stiffness ratio of joint surfaces on real part. a μ = 0.1, Kn = 4 × 108 N/m. b
μ = 0.2, Kn = 4 × 108 N/m. c μ = 0.2, Kn = 2

5 × 4 × 108 N/m. d μ = 0.3, Kn = 4 × 108 N/m
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Fig. 10 Influence of natural frequency ratio and stiffness ratio of joint surfaces on imaginary part. a μ = 0.1, Kn = 4×108 N/m.
b μ = 0.2, Kn = 4 × 108 N/m. c μ = 0.2, Kn = 2

5 × 4 × 108 N/m. d μ = 0.3, Kn = 4 × 108 N/m

3.2.2 Influence of natural frequency ratio and stiffness ratio of joint surfaces on stability

In order to further study the influence of coupling between the stiffness ratio of joint surfaces determined by
rough surface topography and the natural frequency ratio (ω = ω1/ω2) determined by system parameter on
stability, four groups of parameters are given to study the evolution process of the real part and imaginary part
of system eigenvalue. Other parameters are the same as those in Sect. 3.2.1. As shown in Fig. 9c and d, with μ
and Kn increasing, the unstable region of system increases and the relevant stable region decreases. As shown
in Fig. 9a and c, with μ increasing and Kn decreasing, the change of unstable region of the whole system is
not obvious. As shown in Fig. 9a, b and c, with μ increasing and changeless Kn, the area of unstable region
increases. Seen from all four figures, with ω and κ gradually increasing, the change trends of the system in turn
are stability, instability and stability. That the smaller ω and larger κ is prone to make system unstable; that
the larger ω and smaller κ is also prone to make system unstable. Figure 10 shows the change of characteristic
imaginary part corresponding to Fig. 9. The comparison between Fig. 10b and c shows that the first and second
natural frequencies both decrease; the comparison among Fig. 10a, b and d shows their change are both not
obvious. In addition, the coupling frequency of system increases with ω and κ increasing.

3.3 Nonlinear analysis

In order to further know the influence of contact stiffness on oscillation system dynamics based on fractal
theory, the Eq. (44) will be handled by 4–5 order Runge–Kutta method to obtain the nonlinear behavior
properties below.
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Fig. 11 Nonlinear analysis in horizontal vibration direction. a Phase diagram and frequency spectrum with Kn = 3e8N/m. b
Phase diagram and frequency spectrum with Kn = 4e8N/m. c Phase diagram and frequency spectrum with Kn = 5e8N/m
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Fig. 12 Nonlinear analysis in vertical vibration direction. a Phase diagram and frequency spectrum with Kn = 3e8N/m. b Phase
diagram and frequency spectrum with Kn = 4e8N/m. c Phase diagram and frequency spectrum with Kn = 5e8N/m
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Here, we mainly observe and analyze phase diagram and frequency spectrum of self-excited system to
study the influence of different contact stiffness on system dynamics. Some parameters are given below,
V = 0.15m/s, μs = 0.4, μm = 0.25, νm = 0.5m/s, F = 5N, κ = 0.5, the value of other parameters are
shown in part 3.2.1.

As shown in Fig. 11, self-excited vibration of the system is divided into stick-slip motion and pure sliding.
When the stick-slip motion happens, there will be a rather obvious viscous stage (horizontal line of phase
diagram) in the limit cycle, and at the viscous stage, the relative speed between mass block and belt is zero.
When the pure sliding happens, the relative speed between them is not zero all the time because viscous stage
does not exist in phase diagram.

In addition, with normal contact stiffness of joint surfaces increasing, the ratio of viscous stage to oscillation
system decreases; when Kn increases to a certain limit, the viscous stage will disappear, and the system enters
the stable pure sliding stage. As shown in frequency spectrum, with Kn increasing, subharmonic disappears
and resonant amplitude decreases.

Therefore, the contact stiffness of joint surfaces increases to some extent (by increasing fractal dimension
D and decreasing fractal roughness G), which reduces the viscous motion to promote the system stability.

As shown in Fig. 12, in vertical direction, the limit cycle of system decreases with Kn increasing and in
the whole change process, it presents the pure sliding motion.

According to the analysis of Figs. 11 and 12, the surface topography between brake joint surfaces need to
be specially studied and machined to obtain appropriate fractal dimension D and fractal roughness G. And
eventually D and G are used to calculate the contact stiffness. Appropriate contact stiffness of joint surfaces
can promote the stability of system.

4 Conclusions

In this paper, the influence of surface topography of joint surfaces on a classical modal coupling system is
studied in theory. But as for the vibration and noise caused by inappropriate surface topography, how to avoid
this phenomenon in the practical engineering still needs to be completed continuously in theory and experiment,
and needs to be further explored. The main conclusions are shown below.

1. The normal and tangential contact stiffness models of joint surfaces are established based on the fractal
theory, and the fractal contact stiffness can provide the basis for dynamical modeling of the whole system.
The normal and tangential contact stiffness of relative smooth surface (fractal dimension D is larger) are
both larger than those of relative rough surface (fractal roughness G is larger).

2. When κ is smaller and μ is larger, system tends to generate lower noise; when κ is larger and μ is smaller,
system tends to generate higher noise; with the normal contact stiffness increasing, the coupling frequency
and unstable area both increase obviously; that the smallerω and larger κ is liable to make system unstable;
that the larger ω and smaller κ is also liable to make system unstable; with ω and κ increasing, the coupling
frequency of system increases.

3. That the fractal dimension D increases and the fractal roughness G decreases can increase the contact
stiffness of joint surfaces to promote the stability of system.
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