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Abstract Amathematical model of an unstable system in the form of inverted coupled pendulums is developed
and simulated. Dynamics of such a system is investigated, and the stability zones are identified in the explicit
form. The algorithm of stabilization of the pendulums near the vertical position is constructed and verified.
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1 Introduction

As is known, the problem of inverted pendulum plays a central role in the control theory [1–5]. In particular, the
problem of inverted pendulum (as a testmodel) providesmany challenging problems to control design. Because
of their nonlinear nature, pendulums have maintained their usefulness and they are now used to illustrate many
of the ideas emerging in the field of nonlinear control [6,7]. Typical examples are the feedback stabilization,
variable structure control, passivity-based control, back-stepping and forwarding, nonlinear observers, friction
compensation and nonlinear model reduction. The challenges of control made the inverted pendulum systems
as a classical tool in control laboratories. It should also be noted that the problem of stabilization of such a
system is a classical problem of the dynamics and control theory. Moreover, the model of inverted pendulum
is widely used as a standard for testing of the control algorithms (for PID controller, neural networks, fuzzy
control, etc.). Such a mechanical system can be found in various fields of technical science, from robotics
to cosmic technologies. For example, the stabilization of inverted pendulum is considered in the problem
of missile pointing because the engine of missile is placed lower than the center of mass and such a fact
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Fig. 1 Physical model of coupled pendulums

leads to an aerodynamical instability. Similar problem is solved in the self-balancing transport device (the so-
called segway). Moreover, the model of inverted pendulum (especially, under various kinds of control of the
suspension point motion) is widely used in physics, applied mathematics, engineering science, neuroscience,
economics, etc [8]. First theoretical description of the inverted pendulum was carried out by Stephenson [9],
and the first experimental investigation of the stabilization process for such a system (using oscillations of the
suspension point) was considered in the works of Kapitza [10]. In general, the problem of inverted pendulum
is of more than one hundred years of history, but it is still relevant even in the present days. It should also be
pointed out that in recent time the systems of inverted pendula, namely the double and triple pendula, have a
special interest, especially in connection with the fact that in such systems can be realized the deterministic
chaos. The problem of stabilization of such an otherwise unstable, autonomous, and mechanical system is a
fascinating task, both from theoretical (various methods of nonlinear analysis) and applied (modeling of the
real mechanical systems) point of view [11–13]. In this article, we investigate the dynamics of a mechanical
system consisting of two inverted pendulums hinged on the moving platform and connected by a spring. The
force applied to the platform (and caused its horizontal motion) is treated as a control action. The purpose of
this work is to solve the problem of stabilization of the pendulums in vertical position using the horizontal
motion of the platform at the presence of the information on the angles of deviation. In order to solve this
problem, we developed the algorithm of stabilization of the pendulums near the vertical position, observed the
stability zones and their dependence on the spring stiffness.

2 Physical model

Let us consider a system of two inverted pendulums with massesm1 andm2 that are rigidly fixed on a movable
cart and connected by a spring with stiffness k (when the pendulums are in vertical position the spring is
nonstretched). The fixation point of the spring is at a distance h from the suspension points of the pendulums
(see Fig. 1). We assume that the cart has no mass and moves without friction, and the control action applied
to the cart determines the acceleration u. In order to describe the dynamics of such a system, we write the
equations for the moments (neglecting the damping) that have the form

⎧
⎨

⎩

I1
dω1
dt = M(g)

1 + M(k)
1 − M(u),

I2
dω2
dt = M(g)

2 − M(k)
2 − M(u).

(1)

Here I1,2 are the moments of inertia of the pendulums, ω1,2 are the angular velocities, M
(g)
1,2 and M (k)

1,2 are
the returning moments of gravitational and elastic forces, respectively.

Since the motion is flat, all these vectors are directed perpendicular to the figure’s area. This fact allows us
to transform the vector equations to scalar. Positions of the pendulums will be characterized by the deviation
angles (relative to the vertical axis) ϕ1,2, and we will consider the small (linear) oscillations of the pendulums
(we assume that ϕ1,2 � 1). Then, for the elongation of the spring �x we can write the following approximate
expression:

�x ≈ h (ϕ2 − ϕ1) . (2)
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Then, for a moment of the elastic forces we have

{
M (k)

1 = kh2 (ϕ2 − ϕ1) ,

M (k)
2 = −kh2 (ϕ2 − ϕ1) .

(3)

and for a moment of gravitational force:
{
M (g)

1 = m1gl1ϕ1,

M (g)
2 = m2gl2ϕ2.

(4)

where m1,2 are the masses of the pendulums and l is the distance from the fixing point to the center of mass.
The control moment we can write in the similar way:

{
M (u)

1 = −m1l1u,

M (u)
2 = −m2l2u.

(5)

Thus, from the system (1), taking into account (3)–(5), we obtain the following equation:

{
I1ϕ̈1 = m1gl1ϕ1 + kh2 (ϕ2 − ϕ1) − m1l1u,

I1ϕ̈2 = m2gl2ϕ2 − kh2 (ϕ2 − ϕ1) − m2l2u.
(6)

In the next step, we introduce the eigen-frequency for isolated pendulum:

ω =
√
mgl

I
. (7)

In the case I = ml2, ω =
√

g
l we have the point-like pendulum. Then, the system (6) takes the form

⎧
⎨

⎩

ϕ̈1 = ω2
1ϕ1 + kh2

I1
(ϕ2 − ϕ1) − u

l1
,

ϕ̈2 = ω2
2ϕ2 − kh2

I2
(ϕ2 − ϕ1) − u

l2
,

(8)

where
⎧
⎪⎨

⎪⎩

ω1 =
√

g
l1

,

ω2 =
√

g
l2

.

(9)

Next, we consider the control based on the feedback principles, namely

u = a · sign (bs + ṡ) , (10)

where s = ϕ1 + ϕ2, a = const, b = const.
Obviously that if ϕ1 + ϕ2 = 0 (i.e., when the pendulums are on the opposite sides relative to vertical axis)

the control u does not act, and the spring stiffness k will define the position of the pendulums.
The purpose of this work is to: research the dynamics of such a mechanical system, search the coefficients

a and b, provide the stabilization of the pendulums in the vicinity of the vertical position, and identify the
stability zones depending on the system’s parameters (k, m, l, h).
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3 Solution of the stabilization problem

Let us analyze a particular case when l1 = l2 and m1 = m2. The system (8) can be rewritten as follows:
⎧
⎨

⎩

ϕ̈1 = ω2ϕ1 + kh2
I (ϕ2 − ϕ1) − u

l ,

ϕ̈2 = ω2ϕ2 − kh2
I (ϕ2 − ϕ1) − u

l .
(11)

Let us find the sum s and the difference d of these equations, namely we have:
⎧
⎨

⎩

ϕ̈1 + ϕ̈2 = ω2 (ϕ1 + ϕ2) − 2u
l ,

ϕ̈2 − ϕ̈1 =
(
ω2 − 2kh2

I

)
(ϕ2 − ϕ1) ,

⇒
⎧
⎨

⎩

s̈ = ω2s − 2u
l ,

d̈ =
(
ω2 − 2kh2

I

)
d.

(12)

Obviously that the sum of the deviation angles s is proportional to the average position of the pendulums
in the space, while the difference d determines the position of the pendulums relative to each other. As can be
seen from the system (12) in the case when l1 = l2 and m1 = m2, the control u impacts the average position
of the pendulums in the space, but does not impact their relative position. At the same time, the stiffness of
the spring k affects the relative position, but does not affect the average position.

Thus, the control u is responsible for the stabilization of the pendulums in the case when ϕ2 − ϕ1 �= 0,
u = a · sign (bs + ṡ) �= 0, and the stiffness of the spring k when ϕ2 − ϕ1 = 0, u = a · sign (bs + ṡ) = 0. The
solution of the system (12) has the form

{
s = C1eωt + C2e−ωt + 2u

ω2l
,

d = D1e
√

αt + D2e−√
αt , α =ω2 − 2kh2

I .
(13)

Let the initial values of the deviation and velocity are s (0) = s0 and ṡ (0) = ṡ0, respectively. Then, the
solution of Cauchy’s problem for the first equation has the following form:

s =
(
s0
2

+ ṡ0
2ω

− u

ω2l

)

eωt +
(
s0
2

− ṡ0
2ω

− u

ω2l

)

e−ωt + 2u

ω2l
. (14)

We investigate the phase trajectory of the system (see Fig. 2) based on the solution of (14).
In the case u = 0 (as it can be seen directly from ωs + ṡ = 0), the phase coordinates will strive to zero

equilibrium position. Thus, if the control u is able to bring the pendulum to the straight line, the system will
be stable [8].

s0
2

+ ṡ0
2ω

− u

ω2l
= 0. (15)

Here

u = ωl

2
(ωs0 + ṡ0) . (16)

Fig. 2 Phase trajectory of the system
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Fig. 3 Stability zone of the system

So, u = a · sign (bs + ṡ) presents (16) as

u = ωl

2
|ωs0 + ṡ0| sign (ωs0 + ṡ0) . (17)

Thus, the control coefficients that provide the stable position of the pendulums can be obtained in the following
form: {

a = ωl
2 |ωs0 + ṡ0| ,

b = ω.
(18)

It should be noted that this stable position is not vertical (in the equality (18) the sum of the angles is
s = 2u

ω2l
). However, from the solution of (14) it also follows that in case

s0
2

+ ṡ0
2ω

− u

ω2l
< 0, (19)

the control affection will return the pendulum to the side of the vertical position. In the moments when the
pendulums crossing the vertical point, the control’s sign will be reversed and the process will repeat. Thus,
the inequality (19) is the criterion for the stabilization of the pendulums in the vicinity of the vertical position.
Based on this fact, we rewrite the inequality (18):

{
a ≥ ωl

2 |ωs0 + ṡ0| ,
b = ω.

(20)

The resulting inequality is the criterion for the stabilization of the pendulums.
Now, we investigate the phase trajectory of the system based on the criterions (20). From this inequality,

it is obvious that {
a ≥ ωl

2 (ωs0 + ṡ0) , if s0 > 0, ṡ0 > 0,

− a ≤ ωl
2 (ωs0 + ṡ0) , if s0 < 0, ṡ0 < 0.

(21)

Inequalities (21) can be presented on the phase plane as the area of all possible initial states that correspond to
possible stabilization of the system with fixed control (see Fig. 3).

So, the areaA shown in Fig. 3 determines all the possible initial positions of the systemwhen the pendulums
impossible to bring to a steady vertical position, and the area B is the stability area of the system.

Let us consider the second equation of the system (13). Obviously that in the case D1 = 0, the difference
d will turn to zero. (This corresponds to stabilization of the pendulums relative to each other.) However, this
situation is impossible because the value of D is determined by the initial states (different from zero) and does
not depend on control u.
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Thus, the coefficient α is only the parameter affecting the relative position of the pendulums. If α = 0
and d = const, it corresponds to the case when the moment of gravitational force is balanced by the restoring
moment of the elastic force of the spring. If α > 0, the difference d increases with time and it leads to the
loss of control. If α < 0, the complex terms appear in the solution and this fact indicates the emergence of a
harmonic process. Thus, the criterion of controllability of the pendulums becomes

α ≤ 0 ⇒ k ≥ Iω2

2h2
. (22)

Above we considered the case when the measurement of parameters s ṡ and control impact u were instanta-
neous. But in real systems of automatic control, this process takes some time. In this case, we can introduce the
parameter T which is the time interval of the control’s change. Let the control impact applied to the pendulums
will depend on the time T . Therefore, the solution of the first equation of the system (13) can be written in the
recursive form:

sk (t) =
(
sk−1

2
+ ṡk−1

2ω
− uk−1

ω2l

)

eω(t−tk−1) +
(
sk−1

2
− ṡk−1

2ω
− uk−1

ω2l

)

e−ω(t−tk−1) + 2uk−1

ω2l
, (23)

where tk is the time of the control change, sk−1 is the sum of the angles at the time tk−1, and uk−1 is the control
impact at time intervals [tk−1, tk].

It is obvious that Eq. (23) describes the dynamics of the system in the more realistic way. Also this form
of equation can be easily realized using the numerical simulation.

Fig. 4 Sum of the angles s(t) (left panel) and phase trajectory (right panel). The parameters are s (0) = 0.1, ṡ (0) = 0, a = 1.08,
the inequality (20) and (22) is satisfied

Fig. 5 Sum of the angles s(t) (left panel) and phase trajectory (right panel). The parameters are s (0) = −0.3, ṡ (0) = − 0.05,
a = 1.08; the inequality (20) and (22) is satisfied
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Fig. 6 Sum of the angles s(t) (left panel) and phase trajectory (right panel). The parameters are s (0) = 0.2, ṡ (0) = 0.4, a = 1.08;
the inequality (20) and (22) is satisfied

Fig. 7 Sum of the angles s(t) (left panel) and phase trajectory (right panel). The parameters are s (0) = 0.2, ṡ (0) = 0, a = 6;
the inequality (20) and (22) is satisfied

4 Numerical simulation

Now we can make the numerical simulation of the dynamics of the system under consideration using Eq. (23).
Let us consider the phase trajectory of the system under various initial conditions (see Figs. 4, 5, 6, 7).

As it can be seen from the simulation results, the considered system can be stabilized successfully near the
vertical position under control in the form (10) [of course, we took into account the criterions of stabilization
(20) and (22)]. It should be noted that the condition (21) imposes a restriction on the value of the coefficient a
only, and, as it can be seen from Fig. 7, even fairly large values of this coefficient lead the system to the stable
state (but the oscillations of the pendulums relative to the vertical axis occur with the greater amplitude).

5 Conclusions

In this paper using the numerical simulations, we have investigated the dynamics of the inverted coupled
pendulums. Namely, we obtained the stability zones for such a system in the phase space depending on the
system’s parameters (k, m, l, h). The analysis of the dynamics of the constructed model has shown that the
stabilization of such a complex unstable system is possible using the relatively simple control action which
represents the alternating force affection with a constant amplitude.
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