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Abstract This paper deals with the Lagrange multipliers corresponding to the intrinsic constraint equations of
rigid multibody mechanical systems. The intrinsic constraint equations are algebraic equations that are associ-
ated with nonminimal sets of orientation parameters employed for the kinematic representation of large finite
rotations. Two coordinate formulations are analyzed in this investigation, namely the reference point coordinate
formulation (RPCF) with Euler parameters and the natural absolute coordinate formulation (NACF). While
the RPCF with Euler parameters employs the four components of a unit quaternion as rotational coordinates,
the NACF directly uses the orthonormal set of nine direction cosines for describing the orientation of a rigid
body in the three-dimensional space. In the multibody approaches based on the RPCF with Euler parameters
and on the NACF, the use of a nonminimal set of rotational coordinates facilitates a general and systematic
formulation of the differential–algebraic equations of motion. Considering the basic equations of classical
mechanics, the fundamental problem of constrained motion is formalized and solved in this paper by using a
special form of the Udwadia–Kalaba method. By doing so, the Udwadia–Kalaba equations are employed for
obtaining closed-form analytical solutions for the Lagrange multipliers associated with the intrinsic constraint
equations that appear in the differential–algebraic dynamic equations developed by using the RPCF with Euler
parameters and theNACFmultibody approaches. Two simple numerical examples support the analytical results
found in this paper.

Keywords Rigid multibody mechanical systems · Reference point coordinate formulation (RPCF) with
Euler parameters · Natural absolute coordinate formulation (NACF) · Udwadia–Kalaba equations · Intrinsic
constraint equations · Lagrange multipliers · Generalized constraint forces

1 Introduction

This investigation is concerned with the nonlinear constraint equations of two coordinate formulations com-
monly used in multibody system applications. In particular, the multibody approaches that are based on
redundant sets of orientation parameters are the object of this study. Background materials, the formulation
of the problem of interest for this investigation, the scope, the contributions, and the organization of the paper
are discussed in this section.

1.1 Background

In industrial manufacturing and vehicle engineering applications, mechanical systems such as machines and
mechanisms are often modeled as multibody mechanical systems [1–8]. Numerous engineering examples of
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mechanical systems that can bemodeled using themultibody system approach can be found for robotic systems,
automotive systems, watercraft, aircraft, and spacecraft [9–15]. The mechanical part of a multibody system is
subjected to nonlinear force fields and is connected by mechanical joints that can allow large translations and
large finite rotations with respect to each other [16–20]. Therefore, in the analytical description of a multibody
system and in the subsequent computer implementation of the equations of motion, the system nonlinearities
must be correctly modeled using suitable formulation approaches in order to correctly take into account the
inherent nature of the multibody mechanical system under consideration [21–25]. As thoroughly discussed in
the literature, this problem is particularly important for lightweight machines and mechanisms in which, in
order tomeet increasing performance specifications, the structural components have amore complex dynamical
behavior in addition to the geometric nonlinearity that is due to the mechanical deformations [26–29].

In the last two decades, multibody dynamics has emerged as an interdisciplinary research field firmly
grounded in analytical mechanics, mutually interconnected with the finite element analysis of flexible struc-
tures, and strongly related to the nonlinear control theory of machines and mechanisms [30–34]. Since the
dynamics of multibody mechanical systems is highly nonlinear because of the geometric nonlinearities and the
possible presence of mechanical deformations, standard control strategies based on the linearization approach
are inappropriate and more complex control methods are required in order to obtain robust, effective, and
efficient control policies for this class of mechanical systems [35–38]. In general, multibody dynamics can
be subdivided in two complementary research fields: rigid multibody dynamics, which deals only with rigid
bodies, and flexible multibody dynamics, which includes both rigid and deformable bodies [39]. In flexible
multibody system applications, it is necessary to use a sound analysis approach in order to correctly capture
the effect of the mechanical deformations of flexible bodies [40–43]. This is necessary because the system
components can undergo large finite rotations and can experience small and/or large deformations [44–47]. In
particular, among all the analytical descriptions available in the literature for flexible multibody mechanical
systems, the floating frame of reference formulation (FFRF) and the absolute nodal coordinate formulation
(ANCF) are nonlinear formulation approaches for flexible multibody systems which yield accurate descrip-
tions of three-dimensional geometry and allow for the development of nonincremental solution procedures
for the computer implementation of the resulting set of differential–algebraic equations of motion [48]. In the
ANCF computational framework, accuratemathematical models of flexiblemultibody systems can be obtained
because a unique geometric representation is used for both the displacement field and the rotation field of a
continuum body [49]. Thus, in recent years, ANCF finite elements have been successfully used in several engi-
neering applications to develop large models with complex three-dimensional shapes and significant model
details [50–56].

1.2 Formulation of the problem of interest for this investigation

It is well known that a rigid body has only three degrees of freedom in a two-dimensional space and six
degrees of freedom in a three-dimensional space. A continuum body can be considered as a rigid body when
its deformation is very small and, therefore, the effect of the deformation on the resulting global motion can be
neglected. However, the mathematical description of the geometric configuration of a three-dimensional rigid
body is not unique and, for this purpose, independent or redundant sets of configuration parameters featuring
more than six generalized coordinates can be employed. To this end, minimal and nonminimal mathematical
descriptions of the rigid body configuration in the three-dimensional space are often used to develop kinematic
and dynamic formulations for rigid multibody mechanical systems. A minimal description of the motion
of a rigid body with respect to an inertial frame of reference is based on three translational coordinates
and three rotational coordinates. In virtue of their clear physical interpretation, the sets of three rotational
coordinates that are widely employed to describe the orientation of a rigid body are the three independent
Euler angles and the three independent Tait–Bryan angles also called Cardan angles. The Euler angles and
the Tait–Bryan angles involve three successive rotations about three body-fixed axes which, in general, are
not orthogonal. For example, the Euler angles frequently employed in the classical mechanics consider three
successive rotations about the z–x–z axes, whereas the Tait–Bryan angles or Cardan angles used in vehicle
engineering applications are obtained from three successive rotations about the x–y–z axes which are called,
respectively, roll, pitch, and yaw [57]. However, there are available in the literature other sets of three orientation
coordinates that are seldom employed for practical applications due to their more abstract mathematical nature
and, more importantly, because of the presence of critical configurations called kinematic singularities [58].
In fact, since it can be mathematically proved that each kinematic formulation based on a minimal set of
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three rotational coordinates suffers from the serious problem of having kinematic singularities, a redundant set
of orientation parameters is often employed for modeling complex rigid multibody mechanical systems and
solve this important issue related to the geometric description of the body orientation in a three-dimensional
space [59]. A kinematic singularity is a point of the configuration space of the rigid body where the rotation
matrix and the Jacobian matrix of the body angular velocity computed with respect to the time derivative
of the set of rotational coordinates degenerate and lose their full rank. It is important to understand that the
nature of the kinematic singularity is purely mathematical, it depends on the formulation strategy adopted to
describe the kinematics and dynamics of the rigid body, and this undesirable phenomenon has no physical
counterpart. Since the angular velocity of a rigid body is not an exact differential, which means that it cannot
be obtained as the time derivative of some vector quantity related to the orientation of the rigid body, devising
a robust mathematical approach for the definition of the body angular orientation in a three-dimensional space
is challenging.

In order to solve the kinematic singularity problem, two rigid multibody formulations that are of interest
for this investigation can be effectively employed, namely the reference point coordinate formulation (RPCF)
with Euler parameters [60] and the natural absolute coordinate formulation (NACF) [61]. In the RPCF, the
kinematic issues associated with the presence of critical configurations are eliminated employing as rotational
coordinates the four components of a unit quaternion which identify the set of Euler parameters. In the NACF,
on the other hand, the singularity problems are solved from the outset using the set of nine direction cosines
as orientation parameters. Since both the set of four Euler parameters and the set of nine direction cosines do
not suffer from the kinematic singularity problem encountered when each set of three rotational coordinates
is employed, they are extensively used in engineering applications for the kinematic and dynamic analysis
of rigid multibody mechanical systems. Therefore, the RPCF with Euler parameters uses only one additional
rotational coordinate when compared with respect to the other minimal coordinate formulations, whereas the
NACF employs six extra rotational coordinates with respect to the minimal number of orientation parameters.
Nevertheless, since in the kinematic description adopted in the NACF the separation of variables technique
is employed, the dynamic formulation based on the NACF leads to a convenient structure of the differential–
algebraic equations ofmotionwhich are sparse and easy to implement in a general-purposemultibody computer
program [62]. Furthermore, unlike the conventional multibody approaches based on natural coordinates [63–
67], the NACF allows for a systematic formulation of the constraint equations that enter in the formulation of
the differential–algebraic equations of motions leading to effective and efficient dynamic simulations.

The coordinate redundancy employed in the geometric descriptions of the RPCF and of the NACF implies
the mathematical formulation of an additional set of algebraic constraint equations which do not have a
straightforward physical interpretation. However, by using the basic mathematical tools of linear algebra and
employing some continuum mechanics concepts such as the definition of the Green–Lagrange strain tensor,
it can be easily demonstrated that the algebraic constraints arising from the use of redundant orientation
parameters are associated with the body rigidity conditions. For this reason, in this work these algebraic
constraints are referred to as intrinsic constrains, whereas the algebraic constrains associatedwith the kinematic
joints are called extrinsic constrains. The entire group of algebraic equations made of intrinsic and extrinsic
constraints form a set of holonomic constraints which can be included in the equations of motion of a rigid
multibody system using the Lagrange multipliers technique. The vector of Lagrange multipliers represents an
additional vector of unknown functions which must be computed together with the system configuration vector
and its time derivatives in order to predict the motion of the multibody mechanical system of interest. It is well
known that the vector of Lagrange multipliers associated with the extrinsic constraints can be used to recover
the generalized reaction forces of the kinematic joints which have a clear physical interpretation. A similar
procedure can be applied to compute the generalized constraint forces associated with the intrinsic constraint
equations by means of the corresponding vector of Lagrange multipliers. The main object of this investigation
is, therefore, to analyze the generalized constraint forces associatedwith the Lagrangemultipliers relative to the
set of intrinsic constraint equations, corroborate themathematical derivation developed in the paperwith simple
numerical experiments, and discuss the nontrivial physical interpretation of the mathematical results found.

1.3 Scope and contributions of this study

This paper represents an attempt to shed more light on the issues associated with the intrinsic constraint equa-
tions employed in the nonminimal representation of the orientation of rigid bodies. The goal of this investigation
is, therefore, to gain physical insights into the mathematical behavior of the multibody differential–algebraic
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equations of motion and obtain a deeper understanding of the kinematics and dynamics of rigid multibody
mechanical systems.A powerfulmathematical tool is employed for this purpose, namely the fundamental equa-
tions of constrained motion that are also known as Udwadia–Kalaba equations [68]. The Udwadia–Kalaba
equations originate from recent findings in the field of analytical dynamics and represent a simple and general
method for deriving the equations of motion of a multibody mechanical system constrained by a general set of
algebraic equations [69–71]. Furthermore, by using the fundamental equations of constrainedmotion, a unified
approach can be developed for modeling complex multibody mechanical systems and also for the design of
nonlinear control strategies [72,73]. Applying the Udwadia–Kalaba method in conjunction with the theory
of constrained motion in Lagrangian mechanics, both holonomic and nonholonomic constraints are treated in
the same way without the need to resort to the Lagrange multiplier technique [74]. However, the vector of
Lagrange multipliers can still be recovered from the generalized acceleration vector obtained employing the
Udwadia–Kalaba equations by using the hypothesis of workless constraints that is typically employed in clas-
sical mechanics. This effective method allows for obtaining an explicit closed-form analytical solution for the
equations of motion for constrained multibody mechanical systems even in the case of kinetic singularity, that
is, when the system mass matrix become a symmetric positive semi-definite singular matrix [75]. In analogy
with the kinematic singularity, a kinetic singularity is a point in the configuration space of the rigid body where
the mass matrix of the body degenerates and loses its full rank [76]. The kinetic singularity has no physical
justification and depends on the mathematical approach adopted for representing the orientation of a rigid body
in the three-dimensional space. As discussed in the literature, assuming precise mathematical restrictions on
the structure of the mass matrix and on the form of the algebraic constrains, the resulting explicit form of the
system equations of motion exists and is unique [77]. This is the case of main interest for this investigation.
In fact, considering, for example, a single rigid body modeled using the RPCF with Euler parameters, it can
be shown that the resulting mass matrix is a symmetric positive semi-definite (singular) matrix and both the
body mass matrix and the intrinsic constraint equation are amenable to be treated with the general from of the
Udwadia–Kalaba equations [78]. On the other hand, as discussed in the paper, the equations of motion of a
rigid body modeled employing the NACF lead to a symmetric positive definite mass matrix and, therefore, the
original form of the Udwadia–Kalaba equations can be used to rewrite the equations of motion in a special
mathematical form and analyze the closed-form expressions of the corresponding generalized constraint force
vectors obtained in the NACF computational framework [79]. The analytical results developed in the paper are
obtained by using the Udwadia–Kalaba equations in order to calculate the Lagrangemultipliers associated with
the intrinsic constraint equations arising both in the RPCF with Euler parameters and in the NACF together
with the corresponding generalized constraint forces. Furthermore, the analytical results found in the paper
are supported by a set of numerical results obtained by means of dynamic simulations.

Another important contribution of the present study is the reformulation of the fundamental equations of
constrained motion in a mathematical form that is compact and easy to implement in a general-purpose multi-
body computer program. By doing so, the computational efficiency of the methodology developed by Udwadia
and Kalaba can be considerably improved and, at the same time, the efficacy of the Udwadia–Kalaba equations
is conserved. To this end, a general matrix called kinetic matrix that is associated with the multibody formu-
lation strategy employed for deriving the differential–algebraic equations of motion is introduced. Employing
the concept of theMoore–Penrose pseudoinverse matrix, the kinetic matrix is subsequently used for computing
the constraint feedback matrix that allows for obtaining the generalized force vector and the Lagrange multi-
plier vector associated with the algebraic constraints. The alternative form of the Udwadia–Kalaba equations
developed in this investigation can be applied to the equations of motion obtained by using both the RPCFwith
Euler parameters and the NACF. However, in the case of the RPCF with Euler parameters, the system mass
matrix is a singular symmetric mass matrix and, therefore, the introduction of an auxiliary multibody mechan-
ical system is needed in order to obtain the generalized acceleration vector and the generalized constraint force
vector of the original multibody system. As discussed in details in the paper, this analytical calculation can be
readily performed by using the kinetic matrix associated with the auxiliary multibody mechanical system. For
this purpose, in this investigation, the fundamental equations of constrained motion are used for the analytical
treatment of the set of intrinsic constraint equations resulting from the nonminimal representation of large
finite rotations.

1.4 Organization of the paper

The organization of this paper is as follows. In Sect. 2, background materials and important concepts related to
the two multibody formulations used in the paper for the description of the kinematics and dynamics of rigid
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multibody mechanical systems are reviewed. In this section, particular attention is given to the basic equations
that will be extensively used in this investigation for the RPCFwith Euler parameters and the NACF. In Sect. 3,
the fundamental equations of constrained motion, also known as Udwadia–Kalaba equations, are discussed.
In particular, in this section, the Udwadia–Kalaba equations are expressed in a special analytical form suitable
for obtaining in a closed form the Lagrange multipliers of the intrinsic constraint equations that appear in the
differential–algebraic equations of motion derived by using the RPCF with Euler parameters and the NACF. In
Sect. 4, the numerical results obtained using two illustrative examples of rigid multibody mechanical systems
are analyzed. In order to provide a numerical verification of the analytical results developed in the paper, in
this section two simple mechanical systems are considered as an example of an unconstrained rigid body and
as an example of a rigid body constrained by kinematic joints. In Sect. 5, the summary and the conclusions
drawn from this investigation are provided.

2 Equations of motion of three-dimensional rigid multibody mechanical systems

In this section, the basic multibody equations employed in the paper and useful background material for
explaining the main ideas behind the present study are provided. In particular, the equations of motion of
a generic rigid body i that belongs to a three-dimensional mechanical system are derived considering two
general coordinate formulations for rigid multibody systems, namely the RPCF with Euler parameters and the
NACF. While in the kinematic description of the RPCF the orientation of the body-fixed reference system is
commonly represented using the set of Euler parameters, in the kinematic description of the NACF the set of
direction cosines is employed to represent large finite rotations of the rigid body i . A brief summary of the
fundamental equations concerning the RPCF with Euler parameters and the NACF is given below.

2.1 Kinematic analysis based on the reference point coordinate formulation with Euler parameters

In this subsection, the kinematic description of the RPCF featuring the set of Euler parameters as rotational
coordinates is briefly recalled. In particular, the position, velocity, and acceleration fields of a general rigid
body i are derived in terms of the reference point coordinates based on the Euler parameters. In the kinematic
descriptions of both the RPCF with Euler parameters and the NACF, two types of frame of reference are
considered. The first type of coordinate system is an inertial frame of reference which is simply called global
reference system. Without loss of generality, the global reference system can be considered fixed in space and
time so that it can serve as a unique standard for the kinematic analysis of the rigid multibody system under
consideration. The second type of coordinate system is a frame of reference attached to a given point Oi of the
rigid body i that forms the multibody systems and, therefore, this local reference system translates and rotates
with the body i . The point Oi is thus selected as a reference point on the rigid body i . For a three-dimensional
multibody system, the global position vector of the reference point Oi defined in the global coordinate system
is denoted with Ri and is given by:

Ri =
⎡
⎣
Ri
1

Ri
2

Ri
3

⎤
⎦ (1)

where Ri
1, R

i
2, and Ri

3 are the Cartesian components of the reference point Oi defined in the global coordinate
system. On the other hand, the position vector of an arbitrary point Pi on the rigid body i defined in the local
coordinate system is denoted with ūi and is given by:

ūi =
⎡
⎣
x̄ i

ȳi

z̄i

⎤
⎦ (2)

where x̄ i , ȳi , and z̄i are the Cartesian components of the arbitrary point Pi defined in the local coordinate
system. In the RPCF with Euler parameters, the global position vector of an arbitrary point Pi on the rigid
body i is denoted with ri and can be written as:

ri = Ri + Ai ūi (3)



424 C. M. Pappalardo, D. Guida

where Ri is the global position vector of the reference point Oi associated with the local coordinate system
on the rigid body i , Ai is the rotation matrix that defines the orientation of the body frame of reference with
respect to the inertial coordinate system, and ūi is the position vector of an arbitrary point Pi on the rigid
body i defined in the local coordinate system. The rotation matrix Ai transforms vector quantities expressed
in the local frame of reference into their global counterparts represented in the inertial coordinate system. The
rotation matrix Ai can be expressed employing the set of Euler parameters denoted with θ i and given by:

θ i =

⎡
⎢⎢⎢⎢⎢⎣

θ i0

θ i1

θ i2

θ i3

⎤
⎥⎥⎥⎥⎥⎦

(4)

where the four scalar quantities θ i0, θ
i
1, θ

i
2, and θ i3 are the Euler parameters associated with the orientation of

the rigid body i . The set of Euler parameters θ i is a nonminimal set of orientation coordinates and, therefore,
it must satisfy the following normalization condition:

ϕi =
(
θ i

)T
θ i − 1 = 0 (5)

where ϕi is a constraint vector which contains the intrinsic constraint equation corresponding to the rigidity
condition of the rigid body i . In fact, the algebraic equation associated with the set of Euler parameters θ i

guarantees that the rotation matrix Ai is an orthogonal matrix. Thus, it can be proved that the normalization
condition of the Euler parameters is a mathematical formulation of the physical rigidity of a given rigid body
i and, therefore, it represents an intrinsic constraint equation. One can show that the rotation matrix Ai can be
expressed in terms of the Euler parameters θ i as follows:

Ai = Ei
(
Ēi

)T
(6)

where the matrices Ei and Ēi can be explicitly written in terms of the set of Euler parameters as:

Ei =

⎡
⎢⎢⎣
−θ i1 θ i0 −θ i3 θ i2

−θ i2 θ i3 θ i0 −θ i1

−θ i3 −θ i2 θ i1 θ i0

⎤
⎥⎥⎦ (7)

Ēi =

⎡
⎢⎢⎣
−θ i1 θ i0 θ i3 −θ i2

−θ i2 −θ i3 θ i0 θ i1

−θ i3 θ i2 −θ i1 θ i0

⎤
⎥⎥⎦ (8)

As a result, the configuration of a rigid body i of the three-dimensional multibody system can be identified
univocally considering a generalized coordinate vector qi in which the translational coordinates Ri and the
rotational coordinates θ i of the rigid body i are grouped as follows:

qi =
[
Ri

θ i

]
(9)

From the kinematic description of the RPCF with Euler parameters, it is clear that the position field of a rigid
body ri is a nonlinear function of the configuration vector qi . On the other hand, one can easily show that in
the RPCF with Euler parameters the virtual displacement field δri and the velocity field ṙi of a rigid body i
are nonlinear functions of the generalized coordinate vector qi and are linear functions of, respectively, the
virtual change in the generalized coordinate vector δqi and in the generalized velocity vector q̇i . Thus, in the
RPCF featuring Euler parameters, the virtual displacement field δri and the velocity field ṙi of a rigid body i
are, respectively, given by:

δri = Liδqi (10)

ṙi = Li q̇i (11)
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where Li is the Jacobian matrix of the position field ri of the rigid body i computed with respect to the
generalized coordinate vector qi that can be written as:

Li = [
I Hi

]
(12)

In this equation, I is an appropriate identity matrix and Hi is a matrix which depends on the rotational
coordinates given by:

Hi = Ai
( ˜̄ui

)T
Ḡi (13)

where ˜̄ui is a skew-symmetric matrix associated with the cross product of the axial vector ūi and Ḡi is the
transformation matrix that allows to express the angular velocity vector defined in the local coordinate system

ω̄i as a linear combination of the time derivatives of the vector of Euler parameters θ̇
i
as follows:

ω̄i = Ḡi θ̇
i

(14)

where in the RPCF with Euler parameters the transformation matrix Ḡi is given by:

Ḡi = 2Ēi (15)

Furthermore, in the RPCF with Euler parameters, the acceleration field r̈i of the rigid body i can be readily
calculated as:

r̈i = Li q̈i + L̇i q̇i (16)

In this equation, the time derivative of the Jacobian matrix L̇i can be easily computed to yield:

L̇i = [
O Ḣi

]
(17)

where the time derivative of thematrix associatedwith the rotational coordinates Ḣi can be explicitly computed
as follows:

Ḣi = Ȧi
( ˜̄ui

)T
Ḡi + Ai

( ˜̄ui
)T ˙̄Gi

= Ai ˜̄ωi
( ˜̄ui

)T
Ḡi + Ai

( ˜̄ui
)T ˙̄Gi

(18)

where ˜̄ωi
is a skew-symmetric matrix associated with the cross product of the axial vector ω̄i . From this

equation, it is apparent that the acceleration field r̈i of rigid body i is a nonlinear function of the generalized
coordinate vector qi , a nonlinear function of the generalized velocity vector q̇i , and a linear function of the
generalized acceleration vector q̈i . The explicit derivations of the position, velocity, and acceleration fields
complete the kinematic description of a given rigid body i in the RPCF based on the set of Euler parameters.

2.2 Dynamic analysis based on the reference point coordinate formulation with Euler parameters

In this subsection, the equations of motion of a three-dimensional rigid multibody mechanical system are
derived using the kinematic description of the RPCF and employing the set of Euler parameters as rotational
coordinates. In particular, the mass matrix, the quadratic velocity vector associated with the generalized inertia
effects, the generalized external force vector, and the constraint quadratic velocity vector relative to the intrinsic
constraint are derived for a general rigid body i in terms of the reference point coordinates based on the Euler
parameters. The equations of motion for a general rigid body i represented in terms of the reference point
coordinates based on the set of Euler parameters can be obtained by using the D’Alembert–Lagrange principle
of virtual work in conjunction with the method of Lagrange multipliers. To this end, one can write the virtual
work of the complete set of generalized forces which act on a general rigid body i as follows:

δWi
i + δWi

e + δWi
c = 0 (19)

where δWi
i represents the virtual work of the generalized inertia forces of the rigid body i , δWi

e denotes the
virtual work of the generalized external forces acting on the rigid body i , and δWi

c is the virtual work of the
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generalized constraint forces associated with the intrinsic constraint equation of the rigid body i . In the RPCF
with Euler parameters, the virtual work of the generalized inertia forces associated with a given rigid body i
can be written as:

δWi
i = −

∫
�i

ρi
(
r̈i

)T
δridV i

=
(
−

(
q̈i

)T
∫

�i
ρi

(
Li

)T
LidV i −

(
q̇i

)T
∫

�i
ρi

(
L̇i

)T
LidV i

)
δqi

=
(
−Mi q̈i +Qi

v

)T
δqi (20)

In this equation, �i denotes the volume of the rigid body i , ρi is the rigid body mass density, Mi represents
the mass matrix of the rigid body i , and Qi

v is the generalized force vector that contains the terms which are
quadratic in the generalized velocities expressed in terms of reference point coordinates. The mass matrixMi

of the rigid body i can be explicitly computed to yield:

Mi =
∫

�i
ρi

(
Li

)T
LidV i

=
⎡
⎣mi I miAi

( ˜̄uiGi

)T
Ḡi

mi
(
Ḡi

)T ˜̄uiGi

(
Ai

)T (
Ḡi

)T
Īi
Oi Ḡ

i

⎤
⎦ (21)

where I is an appropriate identity matrix, mi denotes the mass of the rigid body i , Gi is the center of mass
of the rigid body i , ūi

Gi is the position vector of the centroid of the rigid body i expressed in the body-fixed

coordinate system, ˜̄uiGi is a skew-symmetric matrix associated with the cross product of the axial vector ūi
Gi ,

and Īi
Oi is the matrix of mass moments of inertia relative to the rigid body i computed with respect to the local

frame of reference. It is important to note that, in the RPCF with Euler parameters, the mass matrixMi of the
rigid body i is a symmetric positive semi-definite matrix which has a degree of singularity equal to one, that
is, the rank of the mass matrixMi is equal to its dimension minus one. In fact, the mass matrixMi of the rigid
body i depends explicitly on the orientation of the rigid body through the redundant set of Euler parameters
θ i , thus reducing the matrix rank. For a general rigid multibody mechanical system, the rank deficiency of the
system mass matrix is equal to the number of intrinsic constraint equations associated with each set of Euler
parameters employed in the description of the system orientation and, therefore, the degree of singularity of
the mechanical system is equal to the number of bodies in the rigid multibody system. This issue relative to
the mass matrix Mi of the rigid body i modeled employing the RPCF based on the set of Euler parameters is
called kinetic singularity in contrast to the kinematic singularity that characterizes each set of three orientation
parameters in the representation of the rotation, such as the Euler angles or the Tait–Bryan angles. In particular,
if the reference point Oi coincides with the center of mass Gi of the rigid body i and, at the same time, if the
axes of the body-fixed reference frame coincide with the principal inertia axes of the rigid body i , then the
body mass matrix Mi is a block diagonal matrix that assumes the following special form:

Mi =
[
mi I O
O

(
Ḡi

)T
Īi
Gi Ḡ

i

]
(22)

where Īi
Gi is the matrix of principal mass moments of inertia for the rigid body i computed with respect to the

body-fixed reference frame. On the other hand, the quadratic velocity vector associated with the centrifugal
and Coriolis generalized inertia effects Qi

v can be computed as follows:

Qi
v = −

∫
�i

ρi
(
Li

)T
L̇idV i q̇i

=
⎡
⎣miAi ˜̄ωi ˜̄uiGi ω̄i

−(
Ḡi

)T ˜̄ωi
Īi
Oi ω̄

i

⎤
⎦ (23)
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Even in this case, when the reference point Oi coincides with the center of mass Gi of the rigid body i and the
axes of local reference system coincide with the principal inertia axes of the rigid body i , the inertia quadratic
velocity vector Qi

v assumes the following simplified form:

Qi
v =

[
0

−(
Ḡi

)T ˜̄ωi
Īi
Gi ω̄

i

]
(24)

Employing the set of reference point coordinates featuring the Euler parameters as rotational coordinates, the
virtual work of the generalized external forces acting on the rigid body i can be written as:

δWi
e =

∫
�i

(
f ie

)T
δridV i

=
∫

�i

(
f ie

)T
LidV iδqi

=
(
Qi

e

)T
δqi (25)

where f ie is a general external force vector distributed on the rigid body i , such as a constant force vector given
by the product of the body mass density ρi multiplied by the gravity vector gi , and Qi

e is the generalized
external force vector acting on the rigid body i which is given by:

Qi
e =

∫
�i

(
Li

)T
f iedV

i (26)

Moreover, in the RPCF with Euler parameters, the virtual work of the generalized constraint forces associated
with the intrinsic constraint equation of the rigid body i can be obtained employing the Lagrange multiplier
technique as follows:

δWi
c = −

(
λi

)T
δϕi

= −
(
λi

)T
ϕi
qi δq

i

=
(
−

(
ϕi
qi

)T
λi

)T

δqi

=
(
Qi

c

)T
δqi (27)

where λi is the Lagrange multiplier relative to the intrinsic constraint equation of the Euler parameters, ϕi
qi

denotes the Jacobian matrix of the intrinsic constraint vector ϕi calculated with respect to the reference
point coordinates qi , and Qi

c represents the generalized force vector associated with the Euler parameters
normalization condition. The intrinsic constraint Jacobian matrix ϕi

qi and the intrinsic constraint generalized

force vector Qi
c are, respectively, given by:

ϕi
qi =

[
0T 2

(
θ i

)T ]
(28)

Qi
c = −

(
ϕi
qi

)T
λi (29)

By substituting the explicit expressions of the virtual works for the generalized inertia, external, and constraint
forces into theD’Alembert–Lagrange principle of virtual work and employing the Lagrangemultiplier method,
one obtains the following set of equations of motion for a general rigid body i modeled employing the RPCF
with Euler parameters: {

Mi q̈i = Qi
v +Qi

e −
(
ϕi
qi

)T
λi

ϕi = 0
(30)
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The equations of motion relative to the rigid body i modeled using the reference point coordinates with the set
of Euler parameters form a set of differential–algebraic dynamic equations (DAE). These index-three dynamic
equations of motion can be transformed into their index-one counterpart differentiating twice with respect to
time the intrinsic constraint equation of the normalization condition for the Euler parameters leading to the
following set of ordinary differential dynamic equations (ODE):

⎧⎨
⎩
Mi q̈i = Qi

v +Qi
e −

(
ϕi
qi

)T
λi

ϕi
qi
q̈i = Qi

d

(31)

whereQi
d is a constraint quadratic velocity vector associated with the intrinsic constraint that absorbs the terms

which are quadratic in the generalized velocities expressed in terms of reference point coordinates. Considering
the second time derivative of the normalization condition associated with the set of Euler parameters, the
corresponding constraint quadratic velocity vector can be readily computed to yield:

Qi
d = −2

(
θ̇
i
)T

θ̇
i

(32)

The explicit derivations of the mass matrix, the quadratic velocity vector associated with the generalized inertia
effects, the generalized external force vector, and the constraint quadratic velocity vector associated with the
intrinsic constraint of the reference point coordinates complete the description of dynamic equations of a rigid
body i based on the RPCF with Euler parameters.

2.3 Kinematic analysis based on the natural absolute coordinate formulation

In this subsection, the kinematic description of the NACF featuring the direction cosines as orientation param-
eters is concisely illustrated. In particular, the position, velocity, and acceleration fields of a general rigid body
i are derived in terms of the set of natural absolute coordinates. In the NACF, the global position vector of an
arbitrary point Pi on the rigid body i is defined as:

ri = Siei = Ri + x̄ iαi + ȳiβ i + z̄iγ i (33)

In this equation, Si is the matrix of the shape functions of the rigid body i and ei is the vector of natural
absolute coordinates which identifies the configuration of the rigid body i that are, respectively, given by:

Si = [
I x̄ i I ȳi I z̄i I

]
(34)

ei =
[
Ri

δi

]
(35)

where δi is the orientation vector that contains the direction cosines associated with the body-fixed coordinate
system defined as:

δi =
⎡
⎣

αi

β i

γ i

⎤
⎦ (36)

where αi , β i , and γ i identify three unit vectors which contains the direction cosines of the rotation matrix Ai

of the rigid body i and are, respectively, given by:

αi =

⎡
⎢⎢⎣

αi
1

αi
2

αi
3

⎤
⎥⎥⎦ (37)

β i =

⎡
⎢⎢⎣

β i
1

β i
2

β i
3

⎤
⎥⎥⎦ (38)
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γ i =

⎡
⎢⎢⎣

γ i
1

γ i
2

γ i
3

⎤
⎥⎥⎦ (39)

where αi
1, α

i
2, and αi

3 are the direction cosines associated with the unit vector directed along the x̄
i axis of the

local frame of reference, β i
1, β

i
2, and β i

3 are the direction cosines relative to the unit vector directed along the ȳ
i

axis of the body-fixed reference system, and γ i
1 , γ

i
2 , and γ i

3 are the direction cosines of the unit vector directed
along the z̄i axis of the floating coordinate system. The set of direction cosines that forms the orientation
vector δi is a nonminimal set of rotation coordinates and, therefore, it must fulfill the following normalization
conditions:

ϕi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
αi

)T
αi − 1

(
β i )Tβ i − 1

(
γ i

)T
γ i − 1

(
αi

)T
β i

(
αi

)T
γ i

(
β i )T γ i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (40)

where ϕi is a constraint vector which incorporates the intrinsic constraint equations relative to the rigidity
conditions of the rigid body i . Indeed, the algebraic equations associated with the set of direction cosines
αi , β i , and γ i ensure that the rotation matrix Ai is an orthogonal matrix. Thus, it can be proved that the
normalization conditions of the direction cosines are a mathematical representation of the physical rigidity of
a general rigid body i and, therefore, they represent a set of intrinsic constraint equations. The rotation matrix
Ai relative to the local frame of reference for the rigid body i can be expressed in terms of the set of direction
cosines as follows:

Ai = [
αi β i γ i

]
(41)

On the other hand, in the NACF, the angular velocity vector expressed in the body-fixed coordinate system ω̄i

can be written in terms of the time derivative of the orientation vector δ̇
i
as follows:

ω̄i = Ḡi δ̇
i

(42)

where in the NACF the transformation matrix Ḡi is defined as:

Ḡi =
⎡
⎢⎣

0T 0T −(
β i )T

−(
γ i

)T
0T 0T

0T −(
αi

)T
0T

⎤
⎥⎦ (43)

From the kinematic description of the NACF, it is apparent that the global position vector ri of the rigid body
i can be written as the product of a spatial-dependent shape function matrix Si and a time-dependent vector
of natural absolute coordinates ei . Consequently, the position field of a rigid body ri is a linear function of
the configuration vector ei . Also, the virtual displacement field δri and the velocity field ṙi of a rigid body i
are linear functions of, respectively, the virtual change in the natural absolute coordinate vector δei and in the
generalized velocity vector associated with the natural absolute coordinates ėi . Therefore, in the NACF, the
virtual displacement field δri and the velocity field ṙi of the rigid body i can be, respectively, written as:

δri = Siδei = δRi + x̄ iδαi + ȳiδβ i + z̄iδγ i (44)

ṙi = Si ėi = Ṙi + x̄ i α̇i + ȳi β̇
i + z̄i γ̇ i (45)

Furthermore, in the NACF, the acceleration field r̈i of the rigid body i can be readily computed as follows:

r̈i = Si ëi = R̈i + x̄ i α̈i + ȳi β̈
i + z̄i γ̈ i (46)

From this equation, it is clear that the acceleration field of rigid body i is a linear function of the generalized
accelerations associated with the natural absolute coordinates ëi . The explicit derivations of the position,
velocity, and acceleration fields of a general rigid body i complete the kinematic description of the NACF.
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2.4 Dynamic analysis based on the natural absolute coordinate formulation

In this subsection, the equations of motion of a three-dimensional rigid multibody mechanical system are
obtained employing the kinematic description of the NACF. In particular, the mass matrix, the generalized
external force vector, and the constraint quadratic velocity vector associated with the intrinsic constraints are
developed for a general rigid body i in terms of the set of natural absolute coordinates. The equations of motion
for a given rigid body i expressed in terms of the natural absolute coordinates can be readily derived employing
the D’Alembert–Lagrange principle of virtual work combined with the method of Lagrange multipliers. To
this end, one can write the virtual work of the complete set of generalized forces that acts on a given rigid body
i as follows:

δWi
i + δWi

e + δWi
c = 0 (47)

where δWi
i is the virtual work of the generalized inertia forces of the rigid body i , δWi

e represents the virtual
work of the generalized external forces acting on the rigid body i , and δWi

c denotes the virtual work of the
generalized constraint forces associated with the intrinsic constraint equations of the rigid body i . In the NACF,
the virtual work of the generalized inertia forces associated with a given rigid body i can be written as:

δWi
i = −

∫
�i

ρi
(
r̈i

)T
δridV i

= −
(
ëi

)T
∫

�i
ρi

(
Si

)T
SidV iδei

=
(
−Mi ëi

)T
δei (48)

In this equation,�i denotes the volume of the rigid body i , ρi is the rigid body mass density, andMi represents
the mass matrix of the rigid body i expressed in terms of natural absolute coordinates. The mass matrixMi of
the rigid body i can be explicitly calculated as follows:

Mi =
∫

�i
ρi

(
Si

)T
SidV i

=

⎡
⎢⎢⎢⎢⎣

mi I J̄ i
Oi ,x̄ i

I J̄ i
Oi ,ȳi

I J̄ i
Oi ,z̄i

I

J̄ i
Oi ,x̄ i

I J̄ i
Oi ,x̄ i x̄ i

I J̄ i
Oi ,x̄ i ȳi

I J̄ i
Oi ,x̄ i z̄i

I

J̄ i
Oi ,ȳi

I J̄ i
Oi ,x̄ i ȳi

I J̄ i
Oi ,ȳi ȳi

I J̄ i
Oi ,ȳi z̄i

I

J̄ i
Oi ,z̄i

I J̄ i
Oi ,x̄ i z̄i

I J̄ i
Oi ,ȳi z̄i

I J̄ i
Oi ,z̄i z̄i

I

⎤
⎥⎥⎥⎥⎦

(49)

where I denotes an appropriate identity matrix, mi is the mass of the rigid body i , while J̄ i
Oi ,x̄ i

, J̄ i
Oi ,ȳi

, and

J̄ i
Oi ,z̄i

indicate the first moments of mass of the rigid body i computed with respect to the three local axes

passing through the body reference point Oi , whereas J̄ i
Oi ,x̄ i x̄ i

, J̄ i
Oi ,ȳi ȳi

, J̄ i
Oi ,z̄i z̄i

, J̄ i
Oi ,x̄ i ȳi

, J̄ i
Oi ,x̄ i z̄i

, and J̄ i
Oi ,ȳi z̄i

denote the second moments of mass of the rigid body i computed with respect to the three local axes passing
through the body reference point Oi which can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J̄ i
Oi ,x̄ i

= mi x̄ i
Gi

J̄ i
Oi ,ȳi

= mi ȳi
Gi

J̄ i
Oi ,z̄i

= mi z̄i
Gi

J̄ i
Oi ,x̄ i x̄ i

= 1
2

(
Ī i
Oi ,ȳi ȳi

+ Ī i
Oi ,z̄i z̄i

− Ī i
Oi ,x̄ i x̄ i

)

J̄ i
Oi ,ȳi ȳi

= 1
2

(
Ī i
Oi ,z̄i z̄i

+ Ī i
Oi ,x̄ i x̄ i

− Ī i
Oi ,ȳi ȳi

)

J̄ i
Oi ,z̄i z̄i

= 1
2

(
Ī i
Oi ,x̄ i x̄ i

+ Ī i
Oi ,ȳi ȳi

− Ī i
Oi ,z̄i z̄i

)

J̄ i
Oi ,x̄ i ȳi

= − Ī i
Oi ,x̄ i ȳi

J̄ i
Oi ,x̄ i z̄i

= − Ī i
Oi ,x̄ i z̄i

J̄ i
Oi ,ȳi z̄i

= − Ī i
Oi ,ȳi z̄i

(50)
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where Gi identifies the centroid of the rigid body i , whereas x̄ i
Gi , ȳ

i
Gi , and z̄i

Gi represents the three Cartesian
coordinates of the center of mass of the rigid body i represented with respect to the body-fixed frame of
reference, Ī i

Oi ,x̄ i x̄ i
, Ī i

Oi ,ȳi ȳi
, and Ī i

Oi ,z̄i z̄i
are the mass moments of inertia of the rigid body i computed with

respect to the three local axes passing through the body reference point Oi , while Ī i
Oi ,x̄ i ȳi

, Ī i
Oi ,x̄ i z̄i

, and Ī i
Oi ,ȳi z̄i

are the mass products of inertia of the rigid body i calculated with respect to the three local axes passing
through the body reference point Oi . It is important to note that in the NACF the mass matrixMi of a general
rigid body i is constant, symmetric, and positive definite and features a full rank. As a result, in the NACF
the quadratic velocity vector Qi

v associated with the centrifugal and Coriolis generalized inertia effects is
equal to zero. This peculiar property of the mass matrix Mi of the rigid body i modeled employing the set of
natural absolute coordinates is a direct consequence of the separation of variables carried out in the kinematic
description of the position field of the rigid body i and is advantageous for performing effective and efficient
dynamical simulations. In the special case in which the reference point Oi coincides with the center of mass
Gi of the rigid body i and when the axes of the body-fixed reference frame coincide with the principal inertia
axes of the rigid body i , the mass matrix Mi reduces to a constant diagonal matrix given by:

Mi =

⎡
⎢⎢⎢⎣

mi I O O O
O J̄ i

Gi ,x̄ i x̄ i
I O O

O O J̄ i
Gi ,ȳi ȳi

I O

O O O J̄ i
Gi ,z̄i z̄i

I

⎤
⎥⎥⎥⎦ (51)

where J̄ i
Gi ,x̄ i x̄ i

, J̄ i
Gi ,ȳi ȳi

, and J̄ i
Gi ,z̄i z̄i

are the principal second moments of mass relative to the rigid body i
calculated with respect to the local reference system. By using the kinematic description based on the set of
natural absolute coordinates, the virtual work of the generalized external forces acting on the rigid body i can
be written as:

δWi
e =

∫
�i

(
f ie

)T
δridV i

=
∫

�i

(
f ie

)T
SidV iδei

=
(
Qi

e

)T
δei (52)

where f ie is a general external force vector distributed on the rigid body i , such as a constant force vector given
by the product of the body mass density ρi multiplied by the gravity vector gi , and Qi

e is the generalized
external force vector acting on the rigid body i that can be computed as follows:

Qi
e =

∫
�i

(
Si

)T
f iedV

i (53)

Moreover, in the NACF, the virtual work of the generalized constraint forces related to the set of intrinsic
constraint equations of the rigid body i can be derived using the Lagrange multiplier technique as:

δWi
c = −

(
λi

)T
δϕi

= −
(
λi

)T
ϕi
ei δe

i

=
(
−

(
ϕi
ei

)T
λi

)T

δei

=
(
Qi

c

)T
δei (54)

where λi is a vector of Lagrange multipliers corresponding to the intrinsic constraint equations of the direction
cosines, ϕi

ei represents the Jacobian matrix of the intrinsic constraint vector ϕi computed with respect to the set

of natural absolute coordinates ei , andQi
c denotes the generalized force vector relative to the direction cosines
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normalization conditions. The intrinsic constraint Jacobian matrix ϕi
ei and the intrinsic constraint generalized

force vector Qi
c can be are, respectively, written as:

ϕi
ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0T 2
(
αi

)T
0T 0T

0T 0T 2
(
β i )T 0T

0T 0T 0T 2
(
γ i

)T
0T

(
β i )T (

αi
)T

0T

0T
(
γ i

)T
0T

(
αi

)T
0T 0T

(
γ i

)T (
β i )T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

Qi
c = −

(
ϕi
ei

)T
λi (56)

By substituting the analytical expressions of the virtualworks for the generalized inertia, external, and constraint
forces into the D’Alembert–Lagrange principle of virtual work and using the Lagrange multiplier method, one
obtains the following set of equations of motion for a general rigid body i modeled using the NACF:

{
Mi ëi = Qi

e −
(
ϕi
ei

)T
λi

ϕi = 0
(57)

The equations of motion for the rigid body i modeled employing the natural absolute coordinates form a set of
differential–algebraic dynamic equations (DAE). These index-three equations of motion can be transformed
into their index-one counterpart differentiating twice with respect to time the intrinsic constraint equations
relative to the normalization conditions of the direction cosines leading to the following set of ordinary
differential dynamic equations (ODE):

⎧⎨
⎩
Mi ëi = Qi

e −
(
ϕi
ei

)T
λi

ϕi
ei ë

i = Qi
d

(58)

where Qi
d is a constraint quadratic velocity vector corresponding to the intrinsic constraints that contains the

terms which are quadratic in the generalized velocities expressed in terms of natural absolute coordinates.
Considering the second time derivative of the normalization conditions relative to the direction cosines, the
associated constraint quadratic velocity vector can be explicitly written as follows:

Qi
d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
(
α̇i

)T
α̇i

−2
(
β̇
i
)T

β̇
i

−2
(
γ̇ i

)T
γ̇ i

−2
(
α̇i

)T
β̇
i

−2
(
α̇i

)T
γ̇ i

−2
(
β̇
i
)T

γ̇ i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(59)

The explicit derivations of the mass matrix, the generalized external force vector, and the constraint quadratic
velocity vector for the intrinsic constraints of the natural absolute coordinates complete the description of
dynamic equations of a rigid body i based on the NACF.

3 Fundamental equations of constrained motion

In this section, the fundamental equations of constrained motion are discussed. The fundamental equations
of constrained motion are also known as Udwadia–Kalaba equations by the names of their discoverers [80].
Udwadia and Kalaba developed the fundamental equations of constrained motion employing the Gauss prin-
ciple of least constraint as a fundamental principle of analytical mechanics combined with modern linear
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algebra techniques [81]. In particular, in this section the fundamental equations of constrained motion are
reformulated in an analytical form suitable for modeling the generalized constraint forces of rigid multibody
mechanical systems. The Udwadia–Kalaba equations represent an efficient and effective analytical method
for solving the central problem of constrained motion. In fact, this method allows for obtaining closed-form
expressions of the generalized constraint forces and of the corresponding Lagrange multipliers for a rigid
multibody mechanical system subjected to a broad class of holonomic and nonholonomic constraints [82].
In the general case in which a set of nonholonomic constraints is considered, the Udwadia–Kalaba equa-
tions can be applied as long as the algebraic constraint equations depend linearly on the system generalized
accelerations, whereas a general nonlinear dependence can be assumed in terms of the system generalized
coordinates and velocities [83]. Two general cases are considered in this section. In the first general case, a
multibody mechanical system having a positive semi-definite mass matrix is considered. On the other hand,
the second general case concerns a multibody mechanical system having a positive definite mass matrix.
In both cases, a general set of holonomic constraint equations is assumed as a restriction of the motion of
the multibody mechanical system. Subsequently, the two general forms of the Udwadia–Kalaba equations
developed in this section are used to analytically determine the Lagrange multipliers and the corresponding
generalized constraint forces associated with the set of intrinsic constraint equations. The analytical calcula-
tion of the Lagrange multipliers is performed for a multibody mechanical system modeled employing both the
RPCF featuring the Euler parameters as orientation coordinates and the NACF based on the set of direction
cosines.

3.1 Udwadia–Kalaba equations for positive semi-definite multibody mechanical systems

In this subsection, the Udwadia–Kalaba equations for a general positive semi-definite multibody mechanical
systemare briefly reviewed. In particular, in this subsection the fundamental equations of constrainedmotion for
positive semi-definite multibody mechanical systems are reformulated in a compact mathematical form which
can be readily implemented in a general-purposemultibody computer program. By doing so, the computational
efficiency of the methodology developed by Udwadia and Kalaba can be considerably improved and, at the
same time, the efficacy of the Udwadia–Kalaba method is conserved. To this end, consider a rigid multibody
mechanical systems described by the following index-one form of equations of motion:

{
Mq̈ = Qb +Qc
Cqq̈ = Qd

(60)

where q is the system generalized coordinate vector, M represents the symmetric positive semi-definite mass
matrix of the multibody system, Qb denotes the complete vector of generalized forces acting on the mechani-
cal system, Qc identifies the constraint generalized force vector, C is the constraint vector which contains the
intrinsic and extrinsic constraint equations that restrict the motion of the multibody mechanical system, Cq
represents the Jacobian matrix of the kinematic constraints, andQd is the quadratic velocity vector associated
with the complete set of algebraic constraints. In order to be able to apply the Udwadia–Kalaba equations
to a general positive semi-definite multibody mechanical system, an auxiliary mechanical system must be
employed. The auxiliary mechanical system is a dual multibody mechanical system that has the same general-
ized acceleration vector as well as the same time evolution of the original rigid multibody mechanical system.
To this end, consider an auxiliary mechanical system characterized by the following set of dynamic equations:

{
M̄q̈ = Q̄b +Qc
Cqq̈ = Qd

(61)

where M̄ is a symmetric positive definite matrix that represents the mass matrix of the auxiliary mechanical
system and Q̄b denotes the vector of generalized forces acting on the auxiliary mechanical system that are,
respectively, defined as: {

M̄ = M+ CT
q Cq

Q̄b = Qb + CT
q Qd

(62)

Employing the previous definitions for the mass matrix M̄ and for the generalized force vector Q̄b, it can be
proved that the generalized acceleration vector of the auxiliary mechanical system is equal to the generalized
acceleration vector of the multibody mechanical system under examination [84]. The analytical method based



434 C. M. Pappalardo, D. Guida

on the Udwadia–Kalaba equations for positive semi-definite multibody mechanical systems leads to a closed-
loop solution for the generalized acceleration vector of the multibody mechanical system q̈, for the complete
vector of Lagrange multipliers λ, and for the total generalized constraint force vectorQc. Using a Lagrangian
formulation suitable for the dynamic analysis of rigid multibody mechanical systems, the Udwadia–Kalaba
equations for positive semi-definite mechanical systems can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ā = M̄−1Q̄b
ε̄ = Qd − Cqā
K̄ = CqM̄−1CT

q
F̄ = K̄+
λ = −F̄ε̄

Qc = −CT
q λ

āc = M̄−1Qc
q̈ = ā + āc

(63)

where ā is the generalized acceleration vector corresponding to the unconstrained multibody mechanical sys-
tem, ε̄ denotes the constraint generalized error vector that analytically quantifies how much the generalized
acceleration vector of the unconstrained system ā violates the constraint equations, K̄ identifies the kinetic
matrix of the auxiliary mechanical system, F̄ represents the constraint feedback matrix that arises from the
application of the kinematic constraints on the multibody mechanical system, λ is the vector of Lagrange
multipliers associated with the algebraic constrains, Qc denotes the generalized constraint force vector, āc
represents the system generalized acceleration vector induced by the action of the kinematic constraints, and
q̈ is the resultant generalized acceleration vector of the multibody mechanical system. In these equations,
K̄+ indicates the Moore–Penrose pseudoinverse matrix of the kinetic matrix K̄ of the auxiliary mechani-
cal system. However, if the Jacobian matrix of the kinematic constraints Cq features a full row rank, which
means that there are no redundant constraint equations in the vector of kinematic constraints C, the gen-
eralized inverse which defines the Moore–Penrose pseudoinverse matrix coincides with the regular inverse
matrix.

3.2 Lagrange multiplier associated with the set of Euler parameters for the unconstrained rigid body

In this subsection, the Udwadia–Kalaba equations for positive semi-definite multibodymechanical systems are
employed for obtaining a closed-form solution for the Lagrange multiplier and for the generalized constraint
forces of the intrinsic constraint of a rigid body modeled using the RPCF with Euler parameters. The frame
of reference associated with the rigid body i is assumed to be located in the center of mass of the rigid body
Gi and the directions of the reference axes are assumed to be parallel to the body principal axes of inertia.
Therefore, the local position vector ūi

Gi of the body centroid Gi is assumed as a zero vector and the matrix

of mass moments of inertia Īi
Gi is assumed to be a diagonal matrix. To this end, consider an auxiliary rigid

body associated with the rigid body i and described by the following index-one form of equations of motion:

{
M̄i q̈i = Q̄i

b +Qi
c

ϕi
qi
q̈i = Qi

d
(64)

where M̄i is the mass matrix of the auxiliary rigid body i and Q̄i
b is the total vector of generalized forces acting

on the auxiliary rigid body i given by:

⎧⎪⎨
⎪⎩
M̄i = Mi +

(
ϕi
qi

)T
ϕi
qi

Q̄i
b = Qi

b +
(
ϕi
qi

)T
Qi

d

(65)

The application of the Udwadia–Kalaba method to the equations of motion of a rigid body i modeled using
the RPCF with Euler parameters leads to the following set of equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

āi = (
M̄i

)−1
Q̄i

b
ε̄i = Qi

d − ϕi
qi ā

i

K̄i = ϕi
qi

(
M̄i

)−1
(
ϕi
qi

)T

F̄i = (
K̄i

)−1

λi = −F̄i ε̄i

Qi
c = −

(
ϕi
qi

)T
λi

āic =
(
M̄i

)−1
Qi

c
q̈i = āi + āic

(66)

By means of symbolic manipulations and considering the explicit expressions for the mass matrix Mi , the
inertia quadratic velocity vector Qi

v , the Jacobian matrix of the intrinsic constraint equation associated with
the set of Euler parameters ϕi

qi , and the constraint quadratic velocity vector Qi
d for the rigid body i given in

Sect. 2 of the paper for the RPCF with Euler parameters, the kinetic matrix K̄i of the rigid body i degenerates
into a scalar quantity that can be obtained as:

K̄i = 1 (67)

Thus, the constraint feedback matrix F̄i of the rigid body i is reduced to a scalar quantity as well:

F̄i = 1 (68)

Also, the Lagrange multiplier λi associated with the normalization condition of the Euler parameters is a
constant quantity that can be explicitly computed to yield:

λi = 0 (69)

As a result, the Udwadia–Kalaba equations lead to the closed-form solution of the vector of generalized
constraint forces Qi

c associated with the intrinsic constraint of the Euler parameters as a zero vector:

Qi
c = 0 (70)

It can be shown bymeans of the fundamental equations of constrainedmotion that the solution for the Lagrange
multiplier λi relative to the intrinsic constraint of the Euler parameters θ i is a general analytical result valid
also in the case in which the origin of the local reference system Oi is assumed to be located in a generic
point Pi on the rigid body i and when the directions of the local reference axes are assumed to be arbitrary.
This important analytical result may seem somehow counterintuitive because it means that the set of Euler
parameters automatically satisfies the intrinsic constraint equation. However, other researchers also obtained
the same mathematical result based on different considerations and, therefore, this paper can be considered
an extension of their work and provides an important analytical proof derived from the basic principles of
analytical mechanics [85,86]. Furthermore, as far as the authors know, before this investigation there was no
mathematical proof of this important analytical result based on the fundamental principles of mechanics. On
the other hand, this important analytical result still lacks an obvious physical meaning. Numerical simulations
also confirm this analytical result, as shown in Sect. 4 of the paper. Moreover, it is important to note that,
among all the real numbers, zero is a valid value for the Lagrange multiplier λi associated with the vector of
Euler parameters θ i that does not contradict the basic theoretical hypotheses employed to derive the equations
of motion. Consequently, in theory, in the RPCF with Euler parameters there is no need to include in the
equations of motion the terms associated with the intrinsic constraints ϕi of the set of Euler parameters θ i . On
the other hand, in practical applicationswhere complex rigidmultibodymechanical systems are considered and
involve dynamical simulations that encompass a long time span, the numerical errors that arise from the use of
numerical integration schemes for the approximate solution of the equations of motion can cause a violation of
the intrinsic constraint equations. Therefore, it is not recommended to remove the constraint equations for the
set of Euler parameters in the development of general-purpose rigid multibody codes. Furthermore, obtaining
a vector of zero Lagrange multipliers associated with the normalization condition of the Euler parameters can
serve an useful benchmark for evaluating the effectiveness and the robustness of new numerical procedures for
the approximate solutions of the set of differential–algebraic multibody equations of motion obtained using
the RPCF with Euler parameters.
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3.3 Udwadia–Kalaba equations for positive definite multibody mechanical systems

In this subsection, the Udwadia–Kalaba equations for a general positive definite multibody mechanical system
are briefly recalled. In particular, in this subsection the fundamental equations of constrainedmotion for positive
definite multibody mechanical systems are rewritten in a concise mathematical form which can be easily
implemented in a general-purpose multibody computer program. In this way, the computational efficiency
of the method developed by Udwadia and Kalaba can be considerably improved and, at the same time, the
efficacy of the Udwadia–Kalaba methodology is conserved. To this end, consider a rigid multibodymechanical
systems described by the following index-one form of equations of motion:

{
Më = Qb +Qc
Ceë = Qd

(71)

where e denotes the system configuration vector, M identifies the symmetric positive definite mass matrix of
the mechanical system, Qb represents the total vector of generalized forces acting on the multibody system,
Qc is the constraint generalized force vector, C is the constraint vector that contains the kinematic constraint
equations which restrict the motion of the multibody mechanical system, Ce represents the Jacobian matrix
of the algebraic constraints, and Qd is the quadratic velocity vector relative to the complete set of kinematic
constraints. The analytical technique based on the Udwadia–Kalaba equations for positive definite multibody
mechanical systems provides a closed-loop solution for the generalized acceleration vector of the multibody
mechanical system ë, for the complete vector of Lagrange multipliers λ, and for the total generalized constraint
force vectorQc. Considering the original Lagrangian form, the Udwadia–Kalaba equations for positive definite
mechanical systems are given by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = M−1Qb
ε = Qd − Cea
K = CeM−1CT

e
F = K+
λ = −Fε

Qc = −CT
e λ

ac = M−1Qc
ë = a + ac

(72)

where a denotes the generalized acceleration vector relative to the unconstrainedmultibodymechanical system,
ε is the constraint generalized error vector that analytically quantifies how much the generalized acceleration
vector of the unconstrained system a violates the constraint equations, K represents the kinetic matrix of
the multibody mechanical system, F is the constraint feedback matrix which comes from the application
of the algebraic constraints on the multibody mechanical system, λ is the vector of Lagrange multipliers
corresponding to the set of kinematic constrains, Qc identifies the generalized constraint force vector, ac is
the system generalized acceleration vector induced by the action of the algebraic constraints, and ë represents
the resultant generalized acceleration vector of the multibody mechanical system. Even in this case, if the
Jacobian matrix of the kinematic constraints Ce features a full row rank, the Moore–Penrose pseudoinverse
matrix coincides with the regular inverse matrix.

3.4 Lagrange multipliers associated with the set of direction cosines for the unconstrained rigid body

In this subsection, the Udwadia–Kalaba equations for positive definite multibody mechanical systems are used
for obtaining a closed-form solution for the Lagrange multipliers and for the generalized constraint forces
of the intrinsic constraints of a rigid body modeled employing the NACF. Even in this case, the body-fixed
reference system is assumed to be coincident with the center of mass of the rigid body Gi and the directions of
the axes of the local frame of reference are assumed to be parallel to the body principal axes of inertia. Thus,
the local position vector ūi

Gi of the body centroid G
i is a zero vector and the matrix of mass moments of inertia

Īi
Gi is a diagonal matrix. To this end, consider a general rigid body i described by the following index-one
form of equations of motion: {

Mi ëi = Qi
b +Qi

c
ϕi
ei ë

i = Qi
d

(73)
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The application of the Udwadia–Kalaba method to the equations of motion of a rigid body i modeled using
the NACF leads to the following set of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai = (
Mi

)−1
Qi

b
εi = Qi

d − ϕi
ei a

i

Ki = ϕi
ei
(
Mi

)−1
(
ϕi
ei

)T

Fi = (
Ki

)−1

λi = −Fiεi

Qi
c = −

(
ϕi
ei

)T
λi

aic =
(
Mi

)−1
Qi

c
ëi = ai + aic

(74)

By means of symbolic manipulations and employing the explicit expressions for the mass matrix Mi , the
Jacobianmatrix of the intrinsic constraint equations associatedwith the direction cosinesϕi

ei , and the constraint

quadratic velocity vectorQi
d for the rigid body i given in Sect. 2 of the paper for the NACF, the kinetic matrix

Ki of the rigid body i is a diagonal matrix given by:

Ki = diag

(
4

J̄ i
Gi ,x̄ i x̄ i

,
4

J̄ i
Gi ,ȳi ȳi

,
4

J̄ i
Gi ,z̄i z̄i

,

1

J̄ i
Gi ,x̄ i x̄ i

+ 1

J̄ i
Gi ,ȳi ȳi

,
1

J̄ i
Gi ,x̄ i x̄ i

+ 1

J̄ i
Gi ,z̄i z̄i

,
1

J̄ i
Gi ,ȳi ȳi

+ 1

J̄ i
Gi ,z̄i z̄i

)
(75)

Consequently, the constraint feedback matrix Fi of the rigid body i is a diagonal matrix which can be written
as:

Fi = diag

(
1

4
J̄ iGi ,x̄ i x̄ i ,

1

4
J̄ iGi ,ȳi ȳi ,

1

4
J̄ iGi ,z̄i z̄i ,

J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,ȳi ȳi

,
J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,z̄i z̄i

,
J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,ȳi ȳi

+ J̄ i
Gi ,z̄i z̄i

)
(76)

Furthermore, the vector of Lagrange multipliers λi associated with the normalization condition of the direction
cosines can be explicitly calculated and is given by:

λi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 J̄

i
Gi ,x̄ i x̄ i

(
α̇i

)T
α̇i

1
2 J̄

i
Gi ,ȳi ȳi

(
β̇
i
)T

β̇
i

1
2 J̄

i
Gi ,z̄i z̄i

(
γ̇ i

)T
γ̇ i

2
J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,ȳi ȳi

(
α̇i

)T
β̇
i

2
J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,z̄i z̄i

(
α̇i

)T
γ̇ i

2
J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,ȳi ȳi

+ J̄ i
Gi ,z̄i z̄i

(
β̇
i
)T

γ̇ i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(77)

Thus, the vector of generalized constraint forces Qi
c corresponding to the intrinsic constraints of the direction

is a nonzero vector that can be analytically computed by using the Udwadia–Kalaba method to yield:
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Qi
c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

J̄ i
Gi ,x̄ i x̄ i

αi
(
α̇i

)T
α̇i + 2

J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,ȳi ȳi

β i (α̇i
)T

β̇
i

+2
J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,z̄i z̄i

γ i
(
α̇i

)T
γ̇ i

J̄ i
Gi ,ȳi ȳi

β i
(
β̇
i
)T

β̇
i + 2

J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,ȳi ȳi

αi
(
α̇i

)T
β̇
i

+2
J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,ȳi ȳi

+ J̄ i
Gi ,z̄i z̄i

γ i
(
β̇
i
)T

γ̇ i

J̄ i
Gi ,z̄i z̄i

γ i
(
γ̇ i

)T
γ̇ i + 2

J̄ i
Gi ,x̄ i x̄ i

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,x̄ i x̄ i

+ J̄ i
Gi ,z̄i z̄i

αi
(
α̇i

)T
γ̇ i

+2
J̄ i
Gi ,ȳi ȳi

J̄ i
Gi ,z̄i z̄i

J̄ i
Gi ,ȳi ȳi

+ J̄ i
Gi ,z̄i z̄i

β i
(
β̇
i
)T

γ̇ i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(78)

As expected, it is apparent from the derivation presented in this subsection that, for a rigid body i modeled
using the NACF, the vector of Lagrange multipliers associated with the intrinsic constraints of the direction
cosines λi does not vanish and, therefore, the vector of generalized constraint forces Qi

c is not a null vector.
This important analytical result derived from the basic principles of classical mechanics is new and it is
also confirmed by numerical results obtained from dynamical simulations, as shown in Sect. 4 of the paper.
In principle, in the NACF one can directly use the analytical expression of the generalized constraint force
vector Qi

c in order to transform the differential–algebraic equations of motion of the rigid body i in a set of
ordinary differential equations. However, this method is not recommended in the dynamic analysis of complex
rigid multibody mechanical systems because of the occurrence of the drift phenomenon of the kinematic
constraints. The drift phenomenon of the kinematic constraints is the violation of the constraint equations
at the position and velocity levels caused by the numerical solution of the differential–algebraic equations of
motion expressed in the index-one form. The drift phenomenon of the algebraic constraints can be significantly
contrasted employing some effective constraint stabilization techniques such as the Baumgarte stabilization
method, the penalty method, or the well-known generalized coordinate partitioning algorithm. On the other
hand, the analytical expression of the vector of Lagrange multipliers λi associated with the intrinsic constraints
of a rigid body i can be used as a benchmark for the development of general-purpose multibody computer
programs based on the NACF.

4 Numerical results and discussion

In this section, two numerical examples are discussed in order to illustrate the analytical results developed in
the paper. The numerical examples considered in this sections are a spinning projectile and a simple pendulum.
The spinning projectile represents an example of an unconstrained rigid body, whereas the simple pendulum is
representative of a rigid body constrained by kinematic joints. In the first numerical example, an unconstrained
rigid body is considered and the analytical results derived in Sect. 3 of the paper are directly verified in
comparison with the numerical results obtained by means of dynamical simulations. The second numerical
example, on the other hand, concerns a rigid body constrained by a revolute joint. In this case, the analytical
expressions of the generalized constraint forces are not amenable to be transformed into compact mathematical
expressions bymeans of symbolicmanipulations. Therefore, in the second numerical example, the fundamental
equations of constrained motion are implemented and solved in a multibody computer program developed in
the MATLAB simulation environment and the numerical results obtained are compared with those derived by
using the well-known augmented formulation.

The equations of motion of the two mechanical systems employed in this section as numerical examples
are formally derived by using the RPCF with Euler parameters and the NACF. Subsequently, the resulting
index-three systems of differential–algebraic equations of motion are reduced to the corresponding index-one
forms. The numerical integration method implemented to solve the index-one ordinary differential equations
of motion is the sixth-order Adams–Bashforth algorithm, which is an explicit linear multistep scheme with a
constant size of the time step. The time span considered for the numerical simulation is T = 5 s, while the
constant time step used is 	t = 5 × 10−3 s. In the numerical implementation of the equations of motion,
both the augmented formulation and the Udwadia–Kalaba approach are used to solve for the generalized
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acceleration vector and the vector of Lagrange multipliers that appear in the index-one form of the dynamic
equations [87]. Also, two cases are considered in the numerical procedure used for solving the equations of
motion. In the first case, the algebraic constraint equations are enforced at the position and velocity levels
employing the generalized coordinate partitioning algorithm [88]. For this purpose, a constraint tolerance
equal to ε = 10−9 is considered in the Newton–Raphson loop for enforcing the total set of algebraic constraint
equations at both the position and velocity levels. In the second case, no constraint stabilization methods are
used in the numerical solution procedure.

4.1 Spinning projectile

In this subsection, a simple numerical example is presented in order to numerically verify the analytical
expressions of the Lagrange multipliers given by Eqs. (69) and (77) employed for determining the generalized
constraint forces associated with the orientation parameters of an unconstrained rigid body. To this end, a single
unconstrained rigid body shown in Fig. 1 is considered. The rigid body translates and rotates in the space as
a spinning projectile under the action of the gravity field. The spinning projectile has a mass m = 3 kg and
principal moments of inertia Īx̄ x̄ = 2 kg m2, Ī ȳ ȳ = 2 kg m2, and Īz̄ z̄ = 2 kg m2 which form the body matrix
of inertia defined as ĪG = diag( Īx̄ x̄ , Ī ȳ ȳ, Īz̄ z̄). The gravitational acceleration is assumed g = 9.81 m/s2 and

the body weight vector is defined as Fg = [
0 0 −mg

]T . Employing the RPCF with Euler parameters, the
index-one form of the equations of motion of the spinning projectile can be readily written as:

{
Mq̈ = Qv +Qe − CT

q λ

Cqq̈ = Qd
(79)

where the matrix and vector terms that appear in the equations of motion of the spinning projectile based on
the RPCF with Euler parameters can be, respectively, computed using the definitions presented in the paper as
follows:

M =
[
mI O
O ḠT ĪGḠ

]
, Qv =

[
0

−ḠT ˜̄ωĪG ω̄

]
,

Qg = LT
GFg, C = ϕ = θT θ − 1, Cq = ϕq = [

0T 2θT
]
,

Qd = Qd,ϕ = −2θ̇
T
θ̇ (80)

On the other hand, by using the NACF, the index-one form of the equations of motion of the spinning projectile
can be readily written as: {

Më = Qe − CT
e λ

Ceë = Qd
(81)

where the matrix and vector terms that appear in the equations of motion of the spinning projectile based on
the NACF can be, respectively, computed using the definitions presented in the paper as follows:

M =

⎡
⎢⎢⎢⎣

mI O O O

O − Īx̄ x̄+ Ī ȳ ȳ+ Īz̄ z̄
2 I O O

O O Īx̄ x̄− Ī ȳ ȳ+ Īz̄ z̄
2 I O

O O O Īx̄ x̄+ Ī ȳ ȳ− Īz̄ z̄
2 I

⎤
⎥⎥⎥⎦ ,

Qg = STGFg, C = ϕ =

⎡
⎢⎢⎢⎢⎢⎢⎣

αTα − 1
βTβ − 1
γ T γ − 1

αTβ

αT γ

βT γ

⎤
⎥⎥⎥⎥⎥⎥⎦

, Ce = ϕe =

⎡
⎢⎢⎢⎢⎢⎢⎣

0T 2αT 0T 0T

0T 0T 2βT 0T

0T 0T 0T 2γ T

0T βT αT 0T

0T γ T 0T αT

0T 0T γ T βT

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Fig. 1 Spinning projectile

Qd = Qd,ϕ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2α̇T α̇

−2β̇
T
β̇

−2γ̇ T γ̇

−2α̇T β̇

−2α̇T γ̇

−2β̇
T
γ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(82)

The initial position of the centroid of the spinning projectile coincides with the origin of the inertial reference
system, while the rigid body initial orientation is represented using the following set of Euler parameters:

θ =
⎡
⎢⎣

θ0
θ1
θ2
θ3

⎤
⎥⎦ (83)

where θ0 = 0.924, θ1 = 0, θ2 = − 0.382, and θ3 = 0. The orientation of the spinning projectile is identified
by the vector of Euler parameters θ and corresponds to the direction cosine vectors α, β, and γ defined as:

α =
⎡
⎣

α1
α2
α3

⎤
⎦ , β =

⎡
⎣

β1
β2
β3

⎤
⎦ , γ =

⎡
⎣

γ1
γ2
γ3

⎤
⎦ (84)

where α1 = 0.707, α2 = 0, α3 = 0.707, β1 = 0, β2 = 1, β3 = 0, γ1 = − 0.707, γ2 = 0, and γ3 = 0.707.
The spinning projectile is launched with the following initial linear velocity:

Ṙ = U0

⎡
⎣

v1
v2
v3

⎤
⎦ (85)

whereU0 = 15 m
s , v1 = 0.707, v2 = 0, and v3 = 0.707. The initial angular velocity of the spinning projectile

expressed in the body-fixed reference frame is assumed as:

ω̄ = �0

⎡
⎣

w1
w2
w3

⎤
⎦ (86)
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Fig. 2 Centroid vertical position of the spinning projectile, (circle) NACF, (square) RPCF with Euler parameters

Fig. 3 Third component of the third direction cosine of the spinning projectile, (circle) NACF, (square) RPCF with Euler
parameters

where �0 = 5 rad
s , w1 = 1, w2 = 0, and w3 = 0. The vertical position of the centroid of the spinning

projectile computed employing both the NACF and the RPCF with Euler parameters is shown in Fig. 2. In
Fig. 3, the third component of the third direction cosine of the spinning projectile corresponding to the NACF
solution and to the RPCF solution is represented in order to show the large rotation of the rigid body. The
violations of the intrinsic constraint equations that appear in the equations of motion obtained using the NACF
and the RPCF with Euler parameters are, respectively, shown in Tables 1 and 2. In this numerical example,
the Lagrange multipliers associated with the intrinsic constraint equations can be considered constant for the
entire time span of the numerical simulation with a very good approximation. Thus, the comparison between
the solution obtained by using the Udwadia–Kalaba equations and the numerical solution for the Lagrange
multiplier corresponding to the set of direction cosines is reported in Table 3. Moreover, the solution obtained
employing the Udwadia–Kalaba equations and the numerical solution procedure found for the Lagrange
multipliers relative to the set of Euler parameters is reported in Table 4. Considering an unconstrained rigid
body such as the spinning projectile modeled employing both the NACF and the RPCF with Euler parameters
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Table 1 Violations of the constraint equations in the NACF for the spinning projectile

Solution procedure used in the
NACF

Maximum norm of the con-
straint violation at the posi-
tion level

Maximum norm of the
constraint violation at the
velocity level

Augmented formulation with generalized coordinate partitioning 4.510× 10−16 2.362× 10−15

Augmented formulation without constraint stabilization 3.435× 10−10 4.570× 10−14

Table 2 Violations of the constraint equations in the RPCF with Euler parameters for the spinning projectile

Solution procedure used in the RPCF with Euler
parameters

Maximum norm of the con-
straint violation at the posi-
tion level

Maximum norm of the con-
straint violation at the velocity
level

Augmented formulation with generalized coor-
dinate partitioning

4.441× 10−16 3.331× 10−16

Augmented formulationwithout constraint stabiliza-
tion

1.013× 10−12 2.043× 10−14

Table 3 Lagrange multiplier associated with the intrinsic constraint equations of the direction cosines for the spinning projectile

Solution proce-
dure used NACF

Maximum norm of
the first Lagrange
multiplier

Maximum norm of
the secondLagrange
multiplier

Maximum norm of
the third Lagrange
multiplier

Maximum norm of
the fourth Lagrange
multiplier

Maximum norm of
the fifth Lagrange
multiplier

Maximum norm of
the sixth Lagrange
multiplier

Udwadia–Kalaba
equations

0 12.5 12.5 0 0 0

Augmented formulation
with generalized
coordinate partitioning

4.332× 10−24 12.500 12.500 1.306× 10−11 6.648× 10−12 8.712× 10−14

Augmented formulation
without constraint
stabilization

4.569× 10−22 12.500 12.500 1.037× 10−10 1.485× 10−10 4.247× 10−15

Table 4 Lagrange multiplier associated with the intrinsic constraint equation of the Euler parameters for the spinning projectile

Solution procedure used in the
RPCF with Euler parameters

Maximum norm of the
Lagrange multiplier

Udwadia–Kalaba equations 0
Augmented formulation with generalized coordinate partitioning 8.881× 10−15

Augmented formulation without constraint stabilization 8.882× 10−15

and observing Tables 3 and 4, it is clear that the numerical results obtained using the augmented formulation
are in a very good agreement with the analytical results predicted employing the Udwadia–Kalaba equations.

4.2 Simple pendulum

In this subsection, a second simple numerical example is shown to numerically verify the general analytical
expressions of the Lagrange multipliers obtained using the general expressions of the Udwadia–Kalaba equa-
tions. To this end, Eqs. (63) and (72) are used to compute the generalized constraint forces associated with the
intrinsic constraint equations of a constrained rigid body. In this numerical example, a simple pendulum con-
strained to the ground by means of a revolute joint as shown in Fig. 4 is considered. The simple pendulum has a
mass m = 3 kg and principal moments of inertia Īx̄ x̄ = 0.08 kg m2, Ī ȳ ȳ = 1.04 kg m2, and Īz̄ z̄ = 1.04 kg m2

which form the body matrix of inertia defined as ĪG = diag( Īx̄ x̄ , Ī ȳ ȳ, Īz̄ z̄). The gravitational acceleration is

assumed g = 9.81 m/s2 and the body weight vector is defined as Fg = [
0 0 −mg

]T . Employing the
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RPCF with Euler parameters, the index-one form of the equations of motion of the simple pendulum can be
readily written as: {

Mq̈ = Qv +Qe − CT
q λ

Cqq̈ = Qd
(87)

where the matrix and vector terms that appear in the equations of motion of the simple pendulum based on
the RPCF with Euler parameters can be, respectively, computed using the definitions presented in the paper as
follows:

M =
[
mI O
O ḠT ĪGḠ

]
, Qv =

[
0

−ḠT ˜̄ωĪG ω̄

]
,

Qg = LT
GFg, C =

[
ϕ
ψ

]
, ϕ = θT θ − 1, ψ =

⎡
⎣

rO
aT c
bT c

⎤
⎦ ,

Cq =
[

ϕq
ψq

]
, ϕq = [

0T 2θT
]
, ψq =

⎡
⎣

LO

cTDa

cTDb

⎤
⎦ ,

Qd =
[
Qd,ϕ

Qd,ψ

]
, Qd,ϕ = −2θ̇

T
θ̇ , Qd,ψ =

⎡
⎣

−L̇O q̇
−cT Ḋa q̇
−cT Ḋbq̇

⎤
⎦ (88)

where a and b are two directions vectors, whereas c is a fixed unit vector that identifies the axis of the revolute
joint. On the other hand, by using the NACF, the index-one form of the equations of motion of the simple
pendulum can be readily written as: {

Më = Qe − CT
e λ

Ceë = Qd
(89)

where the matrix and vector terms that appear in the equations of motion of the simple pendulum based on the
NACF can be, respectively, computed using the definitions presented in the paper as follows:

M =

⎡
⎢⎢⎢⎣

mI O O O

O − Īx̄ x̄+ Ī ȳ ȳ+ Īz̄ z̄
2 I O O

O O Īx̄ x̄− Ī ȳ ȳ+ Īz̄ z̄
2 I O

O O O Īx̄ x̄+ Ī ȳ ȳ− Īz̄ z̄
2 I

⎤
⎥⎥⎥⎦ ,

Qg = STGFg, C =
[

ϕ
ψ

]
, ϕ =

⎡
⎢⎢⎢⎢⎢⎢⎣

αTα − 1
βTβ − 1
γ T γ − 1

αTβ

αT γ

βT γ

⎤
⎥⎥⎥⎥⎥⎥⎦

, ψ =
⎡
⎣

rO
aT c
bT c

⎤
⎦ ,
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Ce =
[

ϕe
ψe

]
, ϕe =

⎡
⎢⎢⎢⎢⎢⎢⎣

0T 2αT 0T 0T

0T 0T 2βT 0T

0T 0T 0T 2γ T

0T βT αT 0T

0T γ T 0T αT

0T 0T γ T βT

⎤
⎥⎥⎥⎥⎥⎥⎦

, ψe =
⎡
⎣

SO

cTNa

cTNb

⎤
⎦ ,

Qd =
[
Qd,ϕ

Qd,ψ

]
, Qd,ϕ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2α̇T α̇

−2β̇
T
β̇

−2γ̇ T γ̇

−2α̇T β̇

−2α̇T γ̇

−2β̇
T
γ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Qd,ψ = 0 (90)

where a and b are two directions vectors, whereas c is a fixed unit vector that identifies the axis of the revolute
joint. The initial position of the centroid of the simple pendulum is represented by the following global position
vector:

R =
⎡
⎣
X0
Y0
Z0

⎤
⎦ (91)

where X0 = 1, Y0 = 0.2, and Z0 = 0. The rigid body initial orientation is identified by the following set of
Euler parameters:

θ =
⎡
⎢⎣

θ0
θ1
θ2
θ3

⎤
⎥⎦ (92)

where θ0 = 1, θ1 = 0, θ2 = 0, and θ3 = 0. The orientation of the simple pendulum is defined by the vector of
Euler parameters θ and corresponds to the direction cosine vectors α, β, and γ defined as:

α =
⎡
⎣

α1
α2
α3

⎤
⎦ , β =

⎡
⎣

β1
β2
β3

⎤
⎦ , γ =

⎡
⎣

γ 1
γ 2
γ 3

⎤
⎦ (93)

where α1 = 1, α2 = 0, α3 = 0, β1 = 0, β2 = 1, β3 = 0, γ1 = 0, γ2 = 0, and γ2 = 1. The initial linear and
angular velocities of the simple pendulum are assumed zero. The vertical position of the centroid of the simple
pendulum computed employing both the NACF and the RPCF with Euler parameters is shown in Fig. 5. The
violations of the intrinsic constraint equations relative to the NACF and to the RPCF with Euler parameters
are, respectively, shown in Tables 5 and 6. In this numerical example, some Lagrange multipliers associated
with the intrinsic constraint equations can be considered constant for the entire time span of the numerical
simulation with a very good approximation. This is the case of the Lagrange multiplier associated with the
set of Euler parameters and for the second, fourth, and sixth Lagrange multipliers relative to the direction
cosines. The comparison between the solution obtained employing the Udwadia–Kalaba equations the and
the numerical solution procedure for the Lagrange multiplier corresponding to the set of direction cosines
is reported in Table 7. Furthermore, the solution obtained by using the Udwadia–Kalaba equations and the
numerical solutions found for the Lagrange multipliers relative to the set of Euler parameters is reported in
Table 8. On the other hand, the comparison between the time evolution of the first, third, and fifth Lagrange
multipliers associated with the direction cosines obtained by using the Udwadia–Kalaba equations and the
numerical solution procedure are, respectively, shown in Figs. 6, 7, and 8. Observing Tables 7 and 8, and
considering Figs. 6, 7, and 8, it is clear that the numerical results obtained using the augmented formulation
are in a very good agreement with the analytical results predicted employing the Udwadia–Kalaba equations
even in the case of a constrained rigid body such as the simple pendulum modeled employing both the RPCF
with Euler parameters and the NACF.
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Fig. 5 Centroid vertical position of the simple pendulum, (circle) NACF, (square) RPCF with Euler parameters

Fig. 6 First Lagrange multiplier of the intrinsic constraints associated with the direction cosines for the simple pendulum, (circle)
Udwadia–Kalaba equations, (square) augmented formulation with generalized coordinate partitioning, (diamond) augmented
formulation without constraint stabilization

Table 5 Violations of the constraint equations in the NACF for the simple pendulum

Solution procedure used in
the NACF

Maximum norm of the con-
straint violation at the posi-
tion level

Maximum norm of the constraint
violation at the velocity level

Augmented formulation with
generalized coordinate partitioning

3.099× 10−12 9.155× 10−16

Augmented formulation without
constraint stabilization

6.426× 10−9 5.219× 10−9
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Fig. 7 Third Lagrangemultiplier of the intrinsic constraints associated with the direction cosines for the simple pendulum, (circle)
Udwadia–Kalaba equations, (square) augmented formulation with generalized coordinate partitioning, (diamond) augmented
formulation without constraint stabilization

Fig. 8 Fifth Lagrange multiplier of the intrinsic constraints associated with the direction cosines for the simple pendulum, (circle)
Udwadia–Kalaba equations, (square) augmented formulation with generalized coordinate partitioning, (diamond) augmented
formulation without constraint stabilization

Table 6 Violations of the constraint equations in the RPCF with Euler parameters for the simple pendulum

Solution procedure used in the RPCF
with Euler parameters

Maximum norm of the con-
straint violation at the posi-
tion level

Maximum norm of the constraint
violation at the velocity level

Augmented formulation with
generalized coordinate partitioning

3.189× 10−16 1.332× 10−15

Augmented formulation without
constraint stabilization

3.186× 10−9 7.418× 10−9
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Table 7 Lagrange multiplier associated with the intrinsic constraint equations of the direction cosines for the simple pendulum

Solution procedure used in
the NACF

Maximum norm of the
second Lagrange
multiplier

Maximum norm of the
fourth Lagrange
multiplier

Maximum norm of the
sixth Lagrange
multiplier

Udwadia–Kalaba equations 0 0 0
Augmented formulation with
generalized coordinate partitioning

0 0 0

Augmented formulation without
constraint stabilization

0 0 0

Table 8 Lagrange multiplier associated with the intrinsic constraint equation of the Euler parameters for the simple pendulum

Solution procedure used in the
RPCF with Euler parameters

Maximum norm of the Lagrange
multiplier

Udwadia–Kalaba equations 0
Augmented formulation with
generalized coordinate partitioning

7.205× 10−15

Augmented formulation without
constraint stabilization

7.457× 10−15

5 Summary and conclusions

The principal research goals of the authors are focused on the development of new, effective, and efficient
methods to carry out accurate analytic modeling [89–91], experimental system identification [92–94], and
numerical control optimization of rigid–flexible multibody mechanical systems exploiting the deep connec-
tions between multibody dynamics, system identification, and nonlinear control theory [95–97]. In particular,
this work is an analytical study and numerical investigation on the intrinsic constraint equations that play a
fundamental role in the mathematical formulation of the differential–algebraic equations of motion of rigid
multibody mechanical systems described by using a nonminimal set of rotational coordinates.

In this investigation, two general forms of the differential–algebraic equations of motion of three-
dimensional rigid bodies were examined. In the first form of the dynamic equations, the RPCF with Euler
parameters was discussed, whereas a multibody approach based on the NACF was considered as the second
analytical formulation. While the RPCF with Euler parameters conveniently employs the components of a
unit quaternion for representing the orientation of a rigid body in the space, in the NACF the configuration
of a rigid body is represented by using the set of direction cosines that identifies the unit vectors associated
with the body-fixed reference system. The RPCF with Euler parameters and the NACF employ, therefore, two
different mathematical descriptions which lead to effective representations of large finite rotations of rigid
multibody systems. Furthermore, the analytical approaches based on the RPCF with Euler parameters and
on the NACF allow for circumventing the kinematic singularity issues associated with critical configurations
which affect each minimal set of three orientation coordinates such as the Euler angles, the Tait–Bryan angles,
and the Cardan angles. However, both in the RPCF with Euler parameters and in the NACF, two different
nonminimal sets of rotational coordinates are used. Therefore, in the mathematical models developed by using
these multibody formulations for rigid mechanical systems, two different sets of normalization conditions
must be employed for obtaining a consistent description of arbitrary rotations free of kinematic singularities.
Consequently, the normalization equations associated with the rotational coordinates represent an additional
set of algebraic constraints that must be considered in order to obtain reliable dynamic simulations.

In this work, the additional normalization conditions associated with the rotational coordinates are referred
to as intrinsic constraint equations in order to conceptually distinguish them from the algebraic constraints
that arise from the kinematic joints. On the other hand, the algebraic equations that mathematically model the
mechanical joints are called in this paper extrinsic constraint equations. It can be proved that the algebraic
constraints arising from the geometrical representation of arbitrary rotations, which are identified in this paper
as intrinsic constraint equations, are also associated with the rigidity of the bodies that from the multibody
mechanical system. In the analytical formulation of the equations of motion based on the fundamental laws
of classical mechanics, the set of intrinsic constraint equations can be treated with the Lagrange multiplier
technique. Thus, a vector of kinematic constraints and a vector of generalized constraint forces associated with
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the intrinsic constraint equations enter in the formulation of the equations of motion. The main goal of this
investigation was, therefore, to shed more light on the role of the intrinsic constraint equations that appear
in the mathematical formulations of the equations of motion of rigid multibody systems. To this end, closed-
form analytical expressions of the Lagrange multipliers associated with the intrinsic constraint equations
were found for both the RPCF with Euler parameters and the NACF. For this purpose, the fundamental
equations of constrained motion were effectively employed in order to obtain in a straightforward manner
the desired analytical results. The Udwadia–Kalaba equations are based on the approach to the analytical
mechanics recently developed by Udwadia and Kalaba [98]. The fundamental equations of constrained motion
represent a general analytical method which allows for obtaining the generalized constraint forces together
with the generalized acceleration vector of a multibody mechanical system subjected to a set of holonomic
and/or nonholonomic constraint equations. Another important application of the Udwadia–Kalaba method is
in the field of nonlinear control. Following the Udwadia–Kalaba approach to the nonlinear control theory,
prescribed control requirements are viewed as additional algebraic constraints which can be of holonomic
or nonholonomic nature. By using the Udwadia–Kalaba method for solving the problem of interest of this
investigation, the Lagrange multiplier associated with the normalization condition of the Euler parameters
was found to be always equal to zero. On the other hand, the Lagrange multipliers corresponding to the
orthonormality conditions of the directions cosines were found to have always nonzero values which can
be readily computed in a closed-form. These analytical findings represent important results for the dynamic
analysis of rigid multibody systems that are confirmed by numerical experiments.

In this paper, simple numerical examples were used for performing the numerical experiments necessary to
confirm the analytical results and themathematical derivations developed in this investigation. For this purpose,
two simple numerical exampleswere used, namely the unconstrainedmotion of a spinning projectile translating
and rotating in the space and the constrainedmotion of a simple pendulum. The differential–algebraic equations
ofmotion of a single rigid bodywere derived in terms of reference point coordinates and also in terms of natural
absolute coordinates. In the computer implementation of the dynamic equations, the augmented formulation
and the Udwadia–Kalaba approach were employed in conjunction with the generalized coordinate partitioning
technique in order to numerically solve the resulting index-one form of the differential–algebraic equations
of motion. A very good agreement was found between the analytical formulas developed in the paper and
the numerical results obtained by means of dynamic simulations. However, the analytical expressions and the
numerical values of the Lagrange multipliers associated with both the set of Euler parameters and the set of
direction cosines still lack a clear physical meaning. For example, the Lagrange multipliers associated with the
intrinsic constraint equations of the direction cosines can be interpreted as mathematical quantities related to
the generalized intrinsic constraint forces that guarantee the rigidity of the body and, therefore, they can have
an intuitive physical interpretation. On the other hand, the mechanical interpretation of the zero value of the
Lagrange multiplier associated with the normalization condition of the unit quaternion corresponding to the
set of Euler parameters is still not obvious. Shedding more light on these important issues will be the object
of future investigations.
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