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Abstract In this paper, a new analytical model (unbalanced one), which considers the coupling effects of
unbalance force, rotor weight, and rotor physical and dimensional properties, is developed to study the actual
breathing mechanisms of the transverse fatigue crack in a cracked rotor system. The results are also compared
with those of the existing balanced model, where only rotor weight is considered. It has been identified that a
crack in the unbalanced model breathes differently from the one in the balanced model. A crack’s breathing
mechanism in the unbalanced model depends strongly on its location along shaft length. At some special
locations, a crack in the unbalancedmodel may remain fully closed or open during the shaft rotation, whichwill
never occur in a balanced model. It may also behave completely like the one in the balanced shaft. Depending
on the crack location, unbalance force magnitude and orientation, the unbalanced shaft may be stiffer or more
flexible than the balanced counterpart. It is also demonstrated that the unbalanced model will progressively
approach balanced one as unbalance force decreases. Further, different crack breathing mechanisms between
two models lead to a large difference along shaft length in the second area moment of inertia, which forms the
elements of local stiffness matrix at crack location. It is expected that more accurate prediction of the vibration
response of a cracked rotor can be achieved when the effect of unbalance force and rotor properties on the
crack breathing has been taken into account.
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List of symbols

ϕ Effectual bending angle, bending direction of the shaft relative to the crack direction
δ Bending direction of the shaft relative to the negative Y -axis
β The angular position of unbalance force relative to the crack direction
θ Shaft rotation angle
μ The ratio of crack depth
η The ratio of the total weight force to the unbalance force
λ The ratio of the crack position to the shaft length
Λ Percentage of opening of the crack
A1 Area of the uncracked cross section at t = 0
A2 (t) Area of the closed portion of the crack segment at time t
Ac Area of the crack segment
Fun Rotational unbalance force
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L Total shaft length
l0 Location of the crack
l1 Location of the left disk
l2 Location of the unbalance force disk
Mmdg Gravitational moment due to two disks
MmSg Gravitational moment due to shaft self-weight
Mun Dynamic moment due to the rotational unbalance force
MX Summation of the moments in X -axis
MY Summation of the moments in Y -axis
MR Resultant moment
md The mass of a disk
mdg Gravitational force of a disk
ms Mass of the shaft
msg The gravitational force of the shaft
X, Y Fixed coordinate system
X̄ Ȳ Centroid coordinate system
X ′Y ′ The rotational coordinate system

1 Introduction

Rotordynamic systems have been widely used in power generation, aircraft engines, compressors, pumps, and
many other industrial fields. The extensive use of these rotordynamic systems with continuous heavy loading
has the potential for unpredicted failure and damage that may lead to a loss of life and equipment. These
damages almost always occur due to propagating fatigue cracks that lead to sudden and destructive vibration
scenarios [1]. In rotating machinery, fatigue cracks are considered to be one of the main rotor faults. The
breathing of the fatigue crack (when a shaft rotates, the crack opens/closes once per revolution) has a great
deal of attention in the literature as one of the main causes of damage in rotor systems [2].

The concept of crack breathing that appears in rotating machinery is the result of the stress and strain
distribution around the cracked area that results in the opening and closing of a crack. The stresses and strains
acting upon the crack are a result of static loads (self-weight, bearing reaction forces) and dynamic loads (mass
unbalance and inertial force) in the form of the bending moment, while the effect of torsion is negligible [3].
When cracks are present in a shaft there is a transient change in flexibility about the crack region corresponding
to the breathing of the crack.

Different types ofmethods for vibration study of a cracked rotor have been reported in the literature, namely
model-basedmethod [4–6], signal and vibration-based analysis [7–9], and combined approach [10,11].A series
of numerical and experimental studies were carried out by Andreaus et al. to develop vibration-based crack
detection techniques [12–19]. Model-based method plays an important role in the development of online crack
detection techniques. This method relies on simplifying the crack breathing mechanism in order to obtain local
stiffness matrix of a cracked shaft element and then calculate the vibration response by solving the equations
of motion of the system. Early papers [20,21] on cracked shafts used gaping crack model (crack is considered
to always be fully open) where the local stiffness of the cracked element is a constant fraction of an uncracked
element over a full revolution of the shaft. This stiffness is used to calculate the dynamics of the cracked rotor
system [22]. Research using the switching crack model [23–25] depicts the crack as being always fully open in
half of a full rotation and always fully closed in the other; however, the sudden change in the stiffness between
these two states is not reflective of the true nature of a cracked shaft. Recently, a number of papers [26,27]
have used more realistic trigonometric functions to describe the crack breathing mechanism of a rotating shaft.

With the “breathing” mechanism of a crack being known from the simplified analytical model, two impor-
tant theories were proposed to obtain local stiffness matrix. The first approach is based on the strain energy
release rate (SERR) theory [28–30], which is used to calculate the local compliance matrix using approxi-
mated stress intensity factor at each point along the crack front. Darpe et al. [31] and Papadopoulos [32] used
the SERR approach and calculated the breathing by evaluating on the rectilinear crack tip where the crack
is starting to close, assuming that the closed part of the crack surface is delimited by a boundary, the crack
closure line (CCL). The same approach was used also by Wu et al. [30]. Bachschmid and Tanzi [33] used 3D
finite element method (FEM) to show that, depending on the applied forces, there are no constant strains and
stresses along the crack tip. Researchers [34,35] have found that the SERR approach is valid only for the fully
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open crack for calculating the additional flexibility due to the crack, but cannot be extended to other crack
statuses due to the breathing mechanism.

The second approach is based on a theoretical model of a transverse crack by reducing the area moment of
inertia of the element at the location of the crack where this change in area moment of inertia of the cracked
shaft is used to develop time-varying stiffness matrix equations. Such a method is seen in [3,26,36–38] and
further developed in [39]. Mayes and Davies [40] first demonstrated that a transverse crack in a rotor shaft
might be represented by the reduction in the second moment of area of the element at the crack location. They
established that the cross section of the rotor shaft at the crack location has asymmetric area moments of inertia
about the neutral axis of bending. In Ref. [41] the stiffness matrix due to the transverse crack was obtained
at the crack location by using standard finite element method and the opening and closing behavior due to
the rotor rotation and shaft self-weight results in a time-dependent stiffness. The authors of [37] implemented
the area moment of inertia models in [36,39,42] to perform a parametric stability analysis on cracked Jeffcott
rotor using Floquet theory. The finite element method (FEM) was used in modeling the equations of motion of
the cracked rotor, where the flexibility matrix was used in modeling the stiffness matrix of the cracked element
[43]. The finite element stiffness matrix of a rod in space found in Ref. [44] was used to represent the time-
varying stiffness matrix of the cracked element [26,27,41,42,45]. The transfer matrix method was employed
in studying the vibration behavior of the cracked rotor system where the second harmonic characteristics are
used in detecting the crack in the system [35].

Previous studies based on large rotating machinery have considered the crack breathing mechanism to be
dominated by self-weight (weight-dominant breathing). For lightweight rotors, vertical machinery and lightly
damped rotors the breathing mechanism is not always weight-dominated as there is significant influence from
dynamic loads.Moreover, almost all existingmodels are not applicable near the shaft critical speed because the
lower damping expands the range which dynamic behavior dominates. As such, equations of motion developed
under the assumption of rotor weight dominance are no longer suitable for analysis near the critical speed or
when the unbalance is high [46–48]. Some studies have considered the effects of significant dynamic loads on
the crack breathing mechanism and vibration responses. Previously, the damping of the cracked rotor system
was considerably reduced by Bachschmid et al. [3] to study the effect of nonlinear breathing mechanism on
the crack in a more severe condition. The hypothesis was developed from the fact that unstable vibration
often exhibited the full opening of crack in the breathing behavior. As a result, it was found that stability of
the system was restored at times by the presence of this unbalance. In [46], it was also observed that rotor’s
stability can be restored due to the unbalance. A further proposal was made that the minimum amplitude of
vibration is related to the eccentric mass being located at the crack direction and the maximum amplitude
of vibration occurs due to the eccentric mass being located to the opposite of the crack. Commercial FEM
software was used [49] to simulate a cracked Jeffcott rotor to study the impact of mass unbalance on crack
breathing mechanism, highlighting the fact that in the case of some crack depths the crack can be fully closed
when the eccentricity is opposite to the crack location. On the other hand, the event of crack and eccentricity
being in the same direction causes the crack to remain fully open. In presence of the unbalance it was found
the crack breathing behavior greatly differs from the weight-governed crack breathing.

It is evident that an accurate analytical model is still absent, which considers the influence of unbalance
force on crack breathing and can be easily used to calculate vibration response numerically. Further, existing
analytical crack breathing models were developed under the simple support boundary condition and without
considering the rotor physical and dimensional properties. Consequently, crack breathing is independent of
crack location. This paper will evaluate the effect of unbalance force, rotor properties and more realistic
fixed end boundary condition on the breathing behavior of a fatigue crack. Firstly, the model that describes
the relative angle between the crack and bending direction is proposed and visualized for numerous crack
location/unbalance configurations. This model, defined in this work as the unbalanced shaft model, is then
used to evaluate the nonlinear crack breathing behavior under different weight–unbalance force ratios at
different crack locations by examining the percentage of opening of a crack. The results are also validated by
Abaqus simulation and compared with those of the balanced shaft model, which neglects the unbalance force.

2 Determination of the effectual bending angle

The opening and closing of a shaft crack are governed by the effectual bending angle ϕ that describes the
proximity of the shaft bending direction (or shaft deformation direction) relative to the crack direction. The
model shown in Fig. 1 represents a two-disk rotor supported rigidly by two bearings. It consists of a straight



344 H. M. Mobarak et al.

Fig. 1 A two-disk rotor supported rigidly

Fig. 2 Schematic diagrams of a crack cross section and b relative position of unbalance force with respect to the crack

Table 1 Parameters of the chosen rotor system

Description Value Description Value

Shaft length (L) 724mm Disk mass (md) 0.50kg
Shaft radius (R) 6.35mm Disk-1 location (l1) 181mm
Shaft density (ρ) 7800kg/m3 Disk-2 location (l2) 543mm
Disk outer radius (R0) 54.50mm Crack location (l0) Variable
Disk inner radius (Ri ) 6.35mm Crack depth ratio (μ) 0.5

front oriented crack on a plane normal to the axis of the shaft with non-dimensional crack depth ratio μ = h
R ,

where h is the crack depth in the radial direction and R is the shaft radius. A1 is the uncracked cross-sectional
area, Ac is the area of the crack segment, and e is the locations of the centroid as shown in Fig. 2a. The
unbalance force has been taken as a rotational force Fun = muω

2d due to an additional mass mu at a radial
distance d from the center of the shaft when the shaft rotates at ω rad/sec. The direction of the rotational
unbalance force Fun is (θ + β), where θ is the shaft rotation angle and β is a fixed angular position relative to
the crack direction as shown in Fig. 2b and the unbalance force is considered being located on the right side
disk (see Fig. 1). The parameters of the rotor model are given in Table 1.

Evenly distributed shaft self-weight msg will generate a moment along the shaft, where ms is the mass of
the shaft and its vector aligns along the X -axis. The value of this moment at a location l0 along the shaft length
or Z -axis is described in Eq. (1).

MmSg = mSg

12L

(
6Ll0 − L2 − 6l20

)
. (1)

The moment in the X -axis at a location l0 along the shaft length due to the weight of two disks 2mdg is
described in Eq. (2).
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Fig. 3 Definition of the effectual bending angle

Mmdg = mdg

[
l0 − l1(L−l1)

L

]
When l0 ≤ l1

Mmdg = mdg

[
l1 − l1(L−l1)

L

]
When l1 < l0 < l2

Mmdg = mdg

[
(L − l0) − l1(L−l1)

L

]
When l0 ≥ l2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2)

Correspondingly, the varying moment at a location l0 along the shaft length due to the unbalance force Fun is
described in Eq. (3).

Mun = Fun

[
l21 l0
L3 (l1 + 3l2) − l21 l2

L2

]

=
(
msg+2mdg

η

) [
l21 l0
L3 (l1 + 3l2) − l21 l2

L2

]

⎫
⎪⎪⎬

⎪⎪⎭
When l0 ≤ l2 (3a)

Mun = Fun

[
l22 (L−l0)

L3 (3l1 + l2) − l1l22
L2

]

=
(
msg+2mdg

η

) [
l22 (L−l0)

L3 (3l1 + l2) − l1l22
L2

]

⎫
⎪⎪⎬

⎪⎪⎭
When l0 > l2 (3b)

where η = msg+2mdg
Fun

is the ratio of the gravitational force (shaft self-weight, msg, and two disks’ weights,
2mdg) to the unbalance force Fun.

The gravitational moments Mmsg and Mmdg are constant in magnitude and may change their directions
along the X -axis, but always perpendicular to the gravitational forces. The rotational force Fun acts in the
radial direction (θ + β). Accordingly, Mun also rotates in the XY plane and perpendicular to Fun (see Fig. 3).
According to the principle of superposition theory, the total moment of the system at a location l0 along the
shaft length is described in Eqs. (4) and (5).

In X − axis
∑

MX = Mmsg + Mmdg + Mun cos (θ + β) (4)

In Y − axis
∑

MY = Mun sin (θ + β) . (5)

As shown in Fig. 3, shaft bending direction or deformation direction in the crack cross section is always
perpendicular to the resultant moment direction. The angle δ of the resultant moment with respect to X -axis is
the same as δ of the bending direction with respect to Y -axis. It should be pointed out that unbalance force is
not located at the crack plane and Fun is only a projection of unbalance force on the crack plane. The effectual
bending angle ϕ is defined as the angle from bending direction to crack direction, and it solely determines
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the breathing behavior of the crack. The parameters δ and ϕ at a crack location are described in Eqs. (6) and
(7), respectively; however, modifications were made to ensure these angles are within the co-domain of a full
rotation of shaft between 0◦ and 360◦.

δ = tan−1
(∑

MY∑
MX

)
(6)

ϕ = 180◦ + θ − δ. (7)

For the simplicity of the calculations, moments are calculated using simple beam theory [50] with an intact
shaft. In the calculations of bending angle as described in Eqs. (6) and (7), the effect of a crack on the moments
at the crack cross section in X - and Y -directions are considered to be approximately the same. This assumption
will be further examined later by the comparison between analytical and Abaqus results.

3 Determination of breathing mechanism of a crack

Compression and tensile stress field distributions over the cross-sectional area of rotating shafts are determined
by the centroid location, neutral axes, and the bending direction. The neutral axis X̄ lies perpendicular to the
bending direction and passes through the centroid location,C . As the cracked shaft starts to rotate, the locations
of the centroid and the neutral axis of the cracked element vary with time. A tensile stress field exists in the
X̄ and negative X̄ plane, and a compressive stress field in the Ȳ and positive Ȳ (see Fig. 4). A crack is open
when the affected part of the material is subjected to tensile stresses and closed when the stress is reversed,
which is called the breathing of the fatigue crack.

Fig. 4 Key instants of crack breathing in the unbalanced shaft: a crack begins to close, b right after crack becomes fully closed,
c crack begins to open and d right after crack becomes fully open
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The crack starts to close at a certain shaft rotation angle (θ) when the effectual bending angle ϕ = ϕ1,
where the upper end of the crack edge reaches the compression stress field as shown in Fig. 4a. The crack
becomes fully closed at a certain shaft rotation angle (θ) when effectual bending angle ϕ = ϕ2, where the
crack is fully reached in the compression stress field as shown in Fig. 4b. Similarly, the crack starts to open at a
certain shaft rotation angle (θ)when effectual bending angle ϕ = ϕ3 = 2π −ϕ2, where the crack edge starts to
enter in the tensile stress field as shown in Fig. 4c and then becomes fully open at a certain shaft rotation angle
(θ) when effectual bending angle ϕ = ϕ4 = 2π − ϕ1 as shown in Fig. 4d. The intermediate situation between
the fully open and fully closed state is partially opened or partially closed status. The effectual bending angles
ϕ1 and φ2 are a function of cracked shaft geometry as given in Eqs. (8) and (9), respectively, where location
of the centroid, e, and uncracked cross-sectional area, A1, as shown in Fig. 2a are described in Eqs. (10) and
(11), respectively.

ϕ1 = tan−1
(
e + R (1 − μ)

R
√

μ (2 − μ)

)
(8)

ϕ2 = π

2
+ cos−1 (1 − μ) (9)

e = 2R3

3A1

3
√

μ (2 − μ) (10)

A1 = R2
[
π − cos−1 (1 − μ) − (1 − μ)

√
μ (2 − μ)

]
. (11)

Equations (8) and (9) were developed by [39] for a balanced shaft. As shown in Fig. 5, the bending direction
of a balanced shaft always points toward negative Y-axis and the bending angle is equal to the shaft rotational
angle. A crack in the unbalanced shaft has the same opening/closing status as a crack in the balanced shaft as
long as they have the same bending angle. The main difference between a balanced shaft and an unbalanced
shaft is that the bending direction of the unbalanced shaft keeps changing with the change in shaft rotational
angle, unbalance force magnitude and orientation, and crack location. The statuses of the crack at different
crack locations during shaft rotation are evaluated quantitatively using percentages of the opening of a crack.
The percentage of opening of a crack Λ as described in Eq. (12) is determined using the effectual bending
angle by studying the transient change in the area of the cracked cross section. Ac is the area of the crack
segment as shown in Fig. 2a, and A2 (t) is the closed portion of the crack segment when effectual bending
angle ϕ1 ≤ ϕ ≤ ϕ2 or (2π − ϕ2) ≤ ϕ ≤ (2π − ϕ1) (see Fig. 5). Ac can be calculated by Eq. (13) and
A2 (t) is determined using a procedure proposed in balanced shaft [39] to calculate the variation of A2 (t)
with shaft rotational angle. It is obvious, as shown in Fig. 5, that A2 (t) in the unbalanced shaft is equal to
that in a balanced shaft when bending angle in the former is equal to the rotational angle in the latter. For the
calculation of A2 (t) in the unbalanced shaft, firstly, A2 (t) for the balanced shaft is calculated using formulas
in the above-cited reference paper. This A2 (t) becomes that for the unbalanced shaft at a bending angle equal
to the shaft rotational angle in the balanced shaft. Then, using Eqs. 1–7, the A2 (t) with different force ratios
at a shaft rotational angle for the unbalanced shaft is obtained. Readers are suggested to consult the original
paper for the expressions of A2 (t) for the balanced shaft. For a fully open crack and fully closed crack the
percentage of opening of a crack Λ is equal to 100 and 0, respectively.

Λ (%) = Ac − A2 (t)

Ac
× 100 (12)

Ac = R2 cos−1 (1 − μ) − R2 (1 − μ)
√

μ (2 − μ). (13)

4 Results and discussion

The procedure seen in this paper uses the force ratio, η, the ratio of the gravitational force (shaft self-weight
and two disks’ weights) to the unbalance force, to evaluate the influence of the unbalance force magnitude
and the crack location factor, λ, the ratio of the crack position, l0, to the total shaft length, L , to evaluate the
influence of the crack position. The statuses of the crack for different force ratios at different crack locations
during shaft rotation are identified using the values of effectual bending angle, ϕ, relative to the regions formed
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Fig. 5 Schematic diagrams of the closed portion of a breathing crack for a a balanced shaft and b an unbalanced shaft

by ϕ1 and ϕ2. A series of analyses have been performed using the MATLAB software. In this analysis the
shaft rotation is anticlockwise and the crack initial direction aligns with the negative Y -axis. A crack with a
ratio of crack depth μ = 0.5 is chosen to perform the analysis. Throughout the paper a focus is placed on the
influences of the unbalance force and crack location on the breathing behavior.

4.1 Effectual bending angle

Figure 6 exemplifies the evolution of the effectual bending angles along the shaft length for different shaft
rotation angles and different weight–unbalance force ratios. The effectual bending angles of the balanced shaft
are constant, but have a change of 180◦ at crack locations λ = 0.1946 and 0.8053, where bending moment due
to total gravitational force (shaft and disks) is zero and themoment changes direction across these two inflection
points (see Fig. 7). Between two inflection points, the moment is in the positive X -axis and bending direction
aligns along the negative Y -axis. Hence, the relation between effectual bending angle and shaft rotation angle
is ϕ = θ , which is in agreement with previous result in Ref. [39]. This relation is clearly explained in the
example shown in Fig. 7. For the two remaining crack regions the relationship between effectual bending angle
and shaft rotation angle is ϕ = 180◦ + θ .

For an unbalanced shaft, the effectual bending angles along the shaft length are remarkably different from
the balanced one. A few findings can be summarized as follows:

(a) There are two shaft rotational angles where the variation pattern of ϕ along shaft length is similar to the
balanced shaft (see Fig. 6a, e). At θ = 0◦, the unbalance force is in the same direction as the gravitational
force of the rotor, and at θ = 180◦ the unbalance force is in the opposite direction to the gravitational
force. Furthermore, the locations of zero points of combined moments due to the gravitational force and
unbalance force change only slightly at the former shaft rotational angle, but dramatically at the latter
angle.

(b) There are two pairs of crack locations along the shaft where the bending angle is independent of the force
ratio η. As mentioned earlier at inflection points λ = 0.1946 and 0.8053, the gravitational moment is
zero (see Fig. 7); therefore, the deformation direction or bending direction is solely determined by the
unbalance force moment. It should be pointed out that two crack locations are in different unbalance force
moment regions, i.e., it is negative at the first location and positive at the second location, as shown in
Fig. 8. As a result, the effectual bending angle is 180◦ at the former crack location and 0◦ at the latter
crack location. Further, as shown in Fig. 6, bending angles at these two locations are independent of not
only the force ratio, but also the shaft rotational angle. A small amount of unbalance force would have the
same effect on the bending angle as large unbalance force. Therefore, if the crack is located around these
two positions then the effect of unbalance force on the crack breathing behavior must be considered. It
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Fig. 6 Effectual bending angles along the shaft length for different shaft rotation angles, θ , with different weight–unbalance force
ratios, η, where β = 0◦
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Fig. 7 Effectual bending angle due to gravitational moment only where Mmg = Mmsg + Mmdg

should be also mentioned that the jump of bending angle from 0◦ to 360◦ or 360◦ to 0◦ at λ = 0.8053 is
a result of the crack direction changing from leading to following the bending direction.

(c) The other interesting pair of crack locations is at λ = 0.3 and 0.8335 where the bending angles for all
force ratios cross at the same value as those for the balanced shaft. At these two crack locations unbalance
force moment is zero (see Fig. 8) and the gravitational force moment is solely responsible for the bending
of the shaft. As a result, the cracks will breathe as they would in a balanced shaft.

(d) For 0◦ < θ < 180◦, effectual bending angles decrease nonlinearly when crack location increases from
the shaft’s left end up to the right end (see Fig. 6b–d). This variation of ϕ with crack location is reversed
for the second half of the shaft rotation angle from 180◦ < θ < 360◦ (see Fig. 6f–h).

(e) As unbalance force decreases (force ratio increases) the bending angles will progressively approach those
for the balanced shaft, which shows that the unbalancedmodel will be finally in agreement with a balanced
model when force ratio is large enough.

Effectual bending angle as a function of shaft rotational angle at some interesting crack locations is shown
in Fig. 9 for some chosen force ratios. It is seen that the bending angle for the balanced shaft is one-to-one
proportional with the shaft rotation angle. This is a characteristic relationship of the balance shaft previously
observedbymany researchers. Further, at those locations between twogravitationalmoment inflection locations
λ2 and λ5, bending angles are zero at θ = 0◦ and they become 180◦ at locations outside this region, which is
consistent with the observation from Fig. 6a. As far as the unbalanced shaft is concerned, it is seen again that
at zero gravitational moments λ2 and λ5 the deformation of the shaft is solely determined by the unbalance
force moment and the bending angle is independent of shaft rotational angle, as shown in Fig. 9b, e. The 180◦
difference in ϕ shown in Fig. 9b, e is ascribed to the directional change in the unbalance force moment (see
Fig. 8). On the other hand, at zero unbalance force moment locations λ3 and λ6 the shaft bending direction is
determined by the gravitational moment, so the effectual angle is equal to θ (see Fig. 9c) or 180◦ + θ (see Fig.
9f), as is the case with a balanced shaft. At other crack locations the bending angle shows a wave-like curve
on top of the straight line of the balanced shaft.

The effect of angular position of unbalance force on the bending angle is shown in Fig. 10. It is clear that β
has no effect on the bending angle for the balanced shaft because no unbalance force is considered. However,
for the unbalanced shaft at zero gravitational moment locations λ2 = 0.1946 and λ5 = 0.8053, the effectual
bending angle is equal to 180◦ − β or 360◦ − β (see Fig. 10b, e). At zero unbalance force moments λ3 = 0.3
and λ6 = 0.8335 the bending angle is constant across all β values, which is the same as the balanced shaft
(see Fig. 10c, f). As observed earlier, at these four locations φ is free of the effect of the force ratio. For all
other crack locations there exist two special β values of 135◦ and 315◦. When β = 315◦, unbalance force
rotates to gravitational force direction because β + θ = 315◦ + 45◦ = 360◦. Consequently, the shaft deforms
at the same direction and has the same ϕ value as the balanced shaft (see Fig. 10a, d, g). When the unbalance
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Fig. 8 Bending angle due to unbalance force moment only where β = 0◦

force rotates to the opposite direction to the gravitational force (β + θ = 135◦ + 45◦ = 180◦), the shaft bends
in the direction determined by the larger moment between gravitational and the unbalance force moments. In
all cases presented here, the gravitational moment is larger than the unbalance force moment. As a result, the
bending angle in unbalanced shaft has the same value as that in the balanced shaft.

4.2 Percentage of opening of the crack

Crack breathing behavior can be evaluated quantitatively using a percentage of openings of the crack,Λ, which
is displayed in Fig. 11. Similar to the variation of bending angle with the crack location, λ, the percentages
of opening for all force ratios are the same at λ2 = 0.1946 and λ5 = 0.8053, respectively, and approach the
value of a balanced shaft at the crack locations λ3 = 0.3 and λ6 = 0.8335. Shaft stiffness variation with crack
location can be divided into three regions at the zero points of gravitational moment λ2 and λ5. Increasing λ
from 0 to λ2 leads to a stiffening processing of the shaft because of decreasing Λ, then a softening process
from λ2 to λ5, and finally a stiffening process again from λ5 to the right end of the shaft. Zero points of the
unbalance force moment λ3 and λ6 also divide shaft length into three regions where the overall stiffness of the
shaft during a rotation is different from that of the balanced shaft. When the crack is located between λ3 and
λ6, it is obvious that the percentage of opening of the crack for the unbalanced shaft is larger than that for the
balanced counterpart, which indicates that the unbalanced shaft is more flexible than the balanced shaft (also
see Fig. 12d). For the remaining two regions, the unbalanced shaft becomes stiffer (also see Fig. 12a, g).

It is also clear in Fig. 11 that variation of Λ with crack location depends strongly on the shaft rotational
angle. The percentage of opening Λ for the balanced shaft remains unchanged throughout the entire shaft
length when the shaft rotates to 90◦ and 270◦. Λ for the balanced shaft is symmetrical about the shaft middle
point. However, for the unbalanced shaft Λ is no longer symmetrical. Moreover, along with the shaft length,
a small difference in Λ is seen between the balanced shaft and unbalanced one, when the shaft is at the early
stage of rotation or near the completion of rotation as shown in Fig. 11a, b, h.

Percentage of the opening of the crack as a function of shaft rotation angle is depicted in Fig. 12.During a full
shaft rotation of 360◦, the shaft will generally experience two processes, i.e., a stiffening process corresponding
to the decreasingΛ and a softening process corresponding to the increasingΛ. These two processes are seen to
be symmetrical about θ = 180◦. The flat part of the curve corresponds to either a fully open range (Λ = 100%)
or a fully closed range (Λ = 0%). When a crack is at λ2 = 0.1946, the crack in the unbalanced shaft will never
open during rotation causing the unbalanced shaft to behave like an uncracked one (see Fig. 12b). A crack in
the unbalanced shaft will never close during rotation, and the unbalanced shaft will behave like a shaft with a
notch crack at λ5 = 0.8053 (see Fig. 12e). At λ3 and λ6, a crack will breathe completely like the one in the
balanced shaft (see Fig. 12c, f).
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Fig. 9 Effectual bending angle during a full shaft rotation at selected crack locations for different force ratios where β = 0◦
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Fig. 10 Effectual bending angle versus unbalance force orientation angle β where θ = 45◦
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Fig. 11 Percentage of the opening of a crack, Λ, as a function of crack location, λ, for different shaft rotation angles, θ , and force
ratios, η, where β = 0◦
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Fig. 12 Percentage of the opening of the crack, Λ, as a function of shaft rotation angle, θ , for different crack locations, λ, and
different force ratios, η, where β = 0◦
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Figures 11 and 12 represent only a special case where the unbalance force aligns with the crack direction
( β = 0◦). For the general unbalance force orientations as shown in Fig. 13, it is identified that the unbalanced
shaft is overall stiffer than the balanced one when unbalance force is located in the half area of the cross
section opposite to the crack (90◦ < β < 270◦). In particular, when β = 180◦ the shaft is stiffest (compare
Figs. 13d–f). On the other hand, the unbalanced shaft is overall more flexible than the balanced counterpart
when the unbalance force is located at the same half area of the cross section of the crack (0◦ ≤ β < 90◦ and
270◦ < β ≤ 360◦), and with β = 0◦ the shaft has the smallest stiffness (see Fig. 13a, b, h). The conclusion
drawn here from Fig. 13 at λ = 0.79 also holds true at other crack locations (results not presented). Therefore,
the conclusions previously drawn from Fig. 11 regarding the variation of opening percentage with a crack
location at β = 0◦ will become opposite when β = 180◦ (or more generally 90◦ < β < 270◦). The original
direction of the unbalance force will generate a significant effect on the vibration of the cracked shaft as
observed previously. Cheng et al. [46] found that the unbalance orientation played an important role in the
peak amplitude of the vibration, where the minimum and maximum vibration amplitude corresponded to the
eccentric mass being located at and opposite the crack, respectively.

Two special unbalance force orientations, i.e., β = 90◦ and β = 270◦, are identified as shown in Fig. 13.
At these two orientations, the percentage of opening of the crack for the unbalanced shaft is sometimes larger
than that of a balanced shaft and sometimes is smaller during a full shaft rotation. The result demonstrates that
the overall stiffness of the unbalanced shaft is more or less the same as the balanced shaft (see Fig. 13c, g).
It is also seen that the symmetry between the stiffening process and softening process to 180◦ shaft rotation
angle disappears except for β = 0◦ and β = 180◦. The opening percentage as a function of the crack location
under selected unbalance force orientation is depicted in Fig. 14. It is clearly seen that the difference in the
percentage of the opening along shaft length between two models is larger when 180◦ < β ≤ 360◦ (β = 0◦
in Fig. 14a).

4.3 Validation

The numerical validation is performed using a commercial code of Abaqus©/Standard. A complete 3D model
of the shaft is employed because there exists no symmetry for the unbalanced shaft. The 3D finite element
model of the shaft is presented in Fig. 15.

The crack section is simulated by joining two shafts together using interaction function “tie constraint”
that constitutes the intact part of the cracked section. The numerical model is made in such a way that a
surface-to-surface contact interaction is defined between the crack faces in order to avoid the interpenetration
between them during the closing. To complete the definition of the contact model it is necessary to establish
both normal and tangential properties between the crack faces. Regarding the normal properties, “hard” contact
is used. This relationship does not allow the penetration of the surfaces in contact at the constraint locations
and prevents the transfer of tensile stress across the interface. The chosen tangential property, “rough” friction,
introduces an infinite coefficient of friction that avoids all relative sliding motion between the two contacting
surfaces. The details of the contact interaction at the crack cross section are shown in Fig. 16. Red zone (upper
portion) corresponds to the intact section, and pink zone (lower portion) corresponds to the crack section.

The structured mesh is made by employing a type of elements called C3D8R (8-node linear brick, reduced
integration). The mesh has been refined up to a size of elements for which the convergence of results was
achieved by means of a mesh sensitivity analysis. In order to get more accurate results, the mesh is much
denser near the crack in the transversal and longitudinal direction, as shown in Fig. 17.

In the numerical simulation, the same geometrical and material properties and the load conditions of the
cracked shaft are used. The analysis is performed as a succession of static problems with different angular
positions of the shaft, θ , with respect to the fixed reference axis. To determine the crack breathing (status of the
crack and percentage of opening of the crack) the specific modules in fracture mechanics analysis of Abaqus
are used.

Firstly, crack breathing behaviors at two pairs of specific crack locations are evaluated and compared.
The statuses of the crack of a balanced and unbalanced shaft for a full shaft rotation angle at λ3 = 0.3 and
λ6 = 0.8335 are depicted in Fig. 18. As it has been already known, analytical model shows that at these two
locations the crack will behave like in the balanced shaft with symmetrical and sequential changes during a
full shaft rotation, beginning with fully open at λ4 = 0.3 and fully closed at λ6 = 0.8335. These features are
demonstrated completely in Fig. 18. Further, that the crack at λ2 = 0.1946 will never open and will never
close at λ5 = 0.8053 is also well reproduced in the Abaqus simulation, as shown in Fig. 19.
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Fig. 13 Effect of unbalance force orientation on the crack breathing behavior at λ = 0.79
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Fig. 14 Effect of unbalance force orientation on the crack breathing behavior where θ = 135◦
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Fig. 15 Complete 3D finite element model of the shaft

Fig. 16 Surface-to-surface contact interaction

Secondly, a quantitative comparison through a percentage of the opening is displayed in Fig. 20 for the
balanced shaft and unbalanced one (η = 10 & β = 0◦ and λ4 = 0.5). In general, it is found that the
proposed analytical model captures the main features of the crack breathing and is in good agreement with
Abaqus simulation. The possible errors may be attributed to curved boundary between opening area and the
closed area of the crack in Abaqus simulation (see Fig. 18) and the straight boundary line in the balanced and
unbalanced models (see Fig. 5). Curved boundary line was also observed in the previous Abaqus simulation
for the balanced shaft [3] and unbalanced shaft with simple support ends [5,49]. Moreover, it can be inferred
that the calculations for the unbalanced model using Eqs. (6) and (7) do not introduce any further large error
since the error between the present unbalanced model and Abaqus simulation in Fig. 20b is more or less the
same as that between the balanced shaft and Abaqus simulation in Fig. 20a.

4.4 The area moment of inertia at the crack cross section

Crack breathing behavior leads to a change in the shaft stiffness [40]. Studying the change in the area moment
of inertia of a cracked shaft can link the breathing mechanism to the stiffness matrix in the rotor and ultimately
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Fig. 17 Mesh near the crack cross section in a transversal and b longitudinal direction

calculate the vibration responses. Al-Shudeifat et al. [39] developed an iterative method to calculate the area
moment of inertia of the time-varying non-cracked area Ace (t) for a balanced shaft (shown in Fig. 5a). In their
work the effect of the unbalance force and shaft support condition on the crack breathing is neglected. The
time-varying non-cracked area Ace (t) is equal to A1 + A2 (t), where A1 is the area of the uncracked element
(see Fig. 2a) and A2 (t) is the area of the closed portion of the crack at time t (see Fig. 5). Firstly, the method
calculates the areas A2 (t) and A1 and their respective centroid locations to obtain the overall magnitude and
centroid location of Ace (t). Then the area moments of inertia of Ace (t) about the centroidal axes X̄ and Ȳ are
obtained.

For the unbalanced system as shown in Fig. 5b, the modified centroid coordinates Xce and Yce of non-
cracked area Ace (t) about the original non-rotated coordinate X - and Y -axes are described in Eqs. (14) and
(15), where X ′

ce and Y ′
ce are the centroid coordinates with respect to the X ′- and Y ′-axes, which are the same

as those with respect to the X - and Y -axes in the balanced model.

Xce = X ′
ce cos δ − Y ′

ce sin δ (14)

Yce = X ′
ce sin δ + Y ′

ce cos δ. (15)

The area moment of inertia of the non-cracked area about the unbalanced rotor’s X̄ and Ȳ is obtained by
comparing the geometric similarity between two models. When the bending angle in the unbalanced shaft
is equal to the shaft rotational angle in the balanced shaft, the area moments of inertia of the non-cracked
area about respective X̄ and Ȳ in two models are also equal. After obtaining the area moments of inertia
for the balanced shaft using expressions in [39], the area moments of inertia with different force ratios at a
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Fig. 18 Statuses of crack of a full shaft rotation angle at crack locations, λ3 = 0.3 and λ6 = 0.8335

shaft rotational angle for an unbalanced shaft are obtained using the relation between bending angle and shaft
rational angle in Eq. 7.

4.4.1 Orbit of the centroid of uncracked area

The centroid orbits of uncracked area, Ace (t), about the X - and Y -axes at different crack locations under
different force ratios are illustrated in Fig. 21. Although effectual bending angle, status of the cracks and
percentage of opening for the balanced shaft all depend on the crack location, the orbits remain unchanged
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Fig. 19 Statuses of crack of an unbalanced shaft (η = 10 & β = 0◦) for a full shaft rotation angle at crack locations λ2 = 0.1946
and λ5 = 0.8053

Fig. 20 Percentage of opening of the crack as a function of shaft rotation angle at crack location λ4 = 0.5 for a balanced and b
unbalanced (η = 10&β = 0◦) shaft

along the crack length. Similar to the previous results, centroid orbit for the unbalanced shaft also has special
behaviors at four crack locations. It should be noted that at λ2 the orbit is just a single point lying on the origin
indicating a fully closed never-opened crack and is independent of the force ratio (see Fig. 21b). At λ5, a circle
is seen indicating a fully opened crack also independent of force ratio (see Fig. 21e). Further, the orbit for the
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Fig. 21 Orbits of the centroid of uncracked area, Ace (t), for different crack locations, λ, and weight–unbalance force ratios, η,
where β = 0◦
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Fig. 22 Area moment of inertia IX̄ of uncracked area, Ace (t), along the shaft length where β = 0◦
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Fig. 23 Area moment of inertia IȲ of uncracked area, Ace (t), along the shaft length where β = 0◦
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Fig. 24 Area moment of inertia of IX̄ and IȲ of uncracked area, Ace (t), over a full shaft rotation, θ , where β = 0◦

unbalanced shaft at λ3 and λ6 overlaps that of the balanced shaft (see Fig. 21c, f). The orbit at other locations
generally changes the shape and largeness of the circle depending on the crack location and force ratio. In
general, an enlarged orbit means a small overall stiffness of the shaft. When the orbit for the balanced shaft
encircles that for the unbalanced shaft as shown in Fig. 21a, g, the overall stiffness of the balanced shaft is
smaller than that of the unbalanced shaft and vice versa as shown in Fig. 21d. The observations on the orbit
are in agreement with previous results.
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Fig. 24 continued

4.4.2 Area moment of inertia of uncracked area

The ultimate purpose of this study is to establish an easy-to-use model to calculate the area moments of inertia
at the cracked cross section for the unbalanced shaft. These area moments of inertia constitute the elements
of the local stiffness matrix of a cracked shaft element [26,36,51]. Then, the cracked shaft vibration response
can be calculated numerically by solving the equations of motion of the system.
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Fig. 24 continued

The area moments of inertia along the shaft length in relation to centroid axes X̄ and Ȳ are illustrated in
Figs. 22, 23, 24, 25 and 26. The value for IX̄ that corresponds to a fully closed crack status is 1.27× 10−9 m4

(same as uncracked shaft πR4

4 ) and 0.65× 10−9 m4 for a fully opened crack (compare Figs. 14a and 24a). IX̄
changes between these two values during shaft rotation and along the shaft length. The value for IȲ at these
two crack statuses is 1.27× 10−9 m4 and 1.11× 10−9 m4, respectively (see Fig. 25a). It is interesting to note
that IȲ could be larger for a fully open crack than for a partially open/closed crack. Further, variation of IȲ
with shaft rotational angle, θ , differs from that of IX̄ , showing a dual minimum behavior, as shown in Fig. 26.
As far as the effect of the crack location is concerned, previous conclusions on the crack breathing behavior
at two pairs of special locations can also be deduced from the area moment of inertia (see Fig. 24c–f, i–l).
It is expected that large difference between two models in the area moment of inertia during shaft rotation
and along shaft length will generate large difference in vibrations accordingly. Further study on the vibration
behavior of a cracked rotor under the influence of unbalance force is currently under the way.

The current work presents a quasi-static analysis of crack breathing functions under the effect of unbalance
force and extends our understanding in the field. However, the actual crack breathing is very complicated
and can be affected by many factors, in particular vibration-induced effects like shaft whirling, excited by
unbalance force, and gyroscopic moment. Under some vibration conditions, these effects on the shaft bending
angle may no longer be ignored. As such, further study on the vibration-induced crack breathing should be an
interesting area.

5 Conclusions

In this paper, a new unbalancedmodel is developed to study crack breathing behavior in terms of crack location
along shaft length, shaft rotational angle, unbalance force orientation, and the ratio of gravitational force to
unbalance force. The results are also compared with those of the balanced shaft and validated by Abaqus
simulation.

For the balanced shaft at θ = 90◦ and 270◦, the opening percentage of the crack (or crack status) remains
unchanged along thewhole shaft length. At the other shaft rotational angles, the opening percentage of the crack
can be divided into three regions at the locations of zero gravitational moments λ2 = 0.1946 and λ5 = 0.8053.
In each region, the opening percentage of the crack is a constant. However, the crack status in the middle region
is different from two side regions. This behavior is caused by an 180◦ change in the bending angle at λ2 and
λ5. Moreover, the opening percentage of the crack is symmetrical about the shaft middle point.

Overall, notably different crack breathing behaviors have been identified for the unbalanced shaft. An
unbalanced shaft is just like an uncracked shaft when the crack is at λ2 = 0.1946, and a crack at λ5 = 0.8053
is just like a notch and will never close. At λ3 and λ6, a crack in the unbalanced shaft will behave completely
like the one in the balanced shaft. These unique crack breathing mechanisms will never happen in a balanced
shaft.
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Fig. 25 Area moment of inertia of IX̄ of uncracked area, Ace (t), for different β along the shaft length where θ = 135◦
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Fig. 26 Area moment of inertia of IȲ of uncracked area, Ace (t), for different β along the shaft length where θ = 135◦
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Shaft stiffness variation with crack location can be divided into three regions at the locations of zero
gravitational moments λ2 and λ5. When an unbalanced force is located in the same half area of the cross
section of the crack (0◦ ≤ β < 90◦ and 270◦ < β ≤ 360◦), an increase in λ from 0 to λ2 will lead to the
stiffening of the shaft because of a decrease inΛ. Also, a softening process from λ2 to λ5 and the other stiffening
process again from λ5 to the right end of the shaft will occur. Zero unbalance force moment locations, λ3 and
λ6, also divide shaft length into three regions. When the crack is in the middle region, the unbalanced shaft
is more flexible than the balanced shaft. In the remaining two regions the unbalanced shaft is stiffer. These
trends will become opposite when unbalance force is located in the half area of the cross section opposite to
the crack (90◦ < β < 270◦). Further, when unbalance force has a right angle relative to the crack direction (
β = 90◦ and β = 270◦), the overall stiffness of the unbalanced shaft is more or less the same as the balanced
shaft. Second area moments of inertia are also calculated to establish a link between the present work and the
prediction of the vibration response of cracked rotor. Finally, the unbalanced shaft model developed in this
work will gradually approach the balanced shaft model when the unbalance force decreases.

Thepresentmodel has identified the unique crackbreathingbehaviors under the influenceof unbalance force
and rotor physical and dimensional properties, showing the strong dependence of the breathing mechanism on
the crack location. The developed model can be further used to obtain local stiffness matrix of a cracked shaft
element and then to study the vibration response of a cracked rotor, in particular near the shaft critical speeds
or where rotor-weight-dominant assumption on the crack breathing no longer holds.
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