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Abstract The effective bulkmodulus K of brittle porousmaterials such as concrete is related to thematrix bulk
modulus Km and is affected by factors such as the pore shape and Poisson’s ratio. Basing on Walsh functions
and the complex variable function solution for the square pore, this paper derives a formula for calculating the
effective bulk modulus of a medium with square pores under planar arrangement condition. Meanwhile, the
effective bulk modulus of a model with a random pore distribution is calculated using a numerical method.
The results of the numerical calculation and the formula are compared with the results of tests and numerical
simulations from previous studies. The results show that there is a critical porosity for the theoretical formula;
when the porosity is lower than the critical porosity, the results of the single-pore formula match the test and
numerical results well, whereas when the porosity exceeds the critical porosity, the results of the multi-pore
formulamatch the test and numerical results; when the porosity is greater than 0.45, the results of the numerical
simulation deviate significantly from those of the theoretical formula. A verification of the numerical results
versus the theoretical results shows that the square pore formula is an excellent representation of the relationship
between the effective bulk modulus and the matrix bulk modulus for porous media such as concrete within
limits.

Keywords Matrix bulk modulus · Effective bulk modulus · Square pore · Critical porosity

1 Introduction

Chemical reactions during the formation of concrete lead to volume deformation of the internal gel material
and the formation of a large number of pores. Based on their size and shape, these pores can be classified
as capillary pores and gel pores. Most of the pores have irregular shapes [1]. These pores have a significant
impact on the mechanical properties of concrete structures and result in several complex concrete properties.
In seepage problems, the matrix bulk modulus and the effective bulk modulus are important factors that affect
the Biot effective stress coefficient and permeability calculations [2]. Therefore, calculating the formula for
the bulk modulus of a concrete structure is important for calculating the seepage and mechanical properties of
concrete structures and certain multi-pore rock materials.

In recent years,many researchers have studied the relationship between the effectivemechanical parameters
and mechanical parameters of the matrix material of porous materials. These investigations have primarily
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focused on empirical formulae and experimental studies of porous materials, such as ceramics [3–5]. In 1968,
Wachtman Jr [3] proposed bulk modulus and shear modulus versus porosity relationships for single-crystalline
materials and similar brittle and porous materials. In 1987, Phani [4] proposed a formula for the effective
elastic modulus of polycrystalline rare earth oxide. In 1996, ARNS [6] experimentally studied the effective
mechanical parameters of sandstone and granite and compared and analyzed the errors of the empirical formula
and numerical calculations versus the theoretical formula and their causes. The results showed that each type
of solid porous material has a key porosity; when the porosity exceeds the key porosity, the matrix cannot
bear the external load. In 2013, Yang et al. [7] studied the mechanical properties of a sandy soil material using
numerical calculations and experiments; however, there was no further analysis of the mechanical parameters
of the porous medium.

Research on pore shapes has primarily focused on theories for circular pores [8–13]. In 1999, based on an
effective mechanical parameter formula proposed by previous researchers, Luo [14] studied the relationship
between the pore shape and the effective mechanical parameters of circular pores; the results showed that the
pore shape had a significant impact on the mechanical parameters. In 2001, Charles [15] calculated the elastic
moduli of porous materials using numerical simulations and suggested that in a material with circular pores,
such as ceramics, the difference between the pore shape in the numerical simulation and the actual pore shape
was the main source of error. In 2000, Roberts and Garboczi [16] used FEM to study the influence of porosity
and pore shape on the elastic properties of porous ceramics. In 2002, Ymaman [1] studied the characteristics
of the pore structure of concrete and the corresponding relationship between the water–cement ratio and the
porosity using experiments; the results showed that the presence of other media in the pores had a significant
impact on the mechanical properties of the concrete. In 2006, Shao and sun [17] investigated the constitutive
relations of porous media and discovered that nonlinearity between stress and deformation is an intrinsic
property of a porous medium; however, further verification was needed to confirm the relationship. In 2007, Li
[18] derived a relationship between the porosity and bulkmodulus of circular pores based on elasticity. In 2010,
Zhang et al. [19] developed a tensor evolution model for the effective coefficient and obtained a relationship
between the effective stress coefficient and deformation in porous media. In 2012, Xiuli [20] investigated the
effective mechanical properties of brittle materials, such as concrete; however, only concretes with porosities
up to 0.10 were tested.

In contrast to ceramics, rock materials, such as concrete, do not contain regular circular pores. Therefore,
when theories for circular pores are applied to analyze the effective mechanical parameters of rock materials,
such as concrete, it is difficult to obtain accurate results. This paper derives a theoretical formula for calculating
the effective bulk modulus and the matrix bulk modulus of a medium with square pores based on a formula
for square opening problems [21] and the method of Li et al. [18]. The results from the theoretical formula
are compared with the results of numerical calculations as well as test results and data from previous studies.
Finally, the critical porosity was identified based on the comparison of the results, and the applicability of the
theoretical formula for different ranges of porosity was analyzed.

2 Elasticity theory for a square pore

2.1 Curvilinear formula for a square

A rectangular sheet has a square opening with a side length of a located far from the boundary (Fig. 1).
Uniformly distributed loads are applied to both sides, and the concentration is q (Fig. 2). The coordinate origin
is at the center of the square opening, and the coordinate axes are parallel to the boundaries [21]. Therefore,
the infinite domain with the square opening in the Z plane is transformed to a central unit circle in the ζ plane
via an approximation transformation formula in a complex variable function as shown in formula (1) [23]:

z = ω(ζ ) = R

(
1

ζ
− 1

6
ζ 3 + 1

56
ζ 7 − · · ·

)
(1)

where R is a real number that represents the size of the square. The first two terms in the formula are used for
the approximation:

z = ω(ζ ) = R

(
1

ζ
− 1

6
ζ 3

)
(2)

Let ρ = 1 and ζ = σ = eiθ . The curve of the opening shown in Fig. 1 is a square. Based on the calculation,
the side length of the square is a = 5R/3.
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Fig. 1 A square pore

Fig. 2 Stress on a square pore

The solution for the elastic deformation of a square opening is based on the approach proposed by Zhilun
[22] (Fig. 2). The uniformly distributed external load is decomposed into uniformly distributed forces along
the x-axis and y-axis of an infinite board with a square opening, and no surface force is applied to the opening.

The displacement solution for the square pore is based on the transformation formula proposed in formula
(1). Formula (3) is obtained using the complex variable function method for the displacement solution in
elasticity mechanics. For the detailed process, please refer to reference [22]:

u + iυ = 1 + u

E

[
3 − u

1 + u
ϕ(ζ ) − ω(ζ )

ω′(ζ )
ϕ′(ζ ) − ψ(ζ )

]
(3)

where u, υ, E and μ represent the displacements of the pore in the x and y directions and the matrix’s elastic
modulus and Poisson’s ratio. The analytical functions φ(ζ ) and ψ(ζ )are defined as follows:

ϕ(ζ ) = qR

[
1

4ζ
+

(
3

7
cos 2φ + i

3

5
sin 2φ
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24
ζ 3

]
(4)

ψ(ζ ) = −qR

[
e−2iϕ

2ζ
+ 13ζ − 26

( 3
7 cos 2φ + i 35 sin 2φ

)
ζ 3

12(2 + ζ 4)

]
(5)

ω(ζ ) = R

(
1

ζ
− 1

6
ζ 3

)
(6)

where φ is the angle between the orientation of the stress on the sheet and the x-axis.
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2.2 Pore elasticity assumption

When deriving a theoretical formula for a porous medium such as concrete, three basic assumptions must be
made. The first is that the matrix is isotropic, and the deformation of the pore is small compared to the size
of the pore; therefore, each point on the pore boundary has an identical displacement in the same direction.
The second assumption is that the stress concentrations at the four corners of the square are ignored. The
third assumption is that the structure’s matrix material has the same elastic properties as non-porous structure
[18,22].

The purpose of calculating the relationship for the bulk modulus is to obtain the Biot coefficient. The
value of the Biot coefficient is crucial for calculating the stress and deformation in concrete dams because
the value determines the influence that the pressure of infiltrated water has on the stress field of the porous
medium.Because the pore hydro-pressure results in linear deformation of the pore structure, themost important
assumption for the derivation of the theoretical formula in this paper is that the strain of the pore in response
to the effective force is linearly related to the pore pressure [2]:

K = dp

dεv

= V dp

dV
(7)

η = Vc
V

= V i
c

V i (8)

where i is the pore identifier, η is the porosity, K is the bulk modulus, p is the external load, εv is the volume
strain, V is the concrete volume, and Vc is the pore volume.

2.3 Walsh functions based on the reciprocal work theorem

Reference [18] provides the derivation procedure of Walsh functions, which are applicable to porous material.
In this paper, the derivation of the effective bulk modulus is based on Walsh functions assuming that the
concrete volume is V . In the formula, Vc is the pore volume, q is the external load, and a group of static
pressures p are applied to the interior surface in the pore and the exterior surface of structure. Formula (9) is
obtained via the reciprocal work theorem. Based on formulae (7) and (9), the Walsh functions for concrete are
derived as shown in formula (10):

ΔV

Vq
= ΔV ′

V p
+ ΔVc

Vq
(9)

βeff = βm + ΔVc
Vq

(10)

whereβ = 1/K = 3(1 − 2μ)/E is the compression coefficient, βeffis the effective compression coefficient of
the concrete, βmis the matrix compression coefficient of the concrete, ΔVcis the change in pore volume, and
ΔV ′is the change in solid volume.

3 Theoretical formula for the effective bulk modulus of a medium with square pores based on 2Dmodel

Based on the theory developed in Sect. 2, the bulk modulus relationship of concrete with square pores is
analyzed. The main idea is to calculate the pore displacements under elastic deformation based on the stress
characteristics. Using the elastic deformation of the pore structure, the volume deformation is calculated. The
volume deformation is then substituted into the Walsh functions to derive the bulk modulus relationship for
concrete structures.

3.1 Deformation displacement of square pores

When the porosity is relatively low, the space between the pores is relatively large. Therefore, interactions
between pores are ignored. In the calculation, the deformation of a square pore is treated as a problem with
a square opening in an infinite board. When calculating the deformation of a square pore based on the stress
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state shown in Fig. 2, a board with a square opening is subject to forces in the x and y directions; i.e., the values
of φ are 0◦ and 90◦, respectively. The elastic displacements for φ at 0◦ and 90◦ are added to obtain formula
(11), where Em and μm are the matrix material’s elastic modulus and Poisson’s ratio, respectively [22]:

u + iυ = 1 + μm

Em
qR [ (F(μm, θ) + H(μm, θ) i] (11)

where

F(μm, θ) = 1

qR
Re

[
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3.2 Derivation of the theoretical formula for the bulk modulus relation

The change in the pore area is calculated based on the area formula. The original area is subtracted from the
area after the elastic deformation (based on the assumption that the displacements in the same direction are
uniform at each point on the pore boundary) as shown in formula (21):

ΔV i
c = (a + 2u)(a + 2v) − a2

= 2(u + v)a + 4uv

≈ 2(u + v)a (21)

According to reference [22], a is the length of the side of a square; i.e., a = 5R/3.
The parameters uandv, which were calculated in formula (11), are substituted into formula (21):

ΔV i
c = 10

3

1 + μm

Em
qR2[F(μm, θ) + H(μm, θ)] (22)
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V i
c = a2 = 25

9
R2 (23)

Formulae (22) and (23) give:

ΔV i
c

V i
c

= 6

5

1 + μm

Em
q[F(μm, θ) + H(μm, θ)] (24)

Formula (24) and 1/Km = 3(1 − 2μm)/Em are substituted into formula (10):

βeff = βm + Vc
V

ΔVc
Vcq

= βm + η
ΔV i

c

V i
cq

= βm + η
2

5

1 + μm

1 − 2μm
βm [ F(μm, θ) + H(μm, θ) ] (25)

1

K
= 1

Km
+ η

1

Km

2

5

1 + μm

1 − 2μm
[ F(μm, θ) + H(μm, θ) ] (26)

K = 1

1 + αη
Km (27)

Finally, the formula for α is obtained as follows:

α = 2

5

1 + μm

1 − 2μm
[ F(μm, θ) + H(μm, θ) ] (28)

Formula (27) is the theoretical formula for a structure with square pores, and formula (28) is the expression
for α in formula (27).

Formula (27) primarily describes the relationship between the effective bulk modulus and the matrix bulk
modulus for a single pore. When the porosity is very low and the pores are evenly distributed, the spacing is
quite large, so the interaction between pores can be ignored. However, when the porosity increases, the spacing
between the pores decreases; therefore, the interaction between pores should be considered. In this paper, the
interaction between pores is included by transforming formula (26) into formula (29)[18]:

1

K
= 1

Km
+ η

1 − η

1

Km

2

5

1 + μm

1 − 2μm
[ F(μm, θ) + H(μm, θ) ] (29)

Formula (28) are substituted into formula (29), and formula (30) is obtained by recombining:

K = 1 − η

1 − (1 − α)η
Km (30)

Formula (30) is the theoretical formula for a multi-pore structure that considers the interactions between
the pores, where α is given by formula (28). This formula shows that the bulk modulus is primarily related
to Poisson’s ratio and the porosity of the matrix. When θ are 0◦ and 90◦, the displacements in the x and y
directions are calculated.

Li [18] derived a formula for the relationship between the effective bulk modulus and the matrix bulk
modulus for a porous medium based on the circular pore model:

K = 1 − η

1 + αη
Km (31)

where α = 1+μm
2(1−2μm)

.
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Fig. 3 An actual pore structure versus a numerically simulated pore structure. a CT scan image [14]. b Randomly generated pore
model (porosity of 0.12)

4 The comparison between formula results and numerical results

To investigate the relationship for the effective bulk modulus for porous concrete structures, this paper derived
a formula for the relationship between the effective bulk modulus and the matrix material’s bulk modulus
based on a theoretical formula for an opening from elasticity and geometrical theory. The formula is verified
via numerical calculations using the concrete simulation analysis software SAPTIS, which was developed by
Zhang [24]. The numerical calculation procedure is as follows: create a model with different porosities; define
the mechanical parameters of the matrix material of the model; apply uniform load on six surfaces (numerical
simulation of elastic deformation); extract εx , εy, εz from the results and then calculate the effective bulk
modulus of the model via physical equations from elasticity theory [22]. In the paper, the shape function used
in the numerical simulation is a linear shape function.

Errors in the numerical calculation results of the effective bulk modulus will occur because the grid is
normally square, and excessively large grid dimensions lead to different pore characteristics from that of a
circular pore. When small grids are used in numerical calculations of irregular openings, the errors in the
results are significantly lower. Therefore, in numerical simulations, the grid density should be sufficiently high
so that in a random pore model, the errors induced by the grid’s geometrical characteristics are minimized.
The simulation in this paper is based on a 10 × 10 × 10cm cube, which contains one million grid cells (the
minimum pore is a grid cell). Figure 3b shows a randomly generated porous medium. A comparison with an
actual CT scan of concrete pores [14] (Fig. 3a) shows that the shapes of the numerous irregular connected
pores in the numerical model are similar to those in concrete.

Reference [6] presented sandstone test data from a previous study, statistically analyzed the bulk modulus
K for different porosities, and suggested that the matrix bulk modulus was 37GPa and that the Poisson’s ratio
was 0.20. The numerical calculations in this paper are based on the test parameters in reference [6]. In the
theoretical calculations, the displacements in the x and y directions (i.e., θ of 0◦ and 90◦) and a Poisson’s ratio
of 0.20 are substituted into formulae (12) and (13) as follows:

[ F(μm, θ) + H(μm, θ) ] = 3.5602

Yaman [1] analyzed the relationship between the water–cement ratio and the porosity after the formation of
a concrete structure using experiments. The results showed that ordinary concrete had a maximum porosity of
0.18. In addition, reference [20] found that brittle engineering materials normally had relatively low porosities.
In this paper, to verify the validity and applicability of the theoretical formula for calculating the effective bulk
modulus of concrete, the maximum porosity is limited to 0.30.

Formula (30) shows that when the porosity approaches 1, the effective bulk modulus approaches zero.
However, this result is different from real situations. As the porosity continues to increase, the calculated
results of the effective bulkmodulus begin to deviate from the test results. Every brittle lithological engineering
material analyzed in the previous study [6] had a key porosity; the key porosity for sandstone was 0.47. The
mechanical properties are different below and above the key porosity; that is, when the porosity is less than
the key porosity, the matrix bears the external load, whereas when the porosity exceeds the key porosity, the



2032 X. Luo, G. Zhang

Fig. 4 Theoretical results versus numerical results

Fig. 5 Porosity versus bulk modulus

porousmedium nearly fails to bear the external load. Therefore, regardless of which theoretical formula is used,
when the porosity exceeds 0.45, the numerical results deviate significantly from the theoretical calculations
(Fig. 4). In addition, in the numerical calculations, structures with high porosities have distinct anisotropic
mechanical properties. The 2D isotropic elastic constant bulk modulus K that relate stresses and strains in
the 2D problems (used in this paper) are expressed in terms of 3D bulk modulus K̃ (plane stress in this
paper):K = 9K̃ G̃/(3K̃ + 4G̃)(3D shear modulus G̃). With this interrelations, the results of 3D numerical
simulation is amended and then compared to the results of theoretical formula, as shown in Fig. 4 [25,26].

In this paper, the test data from reference [6] are used as the mechanical parameters for the numerical
simulation. To verify the validity and applicability of the theoretical formula for rock materials with square
pores, several results are presented in Fig. 5, including numerical results for different porosities, results from the
theoretical formula for a single square pore and the theoretical formula for multiple pores from this paper(the
theoretical formula results based on plane stress), test data [6] and Garboczi numerical simulation data from
reference [16], and results from the theoretical formula for circular pores (31) in reference [18].

A comparison of the results in Fig. 5 shows that the numerical results from this study match the results of
the Garboczi’s numerical calculations and that the test results basically match the numerical results. As the
porosity increases, the results from the theoretical formula for a circular pore gradually begin to deviate from
the numerical and test results. When the theoretical formula for a square pore is used and the porosity is less
than 0.09, the results from the single-pore theoretical formula match the numerical calculation results, whereas
when the porosity exceeds 0.09, the results from the theoretical formula for multiple square pores match the
numerical results. In this paper, the critical porosity ηl was found to be 0.09. Reference [18] also suggested
that when the porosity is relatively low, the single-pore formula is a better representation of the relationship
between the effective bulk modulus and the matrix bulk modulus.

5 Analysis

When the effective mechanical properties of a rock material, such as concrete, are investigated using a square
pore model, the theoretical geometrical formula for square pores primarily converts the square pore to a
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Fig. 6 The simulation model

central circle in another plane via a complex variable function. The first two terms in formula (1) are used
to approximate the square. Figure 1 shows that when the stress concentration induced by the square’s four
corners are ignored (i.e., the effective mechanics solution in this paper is primarily based on elasticity), the
four edges of the square guarantee the validity of the calculated results. Therefore, the elasticity formula for
a square opening is the foundation for solving for the effective coefficient. Besides, different number of the
first few items in the formula would lead to different square shape. The difference is mainly reflected in the
radius of curvature of the square pore. The more the first few items are, the smaller the radius of curvature is.
However, the side length of the square pore does not change. The displacements in the x and y directions is
mainly used in the theoretical calculation. Therefore, the influence of curvature at the corner on the calculation
results is very small.

The relationship between the effective bulkmodulus and thematrixmodulus for porous continuousmedium
with square pores was derived. However, there must be some error when the numerical simulation result of
the 3D model (Fig. 3) is compared with the theoretical formula result. To analyze the influence of the error,
a two-dimensional model and a three-dimensional model with same pore distribution and porosity have been
established (as shown in Fig. 6). The effective bulk modulus were obtained by the two models being applied
the loads respectively, the results are Ks = 2.3923GPa and Kc = 2.4264GPa. Then the porosity and other
corresponding parameters of the twomodels are substituted into the theoretical square pore formula and circular
pore formula respectively, and the results are obtained: Ksquar,F = 2.4324GPa and Kcircle,F = 2.7348GPa.
As a result, although there is a certain difference between the results obtained from the 2D model and the
3D model, the formula derived in the paper is still more accurate to obtain the effective bulk modulus for
the porous continuous medium with square pores. The shape of the pore is an important factor affecting the
calculation result of effective bulk modulus.

Reference [13] suggested that the primary source of errors in numerical simulations of pores is the differ-
ences in the pore shape. The theoretical formula derived from a square pore matches the results of tests and
numerical simulations well. The calculated results show that when the grid has a sufficiently high density, the
shapes of random pores are similar to those in real materials. Therefore, refining the model grids is an effective
way to reduce the errors in numerical simulations. Figure 6 shows that when the porosity is relatively high,
single pores connect to each other to form new pore shapes. A comparison with Fig. 3 shows that the shapes
of these new pores are very similar to those in real materials; thus, the calculated effective coefficients of
rock materials such as concrete from numerical calculations match the effective coefficients of actual concrete
structures. Therefore, this paper compared the results of numerical calculations with those from the theoretical
formula to verify the validity of the theoretical formula.

Because numerically simulated pores are not circular, the errors in the numerical simulation are larger
than the results using square pores. In addition, because the shapes of the pores in a concrete structure are
primarily controlled by self-induced deformation, the pores in both low porosity and high porosity concretes
are primarily polygonal [1]. Therefore, when analyzing the effective coefficients of rock materials such as
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Fig. 7 Blocks with identical dimensions and different porosities (0.048 and 0.18, respectively)

concrete, the results of the theoretical formula for circular pores will have relatively large differences from the
actual coefficients.

In the theoretical formula for a square pore, when the porosity is less than the critical value, the theoretical
formula for a single pore should be applied, and when the critical porosity is exceeded, the theoretical formula
for multiple pores should be used. The results from the theoretical formula and numerical calculations deviate
from test results in different porosity ranges. This macroscale phenomenon is caused by two main factors.
The first is that in the elasticity calculation [22], the pore boundary stress concentration affects the material
within a certain range, beyond which pore boundary stress concentration characteristics will disappear. In a
low-porosity medium, the space between the pores is greater than the extent of the stress concentrations at
the pore boundaries, so there is no interaction between the pores. However, as the porosity increases, the pore
spacing decreases, and the interaction between the pores increases. The second factor is that when the porosity
is low, the numerically calculated pore shape and structure are very similar to those of the theoretical model,
and when the porosity is relatively high, some pores will connect. Figure 7 shows two diagrams of the pore
distributions of materials with different porosities. The structure with the porosity of 0.048 has relatively large
spacing between pores, and most of the pores are not connected. In contrast, the structure with the porosity of
0.18 has less spacing between the pores, and most of the pores are connected; the resulting pore shapes are
highly random, and the pore shapes are similar to those in actual materials (as shown in Fig. 3).

The critical porosity ηl of many porous rock materials is generally approximately 0.10. As suggested in
reference [15], when the porosity exceeds 0.10, different calculation methods result in different deviations
from test results. Similar results were also reported in reference [18]. Therefore, different formulae for the
bulk modulus are appropriate for different macroscale scenarios. The porosity of concrete is usually low; the
maximum porosity obtained via tests in reference [1] was 0.18, and the pores had irregular polygonal shapes
and were connected. Therefore, the effective bulk modulus of pores continues structure can be calculated using
formula (32).

K =
⎧⎨
⎩

1
1+αη

Km η ≤ ηl

1−η
1−(1−α)η

Km η ≥ ηl

(32)

6 Discussion

The relationship between the effective bulk modulus and the matrix modulus of porous continuous medium
with square pores is derived. However, when the pores are filled with other mediums or the pores become
deformed, the macroscopic mechanical parameters of porous continuous medium would be influenced. It is a
problem for further study, which contains the analysis of the macromechanical parameters of pores continuum
mediumdue to the deformation of the pores and the filler or frommicroperspective. Limited by time, conditions,
and other reasons, the above study is hard to complete now. The formula will be improved in the further study.
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7 Conclusions

This paper derived the relationship between the effective bulk modulus and the effective matrix modulus for
media with square pores. Based on previous studies on brittle materials, such as ceramics and sandstone, as
well as a comparison with test data and the results of numerical calculations, the applications of the theoretical
formula for the effective bulk modulus was analyzed. The following conclusions are drawn:

(1) When the porosity is less than the key porosity, the results of the theoretical formula for a square pore are
consistent with the results of the numerical calculations. The theoretical formula provides accurate results
for the relationship with the bulk modulus. The results of the theoretical formula for a square pore also
match the numerical results and the results of tests on sandstone from previous studies. The theoretical
formula is valid for the pore structures of rock materials such as concrete.

(2) The porosity of concrete is usually low; however, because of the interaction between pores, there is a
critical porosity in the theoretical formula. When the critical porosity is not exceeded, the solution for
the effective bulk modulus should be based on the theoretical formula for a single square pore. When the
critical porosity is exceeded, the effective bulk modulus should be calculated using the theoretical formula
for multiple square pores.

(3) Understanding the relationship between the effective bulkmodulus and thematrix bulkmodulus of a porous
structure provides a solid theoretical basis for analyzing the Biot effective stress coefficient. Therefore,
the theoretical solution for a square pore is important for research on how the pore-scale hydro-pressure
affects concrete structures in seepage calculation.

(4) The pore shape is an important factor affecting the calculation results with the formula in the paper. The
previous literatures, such as [18], mainly focused on the circular pores, while the engineering structures
are usually with irregular pores, such as concrete, sandstone. This theoretical formula will decrease the
error caused by the pore shape and help to obtain a more accurate result of effective bulk modulus for
porous continuous medium with square pores.

This paper derived a theoretical formula for the effective bulk modulus for a square pore and investigated
its applicability. However, the theoretical formula is not valid for relatively high porosities. The results from the
theoretical formula were compared with the results of tests of sandstone and numerical calculations. Therefore,
future research will focus on the results of tests of concrete structures and investigations of the key porosity
for concrete.
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