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Abstract Continuum dislocation theory (CDT) allows the consideration of dislocation ensembles by intro-
ducing the dislocation density tensor. Though the kinematics of geometrically linear CDT are well established,
the closure of governing field equations is not finished yet. The present study now brings together different
principles for such a closure: It is shown how the field equations for the CDT can be obtained from potential
energy minimization and from the phase field approach. These two energetic methods are integrated into a
generic thermodynamic framework with twofold benefit: First, the rigorous thermodynamic treatment allows
clarifying physical consequences of the energetic methods, among them the proof of thermodynamic consis-
tency. Second, the framework provides a basis for consistent extensions of CDT. In this way, a new dynamic
formulation of CDT is presented, which enables the analysis of the evolution of dislocation structures during
plastic deformation. Moreover, a variety of possible dissipative phenomena is considered and the mechanical
balance laws are deduced. For two special cases, the field equations are derived in the strong form and the
stability of the solution is analyzed. Next, a flexible numerical solution algorithm is presented using the finite
difference method. Solutions of various initial boundary value problems are presented for the case of plane
deformations. Therefore, some of the dissipative phenomena are further investigated and two distinct sources
of the Bauschinger effect are identified. Special attention is also given to different boundary conditions and
their effect on the solution. For the case of uniaxial compression, the numerical results are confronted with
experimental data. Thus, the simulations are validated and a new consistent interpretation of the experimental
results is achieved.

Keywords Dislocations · Dislocated crystal · Continuum theory · Dissipation · Phase field method · Finite
difference method

1 Introduction

The mechanical behavior of crystals, especially metallic ones, strongly depends on the underlying defect
structure. For a broad class of metals, it is the motion of dislocations that carries the plastic deformation,
and new macroscopic properties emerge from the collective self-organization of dislocations [2,9,17,46,60].
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As large dislocation ensembles are involved in typical pattern formation processes, a continuum dislocation
theory (CDT) is required. At the moment, there are many competing CDTs (for a comprehensive overview,
see, e.g., [47,58]) which all have in common that gradients of macroscopic plastic deformation are related to
the presence of geometrically necessary dislocations (GNDs). Therefore, the plastic distortion is introduced
as an additional primary field variable.1 In order to take into account all dislocations, some theories consider
statistically stored dislocations (SSDs) [3] as well, e.g., [22].

The present study adopts the CDT proposed in [5] and developed further in a series of papers [6,25,
26,36,37,39,40]. Essentially, this is the so-called curl(Hp)-Model of strain gradient plasticity [15]. The main
advantage of this approach is its clear and relatively simple structure. As a key assumption, the curl of the plastic
distortion—the dislocation tensor—is considered as a thermodynamic state variable which reflects tensorial
dislocation properties. Using the example of discrete dislocations, this is reviewed briefly in Sect. 2. For (large)
dislocation ensembles the resulting dislocation tensor represents a homogenized quantity characterizing the
effect of GNDs. Thus, both the macroscopic strain energy of the deformed crystal and the elastic energy of
(geometrically necessary) dislocations can be captured. Based on that, Sect. 3 provides two energetic methods
for the derivation of field equations. Section 4 then integrates these approaches into a comprehensive and
consistent thermodynamical framework. Thereby, the dissipation of energy due to dislocation motion can be
introduced in a thermodynamically consistent fashion. Furthermore, it is shown how the usage of a dissipation
potential facilitates the modeling of very different dissipative phenomena. As a new feature, it is demonstrated
how to arrive at a dynamical theory, which is formally identical to the phase field method. This enables
the analysis of the evolution of dislocation structures during plastic deformation. For the special case of a
continuously dislocated single crystal with one active slip system, the governing field equations are derived
explicitly in Sect. 5. Moreover, a micromechanical interpretation for specific forms of the dissipation potential
is given. Section 6 then presents numerical solutions of the corresponding initial boundary value problems for
the case of plane deformations. To this end, an in-house simulation code using the finite difference method is
adopted. The value of the simulation results is estimated by a validation on experimental data. To this end, a
series of uniaxial plane strain compression tests on Cu single crystals serves as a reference. Finally, Sect. 7
discusses the presented extension of the theory, indicates existing challenges and problems and motivates
directions for future research.

For the sake of compact and clear representation, symbolic tensor notation is preferred throughout this
paper. Tensors of nth order are denoted by a small or capital letter with n underscores, e.g., U is a second-order
tensor. The tensor product is denoted by⊗, the cross product is denoted by×, and the nth contraction of tensors
is written symbolically with n · -dots. The coefficients with respect to a certain Cartesian coordinate system
ea areUab = ea · U · eb. The arrangement of second-order tensor coefficients in a quadratic matrix is denoted
by [Uab]. The circulation and divergence theorem are used in order to define consistent (right) differential
operators such as Gradient grad, Divergence div and Curl curl. Whenever it facilitates reading, those operators
are also expressed symbolically with the Nabla operator denoted by ∇. A short overview of tensor calculus
and analysis is given in “Appendix A.”

2 Kinematics of a continuously dislocated crystal

Within CDT, the dislocation (density) tensor is a thermodynamic state variable, which reflects tensorial dislo-
cation properties and allows the consideration of large dislocation ensembles. Using the example of discrete
dislocations, this section briefly reviews basic dislocation properties and how they are captured by the dislo-
cation tensor.

2.1 Characteristics of single dislocations

Dislocations are line-shaped crystal defects, which are a main carrier of plastic deformation. They constitute
a discontinuity separating a plastically slipped region from unslipped ones, as shown in Fig. 1. A dislocation
segment within a crystal is characterized by two vectorial quantities: the tangent vector t on the dislocation
line and the Burgers vector b. The latter defines both magnitude and direction of the plastic slip carried by
the dislocation. Performing a Burgers circuit around a dislocated crystal domain and comparing it to the same
circuit around a perfect crystal domain yields the closure failure due to the dislocation. With respect to some

1 Under certain conditions, this is not sufficient and more elaborate approaches are necessary [48].



Geometrically linear continuum theory of dislocations revisited 143

Fig. 1 Edge dislocation with b ⊥ t (left) and screw dislocation with b ‖ t (right, on the basis of www.spaceflight.esa.int/impress/
text/education) in a simple cubic lattice

Fig. 2 Single dislocation (red line) characterized by its Burgers vector b and local tangent vector t . The tangent plane (gray) is
perpendicular to t

sign convention, this yields exactly the dislocation’s elementary Burgers vector b.2 The motion of dislocations
is confined to certain crystallographic planes with the normalm ∼ b× t . According to Nye, Kröner and Bilby,
a single dislocation segment as illustrated in Fig. 2 can be characterized by a second-order dislocation (density)
tensor [27]:

α = b ⊗ t δ(ξ1) δ(ξ2) = b ⊗ t δ2(ξ). (1)

Here, δ(ξi ) and δ2(ξ) represent the one- and two-dimensional Dirac delta function, respectively.
As shown in Eq. (1), the tensor of a single dislocation segment contains the dyadic product of its Burgers

vector and its tangent vector. Considering N single dislocation lineswithin a finite crystal volume, the ensemble
may be characterized by its mean dislocation density tensor summing up the contributions of each segment
with its density ρn

d :

α =
N∑

n=1

ρn
d bn ⊗ tn . (2)

This equation represents a starting point for suitable averaging techniques performing the transition from
discrete dislocations to a continuous distribution [27,47].

2.2 Kinematics of dislocation ensembles

The essential kinematical assumption of geometrically linear continuum dislocation theory is the additive split
of the total deformation (the displacement gradient) into an elastic and a plastic part:3

grad(u) =: β = βe + βp. (3)

It is typical for the theory that the plastic part is considered a result of the collective motion of continuously
distributed dislocations. Dislocations are thus introduced by their effect. The resultant Burgers vector, i.e., the

2 In the following, this will be referred to as elementary Burgers vector in contrast to the resultant Burgers vector of some
dislocation ensemble.

3 Note that upright indices are labels (e.g., p stands for plastic), whereas italic indices a, b, . . . stand for Cartesian coordinates
x, y, z.

www.spaceflight.esa.int/impress/text/education
www.spaceflight.esa.int/impress/text/education
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Fig. 3 Resultant Burgers vector br of some finite area Awith contourC = ∂A. Additionally, some exemplary discrete dislocations
lines leading to br are sketched

resulting closure failure, characterizes an ensemble of dislocations. As the crystal lattice is not incorporated in
the continuum theory, the Burgers circuit (cf. Sect. 2.1) cannot be performed around some ensemble tomeasure
its resultant Burgers vector. As an alternative, the incompatibility of the plastic distortion field indicates the
presence of dislocations. Thus, the resulting closure failure can be obtained from a closed-loop path integral
over βp instead of β [30]:

∮

C

β · dr = 0 but
∮

C

βp · dr =
∫

A

curl
(
βp

)
· n dA = br, (4)

where C stands for the contour of the area A. This relation has the consequence of a homogenization: br sums
up the elementary Burgers vectors of all dislocations piercing the cut face with the unit normal vector n and
lying within the domain A, as shown in Fig. 3. Contributions from SSDs therefore cancel out (by definition).
Hence, br is a measure of the number and character of all GNDs piercing this area.

For an infinitesimally small area, the integration may be omitted and the dislocation (density) tensor α in
the continuum theory is identified as [4,30]:

dbr = curl(βp) · n dA ⇒ α := curl(βp). (5)

Dividing dbr by dA yields a dislocation vector related to the corresponding tensor with a Cauchy-like formula:

dbr
dA

= a(r , n) = α · n. (6)

In contrast to the resultant Burgers vector, which depends on the integration circuit, the dislocation vector a
is a local quantity. The dislocation tensor carries the information about the dislocation vectors with respect to
any cut face with normal n. Obviously, there is a wide-ranging formal analogy between the stress vector and
tensor and the dislocation vector and tensor [52].4 Dividing the norm of the dislocation vector by the norm of
the crystal’s elementary Burgers vector (|b| =: b) yields a measure of the geometrically necessary dislocation
density within the cut face with normal n:

ρd(r , n) = |a(r , n)|
|b| = 1

b

∣∣α(r) · n∣∣ . (7)

Choosing the cut face perpendicular to the slip plane and to the slip direction, ρd measures the dislocation
density per slip system (for an illustration, see Sect. 6).5 Another possible definition independent of any cut
surface is obtained from the Euclidean norm of the dislocation tensor (cf. “Appendix A”):

ρd(r) = 1

b
‖α‖. (8)

For the special case considered in Sect. 5, Definitions (7) and (8) are equivalent. As shown in [51], there are
also (principal) invariants of α that explicitly separate the screw and edge part from each other.

4 However, in contrast to the stress tensor σ the dislocation tensor α is not symmetric.
5 In Eq. (7) ρd represents the number of dislocations piercing (locally) the cut face, which is in general not equal to the

competing definition as total dislocation line length per volume [3].
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3 Kinetics of a continuously dislocated crystal from energetic principles

In this section, field equations are derived by the aid of energetic principles. Therefore, it is assumed that the
state of the continuously dislocated crystal is well defined by a set of state variables. Consequently, the (free)
energy of the system is a state function.

3.1 Free energy of a continuously dislocated crystal

The state of a crystal with continuously distributed dislocations is assumed to depend solely on the elastic
strain εe = sym(βe), on the dislocation density tensor α = curl(βp) and on the thermodynamic temperature
θ [4,30]. Accordingly, the free-energy density only depends on these three thermodynamical state variables.
The following additive decomposition is assumed:

φ = φ(θ, εe, α) = φt(θ) + φe(εe) + φp(α). (9)

The thermal part φt(θ) shall not be further concretized since the heat conduction problem is not considered in
this study. The elasticity of the crystal contributes to the total free-energy twofold: The part φe represents the
macroscopic strain energy and takes the form known from linear elasticity theory:

φe(εe) = μ‖εe‖2 + 1
2λ( I ·· εe)

2 (10)

with Lamé’s constants μ and λ.6 The part φp arises from the microscopic elastic energy due to the dislocation
network and is assumed as

φp(α) = kμ ln

[(
1 − ρd

ρs

)−1
]

with ρd = 1

b
‖α‖. (11)

Here, k is a dimensionless weighting factor and ρs represents the saturation value of the dislocation density.
Characterizing the closest admissible packing of dislocations in a discrete crystal lattice, ρs is a well-defined
physical quantity.7 The logarithmic term ensures a linear increase of the energy for small dislocation density
ρd and tends to infinity as ρd approaches ρs [6]. This provides an energetic barrier against over-saturation (see
also the reasoning based on statistical mechanics of dislocations in [4,5]). Overall, there are only five material
parameters μ, λ, b, k, ρs describing the mechanical part of the free energy stored within the material.

3.2 Field equations and boundary conditions from minimizing the potential energy

At this stage of the theory, it is already possible to obtain governing field equations by minimizing the total
potential energy of the system. Besides the temperature field (not considered here), there are two other primary
fields in geometric linear CDT: the displacement u and the plastic distortion βp. From them, thermodynamic
state variables are derived [cf. Eqs. (3) and (5)]:

εe = sym(grad(u) − βp), (12)

α = − curl(grad(u) − βp) = curl(βp). (13)

The total internal potential energy is obtained by integrating the free-energy density over the volume V of the
body:

Πin =
∫

V

φ dV =
∫

V

φe

(
sym(β − βp)

)
+ φd

(
curl(βp)

)
dV . (14)

6 For the sake of compact analytical expressions (cf. Sect. 5), isotropic elasticity is assumed. Of course, most real single crystals
exhibit anisotropic elastic behavior.

7 For this reason, the saturation density is not an arbitrary scaling parameter which has to drop out of the constitutive equations
[22], cf. also [19].
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The total external potential energy should include all kinematically relevant processes [20] and has thus
several contributions. As there are two independent primary fields, the existence of two corresponding external
surface loads is assumed: The stress vector s drives the displacement u(r) of the body and S drives the plastic
distortion βp(r), i.e., the collective motion of dislocations.8 Additionally, mass forces due to external fields f
are considered as well. Altogether, this provides

Πex = −
∫

V

ρ f · u dV −
∫

∂V

s · u dA −
∫

∂V

S ·· βT
p dA, (15)

where V is the volume of the material body and ∂V denotes its surface. The sum of both contributions
Πin and Πex yields the total potential energy. In order to minimize it, the first variation has to vanish, i.e.,
δΠin + δΠex = 0 :

∫

V

(
δφ

δu
− ρ f

)
· δu dV +

∫

V

δφ

δβp
·· δβT

p dV

+
∫

∂V

(
∂φ

∂β
· n − s

)
· δu dA +

∫

∂V

(
−∂φ

∂α
· ε · n − S

)
·· δβT

p dA = 0. (16)

Here, n is a unit outward normal and ε denotes the antisymmetric isotropic tensor of third order (a.k.a Ricci
permutation tensor), which has the following property:

v · εT · w = −v · ε · w = v × w. (17)

Mathematically speaking Eq. (16) is the weak form of the problem. Exploiting the fundamental law of the
calculus of variation, two classes of equations can be deduced: Considering the volume integrals appearing in
Eq. (16), we obtain the Euler equations

δφ

δu
= ρ f → ∂φ

∂u
− div

(
∂φ

∂β

)
= ρ f , (18a)

δφ

δβp
= 0 → ∂φ

∂βp
+ curl

(
∂φ

∂α

)
= 0. (18b)

Considering the surface integrals of the weak form (16) reveals the natural boundary conditions of the problem:

∂φ

∂β
· n = s,

∂φ

∂α
× n = S. (19)

The conditions for free boundaries are obtained immediately setting the right-hand side of Eq. (19) zero. This is
discussed in more detail in Sect. 5.3. Euler Equations (18) together with the boundary conditions (19) represent
the strong form of the problem. In the following sections, it will be shown that the minimization of the total
potential energy is compatible with the constitutive equations for the case of zero dissipation (cf. Sect. 4.4.1).

3.3 Field equations from the phase field method

Another possible means of deriving field equations for the geometric linear CDT is the phase field method
(PFM), cf., e.g., [8,16,29,41]. One branch of the PFM—the continuumdiffusive-interface approach—treats the
interface between two phases as a region of finite width having a gradual variation of physical quantities [16].
In order to distinguish one phase from the other, auxiliary primary variables, the phase fields, are introduced. If
they are not conserved—which is the only case considered here—relaxational or Ginzburg–Landau type field

8 The existence of S is necessary to retain the method of sections: The effect of the cutoff part is captured by the S-field on the
cut surface.
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equations are obtained [8]: Given the free energy density of a system as a function of some primary (phase)
field variables fi (r) and their gradients ∇ fi (r):

φ
(
f1(r), f2(r), ∇ f1(r), ∇ f2(r), . . .

)

the evolution of non-conserved phase fields fi is assumed in the following way.9 The rate of the primary
fields is set proportionally to the negative variational derivatives of the total free energy with respect to the
corresponding primary field:

ḟi = − 1

ηi

δφ

δ fi
, (20)

with ηi being some damping constant or, equivalently, 1/ηi representing the relaxation rate. Equation (20) is
called Ginzburg–Landau equation. With the considerations from Sect. 3.2, it is clear that this approach drives
the system toward the energy minimum. Changing the phase field in the direction of −δφ/δ fi is guaranteed
to reduce φ till a minimum is reached [8]. In many applications in physics and materials science, this is
a reasonable assumption (if nothing else is known about the dynamics of the system). In the case of the
geometrically linear CDT, this approach yields:

u̇ = − 1

ηu

δφ

δu
, β̇p = − 1

ηp

δφ

δβp
. (21)

In contrast to Sect. 3.2, this is a dynamical formulation of the theory.10 Not only the initial and the final state
of the system can be calculated, but also the temporal evolution between those states. In the context of CDT,
it is obvious that the plastic distortion βp distinguishes the elastic “phase” from the plastic one by a smooth
transition. To be precise, one should speak of merely elastically deformed regions and plastically slipped
regions of the body. Furthermore, the dislocation network energy plays the role of the well-known gradient
energy of the PFM.More examples of the application of the ideas presented in this section are given in [24,41].
At this point, it becomes important to investigate the thermodynamical consequences of such modeling.

4 Thermodynamics of a continuously dislocated crystal

As will be seen now, the derived field equations of Sect. 3 can be found as special cases of a more rigor-
ous thermodynamical consideration. This will allow studying the physical consequences of some previous
assumptions and proving the thermodynamical consistency of the theory.11

4.1 Internal and external mechanical power

Given amaterial body B with the total mass M , the total volume V and a surface A (with A = ∂V ), the external
forces acting on the body are now defined. As argued in Sect. 3.2, the existence of two external surface loads is
assumed: The stress vector s drives the displacement u(r) of the body and S drives the plastic distortion βp(r),
i.e., the collective motion of dislocations. Additionally, mass forces due to external fields f are considered as
well. Hence, the external mechanical power takes the form:

Pex =
∫

A

u̇ · s d A +
∫

M

u̇ · f dm +
∫

A

β̇T
p ·· S dA. (22)

9 The fields fi (r) can be tensors of different orders.
10 This theory is coarser-grained than [56] since not the individual dislocations are treated as phase field objects but only the

geometric effect of incompatibility caused by dislocation ensembles.
11 An even more general thermodynamic framework including the presented approach as a special case was developed in [54].
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The kinetic energy of the system is assumed to solely depend on the velocity, i.e., the material time derivative
of u(r):

Ekin = 1

2

∫

M

u̇ · u̇ dm, Ėkin =
∫

M

u̇ · ü dm. (23)

Subtracting the rate of the kinetic energy from the external mechanical power yields the internal mechanical
power:

Pin = Pex − Ėkin =
∫

A

u̇ · s dA +
∫

M

u̇ · f dm +
∫

A

β̇T
p ·· S dA −

∫

M

u̇ · ü dm.

Now, Cauchy’s formula is exploited and a similar relation between the kinetic quantity S, which is power-
conjugate to β̇p, and a higher-order stress tensor Σ is assumed [33]:

s = σ · n, S = Σ · n. (24)

The energetical contribution φp(α) (11) leads necessarily to the existence of higher-order stresses [1,32], which
are related to the eigenstrain field of dislocations or ensembles of them and thus have a clear physical meaning
(cf. also Sects. 5.2 and 5.3). Hence, the total internal power can be written as

Pin =
∫

A

(u̇ · σ + β̇T
p ·· Σ) · n dA +

∫

M

u̇ · ( f − ü) dm. (25)

Using Gauss’ theorem (cf. “Appendix A”) allows transformation of the surface integral into a volume integral
and finally identifying the internal power density pin:

Pin =
∫

V

(
div(u̇ · σ) + div(β̇T

p ·· Σ) + u̇ · ρ( f − ü)
)
dV =

∫

V

pin dV . (26)

4.2 Evaluation of the second law of thermodynamics

As a starting point consider the mechanical part of the Clausius–Duhem inequality, i.e., the Clausius–Planck
inequality:12

Dissipation = pin − (φ̇ + θ̇s) ≥ 0 with s =: −∂φ

∂θ
, (27)

with the free-energy density φ and the entropy density s. The various assumptions leading to this inequality
(cf., e.g., [44]) are all compatible with CDT. Taking the material time derivative of the free energy φ(εe, α, θ)
given by (9), Inequality (27) becomes

pin −
(

∂φ

∂εe
·· ε̇T

e
+ ∂φ

∂α
·· α̇T + ∂φ

∂θ
θ̇ + θ̇s

)
≥ 0. (28)

By Definition (27)2, the last two terms in Inequality (28) cancel out. Inserting Relation (26) for the internal
power pin and using some tensor analysis (cf. “Appendix A”) finally yields [33]:

(
div(σ ) + ρ( f − ü)

)
· u̇ +

(
σ − ∂φ

∂β

)
·· grad(u̇)T

+
(
div
(
Σ
)

− ∂φ

∂βp

)
·· β̇T

p +
(

Σ − ∂φ

∂α
· εT

)
··· grad(β̇p)

T ≥ 0. (29)

12 Since the heat conduction problem is not considered in this study, the pure thermal part of the Clausius–Duhem inequality
can be ignored.
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Introducing the following abbreviations for the thermodynamic forces, which have appeared naturally [33],

t := div(σ ) + ρ( f − ü), τ := σ − ∂φ

∂β
, (30a)

κ := div(Σ) − ∂φ

∂βp
, T :=Σ − ∂φ

∂α
· εT . (30b)

yields at a compact form of the Clausius–Planck inequality for geometric linear continuum dislocation theory:

t · u̇ + τ ·· grad(u̇)T + κ ·· β̇T
p + T ··· grad(β̇p)

T ≥ 0. (31)

The quantities τ , κ and T all reflect the deviation from potential relations and thus have the meaning of
dissipative thermodynamic forces. Furthermore, the material time derivatives of kinematic quantities appear
as conjugated thermodynamic fluxes u̇, β̇ = grad(u̇), β̇p and grad(β̇p).13

At this point, several procedures are possible. The relations between thermodynamic forces and fluxes can
be chosen directly in such a way that Inequality (31) is fulfilled. This leads to one specific set of constitutive
equations. Another procedure which leaves the constitutive relations open to a certain degree is obtained by
the introduction of a dissipation potential

d = dex(u̇) + din(β̇, β̇p, grad β̇p) (32)

and a dimensionless constant Λ such that following potential relations hold:

t := Λ
∂d

∂ u̇
, τ := Λ

∂d

∂β̇
, κ := Λ

∂d

∂β̇p
, T := Λ

∂d

∂ grad β̇p
. (33)

Here, an additive split of the dissipation potential d was postulated: dex represents external sources of
dissipation and din stands for dissipative processes within the material. Further restrictions on the form of
d then ensure the fulfillment of the restriction (31), which will be discussed in Sect. 4.3. Prior to that, some
remarks are necessary with regard to general physical aspects of the theory.

Remark 1 For the sake of Galilean invariance, the dissipation must not depend on the velocity u̇ and hence
dex = 0. It then follows t = div(σ ) + ρ( f − ü) = 0. This is the well-known local balance of momentum
from standard continuum mechanics. This aspect will be further addressed in Sects. 4.4.1 and 4.4.2.

Remark 2 The first law of thermodynamics predicts a change of temperature if there is dissipation. In other
words, dissipative processes cannot be isothermal: The dissipated energy is transformed into internal energy.
Consequently, the heat conduction problem must be addressed in future studies.

Remark 3 In the derivation of Inequality (27), it is assumed that the entropy flux is solely given by the heat flux
divided by the absolute temperature. The heat flux again is a function of temperature as well. The temperature
in continuum physics represents microscopical degrees of freedom (motion of atoms or molecules). Exactly
the same applies to the plastic distortion βp: It represents the degrees of freedom of (continuously distributed)
dislocations. Hence, not only entropy production (dissipation) by dislocation movement, as assumed above, is
imaginable, but also a corresponding entropy flux (cf. [16]).

4.3 Physical interpretation of the dissipation potential

There are innumerable possibilities to fulfill the Clausius–Planck inequality in the Form (31). Here, a partic-
ularly meaningful restriction on the choice of constitutive relations is presented.

Let
◦
ai denote any thermodynamic flux and let {◦

ai } stand for a set of fluxes. Further, d(
◦
ai ) is assumed as

a homogeneous function of degree n, i.e., for any constant c holds d(c
◦
ai ) = cnd(

◦
ai ). Now a well-known

Euler theorem states

∑

i

◦
ai · ∂d({◦

ai })
∂

◦
ai

= n d({◦
ai }), here : { ◦

ai } = u̇, β̇, β̇p, grad β̇p. (34)

13 Note that the choice of thermodynamic fluxes and forces is not unique.
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Further assuming n > 0 and d(
◦
ai ) > 0 ∀ ◦

ai , Inequality (31) is fulfilled a priori by adopting Potential
Relations (33). Moreover, choosing Λ = 1/n yields the identity of the dissipation potential and the dissipated
power itself. Thus, a direct physical interpretation of d is gained. In other words, the procedure represents
a physically based reduction of options for the relations between thermodynamic forces and fluxes. Another,
but more restrictive, possibility for guaranteeing inequality (31) is the assumption of d(

◦
ai ) being a positive

and convex function.

4.4 Different dissipation mechanisms

Depending on the set of independent variables of d, different general material models within CDT can be
deduced depending on the dissipativemechanisms considered. In this section, awide range of suchmechanisms
is presented.

4.4.1 Elastic–plastic behavior without dissipation

In the case of no dissipation at all, t = 0, τ = 0, κ = 0, T = 0 hold. Then Relations (33) with Definitions
(30) lead to

div(σ ) + ρ( f − ü) = 0 , σ = ∂φ

∂β
, div(Σ) = ∂φ

∂βp
, Σ = −∂φ

∂α
· ε. (35)

Equation (35)1 is the well-known local force balance. The second equation is the potential relation for the
stress tensor known from linear elasticity theory. Inserting Eq. (35)2 into (35)1 and Eq. (35)4 into (35)3 yields
the partial differential equations for the primary variables:

div

(
∂φ

∂β

)
= ρ(ü − f ),

∂φ

∂βp
+ curl

(
∂φ

∂α

)
= 0. (36)

Note that these constitutive relations are identical to Eq. (18) which were found by minimizing the total
potential energy of the system.14 This behavior could also be called pseudo-elastic in the sense that there is no
dissipation. However, the plastic distortion is not reversible and the body does not regain its initial configuration
after unloading.

The interpretation of this result is of great importance: Plastic distortion is possible even though all exter-
nal work done on the body is saved as strain energy and dislocation network energy. In the special case of a
deformation process with boundary conditions allowing the total deformation to be only plastic and homoge-
neous, no energy is saved within the material. Hence, no external work is necessary and there is a zero-energy
deformation mode, which is unphysical. Consequently, it is essential to consider the dissipative character of
dislocation motion.

4.4.2 Damped elastic behavior

If the dissipation depends solely on velocity u̇, i.e., d = dex(u̇), the displacement of all material particles is
damped with respect to their velocity. Assuming this form of the dissipation potential yields a dynamic theory
with some damping forces acting on all material points. The local force balance is then

div(σ ) + ρ( f − ü) = Λ
∂dex

∂ u̇
. (37)

As an example, assume a simple quadratic form of the external dissipation potential dex = ηuu̇ · u̇ and set
Λ = 1/2 according to Sect. 4.3. This results in

ρü + ηuu̇ = div(σ ) + ρ f with σ = ∂φ

∂β
. (38)

14 Using the more general principle of least action, it is possible to also include the inertia forces in Eq. (18).
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Evaluating the potential relationship of the stress tensor forφ given byEq. (10) finally yields a hyperbolic partial
differential equation for displacement field u(r , t). Even though the external damping might be questioned
from the physical point of view, it is very helpful from the numerical point of view: In the case of a quasi-static
deformation one can neglect any inertia forces. However, it is useful to retain the damping forces because the
parabolic form

ηuu̇ = div
(
σ(grad(u))

)+ ρ f (39)

is very suitable for developing an explicit solution scheme for the partial differential equation (cf. Sect. 6.2). In
fact, Eq. (39) is the over-damped equation of motion of the particle. Thus, the theory can predict the temporal
evolution of the system from some initial configuration to the current configuration but without vibrations.
This method is also known as dynamic relaxation [57], where the damping constant is chosen in such a way
that the system converges to the static solution as quickly as possible. If no other fields f are involved, phase
field Eq. (21)1 is obtained since

ηuu̇ = div(σ ) ≡ −δφ

δu
. (40)

This can be proved by calculating the variational derivative of φ from Eq. (10) with respect to u. Consequently,
these assumptions lead to the phase field equations from which it is known that the evolution of the field tends
toward the energy minimum. Thus, the thermodynamical consistency of phase field Eq. (21)1 is proved as
well.

Nevertheless, the proposed approach has one important drawback, which becomes evident fromRemarks 1
and 2: Dissipation, i.e., the production of entropy, causes heating of the system. If d = dex(u̇), a rigid body
motion could cause local heat generation due to the damping forces. This is, of course, not the case. Hence,
care must be taken that the damping forces remain sufficiently small. Beyond that, here is a simple remedy for
the problem: Let us reject the dependence of the dissipation potential from the local velocity, i.e.,dex(u̇) = 0
and instead define some external force field ρ f = −ηuu̇. Inserting this into Eq. (37) and neglecting inertia
forces, Eq. (40) is obtainedwithout the aforementioned drawback. In a sense, the damping effect is thus simply
moved outside the thermodynamical system and does not contribute to its dissipation.

4.4.3 Viscoelastic–plastic behavior

If the dissipation solely depends on the velocity gradient β̇ = (u⊗∇)· = (v⊗∇), i.e.,d = d(β̇), viscoelastic
behavior is obtained. By Eq. (33), t = 0, κ = 0, T = 0 as in Sect. 4.4.1, but

τ =
(

σ − ∂φ

∂β

)
= Λ

∂d

∂β̇
. (41)

Re-arranging Eq. (41) suggests that τ has the meaning of a viscous contribution to the stress tensor as known
from the Newtonian fluid in rheology:

σ = ∂φ

∂β
+ Λ

∂d

∂β̇
= ∂φ

∂β
+ τ . (42)

Furthermore, it becomes obvious that the dissipation should only depend on the symmetric part of the velocity
gradient. Otherwise, τ would be unsymmetric and the dissipation would depend on the rotational velocity
(spin) of the body. As this dissipation mechanism is in general not important for metallic crystals with a small
elastic regime, it is not further considered in this study.

4.4.4 Elastic–viscoplastic behavior with local dissipation

If the dissipation depends solely on the rate of plastic distortion, d = d(β̇p), elastic-(visco)plastic behavior
is obtained. By Eq. (33) t = 0, τ = 0 but

κ =
(

Σ · ∇ − ∂φ

∂βp

)
= Λ

∂d

∂β̇p
, T =

(
Σ + ∂φ

∂α
· ε

)
= 0. (43)
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Inserting relation (43)2 into (43)1 yields a partial differential equation for the primary variable βp:

−
(

∂φ

∂βp
− ∂φ

∂α
× ∇

)
= Λ

∂d

∂β̇p
. (44)

Identifying the term on the left-hand side as the negative variational derivative (cf. Sect. 3.2) reveals the
well-known Biot-type differential equation [7]:

− δφ

δβp
= Λ

∂d

∂β̇p
. (45)

Depending on the choice of d(β̇p), rate-dependent (i.e., viscoplastic) and rate-independent plastic behavior
is possible. Examples will be given in Sect. 5.

4.4.5 Elastic–viscoplastic behavior with non-local dissipation

If the dissipation depends on the rate of plastic distortion and its gradient, d = d(β̇p, grad β̇p), elastic–
(visco)plastic behavior with non-local dissipation is obtained. By Eq. (33) t = 0, τ = 0 but

κ =
(

Σ · ∇ − ∂φ

∂βp

)
= Λ

∂d

∂β̇p
, T =

(
Σ + ∂φ

∂α
· ε

)
= Λ

∂d

∂ grad β̇p
. (46)

Inserting Relation (43)2 into (43)1 yields a partial differential equation for the primary variable βp:

(
Λ

∂d

∂ grad β̇p
− ∂φ

∂α
· ε

)
· ∇ − ∂φ

∂βp
= Λ

∂d

∂β̇p
. (47)

Re-arranging the terms and using the fact that the multiplier Λ is constant, we obtain a partial differential
equation for the primary variable βp:

−
(

∂φ

∂βp
+ curl

(
∂φ

∂ curl βp

))
= Λ

(
∂d

∂β̇p
− div

(
∂d

∂ grad β̇p

))
. (48)

Identifying the terms on both sides as the (negative) variational derivatives of φ and d, respectively (cf.
Sect. 3.2), we find a new Biot-type differential equation [7]:

− δφ

δβp
= Λ

δd

δβ̇p
. (49)

As this sort of non-local dissipation is not investigated in this study, it shall not be further discussed at this
point.

5 Field equations of a continuously dislocated single crystal under single slip

This section aims to derive the governing field equations under single plastic slip conditions, i.e., there is only
one active slip system such that the plastic distortion tensor is described by

βp = βp(r) s ⊗ m with s ⊥ m, (50)
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where the slip direction s and slip plane normalm are constant unit vectors. They depend on the crystallographic
directions which are considered as being constant during the deformation.15 From Eq. (50) the dislocation
tensor and the scalar dislocation density follow straightforwardly:

α = curl(βp) =
(
∇ × βT

p

)T = −βp × ∇ = s ⊗ ∇βp × m, (51)

ρd = 1
b‖α‖ = 1

b |∇βp × m| = 1
b |∇βp · s|. (52)

The theory is further restricted by only considering the dissipative mechanisms discussed in Sects. 4.4.2
and 4.4.4. Then, the displacement field is ruled by Eq. (37). Due to Constraint (50), the tensor field equation
for the plastic distortion reduces to one single scalar field equation which simplifies the theory enormously:
Multiplying Eq. (44) or (45) then from the left with s and from the right with m results in a double contraction
into the scalar equation:

−s · δφ

δβp
·m = s ·Λ ∂d

∂β̇p
·m → − ∂φ

∂βp
+ div

(
∂φ

∂∇βp

)
= Λ

∂d

∂β̇p
. (53)

In preparation for the next subsections, let us also calculate the required partial derivatives of the free-energy
density. Recall Eqs. (3), (9) and (10), then:

∂φ

∂β

(10)= ∂φ

∂βe
= ∂φe(εe)

∂εe
= 2μεe + λ(εe ·· I ) I , (54)

∂φ

∂βp

(9)= − ∂φ

∂βe
= −∂φ

∂β
⇒ − ∂φ

∂βp
= s · ∂φ

∂β
· m. (55)

From Definition (50) follows that the plastic distortion is isochoric, i.e., for small deformations β p is traceless.
Hence, Relationship (54) can be further simplified to

∂φ

∂β
= 2μ sym(grad(u) − βp) + λ(grad(u) ·· I ) I (56)

= 2μ sym{(∇ ⊗ u)T − βp} + λ(∇ · u) I . (57)

Finally, the partial derivative of the free energy with respect to the gradient of the plastic slip is calculated.
Introducing the dimensionless dislocation density v := ρd/ρs gives

∂φ

∂∇βp
= ∂φ

∂v

∂v

∂∇βp

(11)= kμ

(bρs)2
(
v − v2

)−1
s ⊗ s · ∇βp. (58)

5.1 Simple quadratic dissipation potential and stability analysis

Consider the dissipative mechanisms discussed in Sects. 4.4.2 and 4.4.4 together. To be precise, assume a
simple quadratic form of the dissipation potential:

d = ηuu̇ ·u̇ + ηpβ̇2
p , Λ = 1/2. (59)

The second term in the potential represents the dissipation due to the viscous interaction of moving dislocations
and the atomic lattice.As thismicrostructural process depends on the velocity of the dislocations, the continuum
theory dealing with the collective motion of dislocations becomes dependent on the plastic deformation rate.
Evaluating Eqs. (39) and (44) under Assumptions (53) and (54) and with Dissipation (59) yields

−δφ

δu
≡ div(σ ) ≡ div

(
∂φ

∂β

)
= Λ

∂d

∂ u̇
≡ ηuu̇, (60a)

− δφ

δβp
≡ s · σ · m + div

(
∂φ

∂∇βp

)
= Λ

∂d

∂β̇p
≡ ηpβ̇p, (60b)

15 This is only valid for small elastic deformations and rigid body rotations. Otherwise, s and m change during the deformation
process.
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where the similar structure of both field equations already becomes visible. Moreover, quadratic dissipation
potentials obviously lead to field equations analogous to the phase field approach (cf. Sect. 3.3). Consequently,
both fields, the displacement and the plastic distortion, evolve in such a way that the free energy is minimized.
Inserting the stress field in Form (57) and introducing the constant slip system tensor G := s⊗m finally yields
the desired partial differential equations (PDEs) for the multi-field problem:

(λ + μ)∇⊗∇ · u + μ∇·∇ ⊗ u − 2μ sym(G) · ∇βp = ηuu̇, (61a)

2μ sym(G) ·· ∇⊗u − μβp + kμ

(bρs)2

(
1 − |∇βp·s|

bρs

)−2
s ·∇⊗∇βp ·s = ηpβ̇p. (61b)

More details concerning the derivation of Eq. (61b) are given in “Appendix B.”

Introducing the directional derivative operator D, the Laplace operators �,
s
� and the constant C are

defined as follows:

D := 2 sym(G) · ∇ , � := ∇·∇ ,
s
� := s · ∇⊗∇ · s , C = kμ

(bρs)2
, (62)

System (61) can be rewritten in a very compact form which reveals the interesting structure of the PDEs:

(λ + μ)∇⊗∇ · u + μ�u − μDβp = ηuu̇, (63a)

−μβp + C
(
1 − |∇βp·s|

bρs

)−2 s
�βp + μD ·u = ηpβ̇p. (63b)

Equation (63a) is parabolic and linear, whereas Eq. (63b) is nonlinear due to the term in round brackets.
Furthermore, the operator D imparts the interaction between the two primary fields. Setting the corresponding
interaction terms off, the uncoupled equations are a starting point for a simplified stability analysis with the
perturbation method. Therefore, a solution of the following form is inserted:

u = u0 + û exp(iw ·r − ωut), (64a)

βp = β0 + β̂p exp(iw ·r − ωpt), (64b)

with the imaginary unit i = √−1, the wave vectorw = 2π n/L containing the wave length L and propagation
direction n as well as some unknown angular frequencies ωu, ωp. The perturbation is then performed around
the local stationary point characterized by u0 = const. and β0 = 0. Considering that the perturbations are
small, i.e., û → 0 and β̂p → 0, System (63) can be linearized and the exponential function can be factored out.
In case of the displacement field, this procedure leads to an eigenvalue problem with ωu being the eigenvalues
to be determined. The standard procedure then yields:

ωu1 =
(
2π

L

)2
(λ + 2μ)

ηu
, ωu2,3 =

(
2π

L

)2
μ

ηu
. (65)

For the plastic distortion, the eigenvalue problem reduces to a linear equation from which ωp is determined as

ωp = μ

ηp

[
1 + k

(
2π

L

n · s
bρs

)2
]

= μ

ηp

[
1 + k

(
2π

L in

L
n ·s
)2
]

. (66)

As all frequencies are real and greater than zero, the temporal behavior for D = 0 is simply an exponential
decay of the Perturbation (64). Hence, ωu, ωp have the physical significance of decay rates. In other words, the
local fixed point solution u0 = const., β0 = 0 is stable. However, the rate of decay depends on the wave length
L: Short waves decay faster than long waves (a.k.a dispersion). Interestingly, the angular frequency ωp of the
plastic distortion field depends on the angle between plastic slip direction s and wave propagation direction
n. In addition, ωp also depends on some length scale L in = 1/(bρs). This effect results from the dislocation
energy (11), where the internal length was implicitly introduced in the theory. For further discussion, see
Sect. 6.4.4.
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5.2 Extended dissipation potential and relations to phenomenological viscoplasticity

It is well known that dislocations only move within some slip plane if a critical resolved shear stress τcr (the
so-called Peierls barrier) is exceeded. To consider this effect as well, Dissipation Potential (59) is extended:16

d = ηuu̇ ·u̇ + 2τcr|β̇p| + ηpβ̇2
p , Λ = 1/2. (67)

At this point, the advantages of the dissipation potential become obvious: Very different dissipativemicrostruc-
tural mechanisms can be captured and the introduced material constants have a clear physical interpretation:
the critical resolved shear stress τcr and the viscosity ηp of the collective dislocation motion. Evaluating Field
Equation (53) now yields a slightly more complicated form than in Sect. 5.1:

τcr
β̇p

|β̇p|
+ ηpβ̇p = s · σ · m + div

(
∂φ

∂∇βp

)
. (68)

The plastic slip still evolves in such a way that the free energy is reduced. However, the solution for static
equilibrium does not necessarily correspond to an energetic minimum anymore. This will become clear in the
results presented in Sect. 6. The terms on the right-hand side allow a clear physical interpretation as resolved
shear stress τ and resolved backstress τb, i.e.,

τ := s · σ · m, τb := − div

(
∂φ

∂∇βp

)
. (69)

The term “backstress” stems from phenomenological viscoplasticity where the backstress tensor is introduced
in order to model kinematic hardening [53]. In statistical mechanics of dislocations, backstresses appear
naturally, too [18,22]. Moreover, in the CDT τ is the counterpart of the Peach–Köhler force acting on single,
discrete dislocations. The collective dislocation motion within some slip plane is driven by the resolved shear
stress. Introducing the effective stress τef := τ − τb, a compact form of Eq. (68) can now be given by

τcr sign(β̇p) + ηpβ̇p = τef, (70)

where β̇p/|β̇p| was identified with the signum function of β̇p. Distinguishing the cases (i) τef > τcr, (ii)
τef < −τcr and (iii) −τcr ≤ τef ≤ τcr plus considering that sign(0) ∈ (−1,+1), Eq. (70) admits only one
solution for determining β̇p:

β̇p = sign(τef)

ηp

〈|τef| − τcr
〉

(71)

with the Macauley brackets (a.k.a. Föppl symbol): 〈x〉 = x for x > 0 and otherwise zero. The numerical
solution algorithm is as follows:

First assume β̇p = 0 (elastic predictor step). Then, two cases are possible:

(1) |τef| ≤ τcr : assumption true and β̇p = 0
(2) |τef| > τcr : assumption false and β̇p = 1

ηp
(τef − τcr sign(τef))

(plastic corrector step)

Field Equation (71) is in fact a flow rule. In pure phenomenological viscoplasticity, a very similar relation called
Perzyna’s rule is used [49,50,53]. Consequently, the derivation above can be considered as a micromechanical
motivation for Perzyna’s rule (under the assumption of single slip).17

16 Albeitd is then not a homogeneous function anymore, the second law in Form (31) is fulfilled sinced is still a positive and
convex function.
17 In contrast to Perzyna’s rule, Eq. (71) is a PDE and hence a non-local flow rule.
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5.3 Boundary conditions

In the present study, first and second kind as well as periodic boundary conditions (BCs) are used.
First kind BCs (a.k.a. Dirichlet BCs) mean that primary variables are prescribed at some boundary B, i.e.,

u
∣∣B = uB, (72a)

βp
∣∣B = βB

p
(50)→ βp

∣∣B = βB
p . (72b)

Second kind BCs (a.k.a. Neumann BCs) mean that partial derivatives of the primary variables are prescribed
at some boundary B. If they are zero, this special sort of boundary condition is called free BC:

∂φ

∂β
· n
∣∣∣∣B

= 0 → σ · n
∣∣∣B= 0, (73a)

∂φ

∂α
× n

∣∣∣∣B
= 0 → Σ · n

∣∣∣B= 0. (73b)

This BC type was already derived in Sect. 3.2 using the calculus of variation. For the special case of one active
slip system, BCs (73) simplify to

σ · n
∣∣∣B= sym(∇⊗u + βp s⊗m) · n + λ

μ
(∇·u)n

∣∣B = 0, (74a)

Σ · n
∣∣∣B= (s ⊗ m) ∇βp · (s ⊗ s) · n∣∣B = 0. (74b)

These free BCs can be interpreted in the followingway: BC (73a) means the stress vector s = 0 at the boundary
(zero traction) and BC (73b) means S = 0 at the boundary (cf. Eq. (24)). The latter condition implies that
dislocations can pass the boundary of the domain. This seems to be reasonable whenever there is a free surface
of the crystal. The situation is completely different for (high angle) grain boundaries, which are in general
non-permeable for dislocations. Then, dislocations cannot pass this boundary and hence the plastic distortion
is zero at the boundary. Consequently, BC (72b) should be used with βB

p = 0.18 Consider another case when a
(single) crystal is clamped by a “hard device.” Such a fixed bearing is used to prescribe the displacement on the
boundary. Consequently, the first kind BC (72a) must be applied for the displacement. However, demanding
the same BC (72b) for the plastic distortion seems too strict. From the microstructural point of view it cannot
be expected that no dislocations leave the crystal anymore. Therefore, the following mixed BCs are applied in
the case of a “hard device”:

u
∣∣B = uB(t), (75a)

(∇βp · s)(s · n)
∣∣B = 0. (75b)

Periodic BCs are useful when surface effects are not desired. The body is considered to be composed of
repetitive parts, and hence, all primary field variables have periodical properties. The boundary in some
negative coordinate direction is denoted by B−, and the boundary with opposing normal after some space
interval Δr of periodicity is denoted by B+. Periodic BCs then read

u
∣∣B+ = u

∣∣B− + H · Δr , (76a)

βp
∣∣B+ = βp

∣∣B−
(50)→ βp

∣∣B+ = βp
∣∣B−, (76b)

where H has the meaning of some constant displacement gradient controlling the average affine deformation.

18 This provokes high dislocation densities near grain boundaries and also high stresses since the total deformation can be only
elastic there.
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6 Numerical simulations for plane strain state and single slip

6.1 Initial boundary value problem for plane strain and edge dislocations

The initial boundary value problem consists of the partial differential equations from Sect. 5.2 (including
Sect. 5.1 as special case), the boundary conditions from Sect. 5.3 and some initial conditions (ICs) for the two
primary fields:

u(t = 0, r) = u0, βp(t = 0, r) = β0
p . (77)

The third displacement component is set to zero which leads to the special case of a plane displacement field
(cf. also [20]):

u(t, r) = ux (t, x, y) ex + uy(t, x, y) ey, βp(t, r) = βp(t, x, y). (78)

In addition, direction s and normal m of plastic slip are assumed to lie within this deformation plane, oriented
at some angle ϕ (cf. Fig. 6 in Sect. 6.4):

s = cosϕ ex + sin ϕ ey, m = − sin ϕ ex + cosϕ ey . (79)

Remark 4 Implicitly, Assumptions (78)2 and (79) implicate the character of dislocations involved. As recapit-
ulated in Sect. 2.1, the dislocation tensor is composed of dyadic products of Burgers vectors and tangent vectors
of line segments. Comparing Eqs. (1) and (51), it is obvious that the resultant Burgers vector is proportional
to the slip direction s. Furthermore, the cross product ∇βp × m defines the (mean) tangent direction t r of the
continuously distributed dislocations. In the special case considered here, t r ∼ ∇βp ×m ∼ ez . Consequently,
br ⊥ t r and the dislocation lines are of straight edge type.19

System (63) (and also the more general Eq. (70)) and ICs plus constraints given in this subsection and BCs
given in Sect. 5.3 represent the strong formulation of the two-dimensional problem. It was solved numerically
using the finite difference method with explicit time stepping.

6.2 Explicit finite difference implementation

The finite difference method (FDM) approximates partial derivatives (with respect to time and space coordi-
nates) as difference quotients. In the present study, central difference quotients were used for partial derivatives
with respect to space coordinates. In order to obtain explicit update formulas, forward difference quotients
were used for partial derivatives with respect to time. Furthermore, the space time continuum was discretized
by introducing a number of Nx ·Ny space intervals of equal size Δx,Δy and Nt time intervals of equal size Δt
with tn denoting the nth time step and u(tn, r) = un . The time-discretized version of the partial differential
equations is given for the model from Sect. 5.2 (including 5.1 as special case for τcr = 0):

un = un−1 + Δt

ηu

[
(λ + μ)∇⊗∇ · un−1 + μ�un−1 − μDβn−1

p

]
, (80a)

βn
p = βn−1

p + sign
(
τ n−1
ef

) Δt

ηp

〈
|τ n−1
ef | − τcr

〉
(80b)

with τ n−1
ef = τ n−1− τ n−1

b = μ(D ·un−1− βn−1
p ) + C

(
1 − |∇βn−1

p ·s|
bρs

)−2 s
�βn−1

p .

The numerical solution algorithm for System (80) now distinguishes different cases with respect to the rate
dependence controlled by ηu and ηp.

Rate dependence of plastic slip and displacement Having defined ICs and BCs, System (80) can be solved
on a grid using the FDM. In this case, the temporal evolution of the primary fields toward the equilibrium
state (u̇ = 0, β̇p = 0) may be followed. The kinetics are equal to a simple phase field approach where the
system evolves “down the energy gradient,” as given in Sect. 3.3. As the damping constant ηu lacks a physical

19 Straight screw dislocations are possible as well within this framework. However, then the problem becomes “anti-plane” and
there is no plane strain state anymore [6].
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meaning, the evolution toward equilibrium should not be over-interpreted. Nevertheless, it is interesting to
have a look at this relaxation as will be done in Sect. 6.4.4.

Rate independence Theoretically, the right side of, e.g., System (63) is zero now, and thus, a static equilibrium
solution is sought-after. However, the discretized Form (80) can still be used: The loading of the system is
subdivided into small load steps prescribed by time-dependent BCs. Within each load step, a relaxation toward
the temporal equilibrium is performed. The parameters ηu, ηp have no physical meaning and are estimated
in such a way that the largest increments can be achieved: The time and space periods (T, L) appearing in
Formulas (65) and (66) need to be resolved with a sufficient number of points in time (Mt ) and space (M), i.e.,
Tu ≡ 2π/ωu1 = MtΔt , Tp ≡ 2π/ωp = MtΔt and L2 = M2ΔxΔy. This poses constraints on the viscosities
as:

ηu = 2π
(λ + 2μ)MtΔt

M2ΔxΔy
, ηp = μMtΔt

2π

[
1 + k

(
2π

M

)2 L2
in

ΔxΔy

]
, (81)

where n was assumed parallel to s. It was found numerically that M ≥ 2π and Mt ≥ 5M leads to a stable
integration and accurate numerical results. Thus, a lower bound for the viscosities is obtained:

ηu = 5
(λ + 2μ)Δt

ΔxΔy
, ηp = 5

μΔt

2π

[
1 + k

L2
in

ΔxΔy

]
. (82)

Using the lower bounds of the viscosities, which corresponds to the choice M = 2π, Mt = 10π, results in the
fastest possible relaxation toward the static equilibrium. Mathematically speaking, this algorithm emulates the
solution of the system of equations obtained applying implicit time integration but avoids assembling system
matrices. Most importantly, the code is very flexible and facilitates testing different models derived from the
presented CDT, as given in Sect. 5.

Rate dependence of plastic slip As discussed in Sect. 5.1, ηp represents the viscous interaction of dislocations
and crystal lattice. It may be estimated employing atomistic models such as molecular dynamics. In this case,
Eq. (80b) can be solved straightforwardly whereas for the displacement field a relaxation is performed within
each time step until un does not change anymore.

6.3 Verification of the explicit FDM solution algorithm

In order to verify the in-house finite difference code, a benchmark problem with a known analytical solution
was considered: A thin strip under plane confined shear [38]. Since the width and length of the strip are much
larger than its height h, plane strain conditions can be assumed and the problem reduces to two dimensions (x
and y), as shown in Fig. 4.

In order to prescribe the shear, first kind BCs (72) with uB = γ (t)hex and βB
p = 0 were used in y-

direction at y = 0 and y = h = 1μm, as shown in Fig. 4. Since the solution shall only depend on the
y-coordinate, periodic BCs (76) were applied in the x-direction. Hence, Nx = 2 was sufficient, whereas the
number of discretization points in the y-direction was varied between Ny = 10 and 200. The total simulation
time was Ttot = 0.4ms, with Nt = 2000 time steps. The material parameters were taken from [38], and rate
independence was assumed (cf. Sect. 6.2). The evolution of the plastic slip is depicted in Fig. 5 and compared to
the plateau value in the middle section calculated analytically. It is important to note that the analytical solution
was obtained from the weak formulation of the problem (cf. Eq. (16)) by variational methods. In contrast to

Fig. 4 Plane strain shear of a thin strip [38]: Representatively for the type of continuously distributed dislocations, a straight edge
dislocation and some slip planes (dashed) are shown
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Fig. 5 Different stages of the evolution of the plastic slip βp over the y-coordinate for the slip system orientation ϕ = 30◦ and
τcr = 13.604MPa according to [38]

that, the starting point for the numerical scheme (80) was the strong formulation. However, both solutions are
in accurate agreement. Due to the zero-slip BC a narrow boundary layer involving high gradients is forming
analogously to a fluid flow with zero-velocity BC. Numerically, this is a challenging problem. However, the
convergence of the (strong) numerical solution to the (weak) analytical solution with increasing Ny can be
seen clearly, as shown in Fig. 5. Additionally, the width of the boundary layer converges to a constant value
which does not depend on the discretization anymore for Ny > 100. Beyond serving as a sanity check of the
code, this benchmark problem has also been used for a comparison to discrete dislocation dynamics (DDD)
simulations. It was shown that the analytical solution (and hence also the present numerical solution) from the
CDT is in accurate agreement with DDD simulations [38].

6.4 Monotonic and cyclic tests on Al single crystals

The material to be considered in this subsection is pure single-crystal aluminum. The corresponding material
parameters are summarized in Table1.

Table 1 Material parameters for Al single crystals

μ/MPa λ/MPa τcr/MPa b/μm ρs/μm−2 k

26315.79 51083.59 13.604 2.86 × 10−4 4 × 102 4 × 10−4

The material parameters for the dislocation ensemble energy can be estimated roughly by the following
considerations: Soft annealed metallic crystals have ρd ≈ 10−2μm−2, whereas severely deformed crystals
show 104μm−2 [23]. If no further information is available, the saturated dislocation density ρs can be chosen
close or equal to this upper bound. Here, in the special case of Al crystals, a value in the range suggested
by Berdichevsky is used [5]. Parameter k has the meaning of a weighting factor between strain energy and
dislocation energy. The size of k is found subject to the condition that the linearization of Eq. (11) has the well-
known linear and quadratic dependence on the dislocation density and Burgers vector magnitude, respectively.
This leads to

φd ≈ kμ
ρd

ρs

!= cμb2ρd with c ∈ (0, 1]. (83)

Hence, k = cb2ρs can be estimated. With k and ρs as given in Table1, the theory’s internal length scale
L in = (bρs)−1 follows as 8.74μm. The viscosity parameters were chosen according to Sect. 6.2. The body
was assumed to occupy a quadratic domain with dimensions Lx = Ly = 100μm, as shown in Fig. 6. Thus,
the body is sufficiently larger than its internal length scale. This is important for the investigation of dislocation
structures and possible pattern formation.

6.4.1 Monotonic periodic shear test

As a homogeneous test, the body was sheared monotonically, as shown in Fig. 6. To avoid surface effects,
periodic BCs (76) were applied and the average displacement gradient H = Hxy(t) ex ⊗ ey was increased
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Fig. 6 Quadratic domain left: representatively for the type of the continuously distributed dislocations, a straight edge dislocation
with its elementary Burgers vector b is shown. Right: displacement field for ϕ = 0◦, final state plotted on the deformed crystal
domain (magnified by a factor of 20): Periodic BCs were applied

linearly up to a magnitude of 2o/oo. For the discretization, a grid with Nx · Ny = 70·70 points was used. The
total simulation time was Ttot = 1ms, with Nt = 10,000 time steps. Zero initial conditions were used and
rate independence was assumed (cf. Sect. 6.2).

The resulting displacement field is perfectly linear with respect to the x-component, as shown in Fig. 6
right, and the y-component is zero. The plastic distortion field βp(x, y) is homogeneous. As there are no
gradients in the slip direction, the dislocation density is zero according to Eq. (52). After the critical resolved
shear stress (τcr) is exceeded, the body deforms ideally plastically: There is no resistance to plastic distortion
and no hardening (cf. also Fig. 7 for ϕ = 0◦).

6.4.2 Cyclic periodic shear test

In order to numerically study some dissipation mechanisms from Sect. 4.4, the shear test was used again. The
average displacement gradient H was prescribed as harmonic function with Hxy(t) = 0.003 sin(Ωt). The
angular velocity Ω was chosen such that exactly one hysteresis loop closed within the amount of time. As the
primary fields remain linear or constant in these conditions, the domain in Fig. 6 was discretized by a grid
of only Nx · Ny = 12 · 12 points. The total simulation time was Ttot = 3ms, with Nt = 30,000 time steps.
Initially, both primary fields were zero. The slip system orientation is ϕ = 15◦.
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Fig. 7 Force–displacement curves, left: cyclic shear test with different kinds of dissipation. Right: monotonic shear test for
different slip system orientations ϕ

Figure 7 shows the reaction force Fx as a function of the mean displacement ū. The force is calculated by
integrating the stress vectors on the upper boundary of the quadratic domain:

F =
Lx∫

x=0

1µm∫

z=0

σ(x, y = Ly) · ey dx dz and ū = 1

Ly

Lx∫

x=0

u(x, Ly) dx . (84)
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In case of zero dissipation (ηp = τcr = 0), the force always follows the same straight line, as shown in Fig. 7
left. Otherwise, hysteresis can be observed. Furthermore, the critical resolved shear stress τcr causes a sharp
yield limit, as shown in Fig. 7 left. Only in the case τcr = 0 is a smooth transition between elastic and plastic
range observed. These results are in perfect agreement with phenomenological viscoplasticity. As the plastic
slip is distributed homogeneously, dislocation density and backstress remain zero. Still, a Bauschinger effect
similar to kinematic hardening is visible in Fig. 7 left. Looking at the monotonic Fx (ūx ) curves for different
slip system orientations, as shown in Fig. 7 right, it becomes clear that this kind of “hardening” is a pure
geometrical effect arising from the anisotropic plastic behavior: In the case of ϕ = 0, the total deformation
can be realized entirely by plastic slip. For ϕ > 0, this is not possible anymore and the crystal (lattice) is
strained elastically even in the plastic range. In the “worst case” of ϕ = 45◦, the slip system is oriented so
unfavorably that no plastic deformation is possible, as shown in Fig. 7 right.20 This is also evident considering
the resolved shear stress, which is zero in these slip planes. This behavior is well known as “Schmid’s law.”
Obviously, there is a criterion to distinguish this geometrical effect from work hardening: The observed yield
limit is already higher than τcr at the beginning of the plastic deformation, as shown in Fig. 7 right, whereas
for “real” kinematical hardening the initial yield limit would be exactly the yield stress.

In order to verify the thermodynamical consistency numerically, the Clausius–Planck Inequality (27) was
evaluated globally. Figure 8 shows that the total internal power—which is the external power in the absence of
inertia effects—is always greater than or equal to the rate of the free energy. Thus, the amount of energy stored
within the material is never greater than the work performed by external forces. The difference is the dissipated
energy. During the purely elastic stages of the cyclic deformation, the dissipation is zero. After yielding, the
rate of the free energy drops and the dissipation (power) rises abruptly. Physically, the crystal lattice strain is
now reduced and the stored energy is released. After the load reversal, the purely elastic regime recurs until
τcr is exceeded again, yielding sets in and the processes repeat themselves.

6.4.3 Cyclic confined bending tests

In the example from Sect. 6.3, gradients in the field variables resulted merely from the no-slip BC, which
produced a boundary layer of finite width. Elsewhere, the plastic slip was homogeneous. As a consequence
of the periodic BCs, the shear test in Sect. 6.4.1 was homogeneous as well. Now, a simple example of an
inhomogeneous test with significant inherent gradients is considered in order to study the evolution of dislo-
cation structures and corresponding hardening effects. Therefore, the displacement uB = uBx (x, y) sin(Ωt) ex
is prescribed linearly at the boundary such that the resulting deformation and stress field is similar to bend-
ing, as shown in Fig. 9. However, it is neither guaranteed that material cross sections remain plane nor that
middle planes are perpendicular to the neutral elastic line. Hence, this case is more general than bending of
Timoshenko or Bernoulli type. For βp(x, y), second kind BCs (74b) are applied.

20 Within a geometrically nonlinear theory, the slip system would be able to rotate such that plastic deformation could take
place again.
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Fig. 9 Cyclic confined bending test setup (left) and plastic slip field (right) for ϕ = 30◦: The white arrows indicate dislocations
that nucleated at the surface and moved to the inside

-150

-100

-50

0

50

100

150

0

0.5

1

1.5

2

2.5

Fig. 10 Bending stress (left) and dislocation density field (right) for ϕ = 30◦, final state plotted on the undeformed crystal
domain: σxx deviates from a linear distribution
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Fig. 11 Plastic slip field βp/‰ for ϕ = 0◦ (left) and ϕ = 45◦ (right), final state plotted on the deformed crystal domain (magnified
by a factor of 20): The fields are inhomogeneous

The space discretization was chosen as in Sect. 6.4.1, and the total simulation time was Ttot = 5ms with
Nt = 100,000 time steps. Rate independence was assumed (cf. Sect. 6.2). The initial conditions are

u(t = 0, x, y) = 0, βp(t = 0, x, y) = rand(0, 10−4). (85)

This means that the single crystal is not displaced initially, but exhibits some very small, random, incompatible
plastic deformation. Thus, GNDs already exist in the initial state (cf. also Fig. 14).

The deviation from a linear distribution of the bending stress, as shown in Fig. 10, emerges in the plastic
range and is a result of the strongly anisotropic deformation. Furthermore, the plastic slip starts at the upper
and lower surface of the body where the resolved shear stress is highest. Physically, dislocations nucleate and
start moving until they get stuck at some place inside the crystal where the resolved shear stress is lower than
τcr. This explains the dislocation free zones in Figs. 10 and 12. Moreover, typical dislocation pile-ups can be
observed. They are unstable in the sense that after load reversal they break down and eventually emerge again
during reloading.
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Fig. 12 Dislocation density ρd
μ−2 field for ϕ = 0◦ (left) and ϕ = 45◦ (right), final state plotted on the undeformed crystal domain:

Dislocation structures with a high density have emerged

As a consequence of the inhomogeneous solution for the plastic slip, higher-order stresses according to
Eq. (58) are present.21 Thus, the work hardening should be observable. In order to make this effect visible,
integral quantities are considered: The reaction moment is calculated by integrating the local moments with
respect to some reference point r0 over the left boundary of the quadratic domain. The obvious choice for
the reference point is the middle of the domain, i.e., r0 = Lx/2 ex + Ly/2 ex . The reaction moment Mz as a
function of the mean bending angle ψ̄ :

M =
Ly∫

y=0

1µm∫

z=0

(r − r0) × σ(x=0, y) · (−ex ) dy dz and ψ̄ = ux (Lx , Ly, t)

Ly
, (86)

is depicted in Fig. 13. First of all, a smooth elastic–plastic transition is visible. This results from the inhomoge-
neous onset of yielding. In the case k = 0, i.e., the dislocation energy is zero, the backstresses remain zero as
well. Still, there is an increase of the moment in the plastic range. This is the geometrical Bauschinger effect
explained in the previous subsection. Now using the physically reasonable value k = 0.0004 (cf. discussion
in Sect. 6.4), the Mz(ψ̄) curve is almost indistinguishable from the one for k = 0. To see some significant
effect under single-slip conditions, unphysically high values of the constant k need to be applied. Hence,
this sort of kinematic hardening remains small under normal circumstances and the geometrical Bauschinger
effect is much more pronounced. This might change when several slip systems are active and their energetical
interaction is taken into account.
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Fig. 13 Bending moment over the mean bending angle for the confined bending test: Hysteresis loops and the effect of constant
k are visible

Interestingly, compared to a pure phenomenological anisotropic plasticitymodel with kinematic hardening,
the presented CDT is able to produce two distinct mechanisms that lead to Bauschinger effects.

21 Flow Rule (71) couples Cauchy stresses and higher-order stresses in the form of τef.
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6.4.4 Pure relaxation tests with periodic BCs

In order to further investigate the processes during the relaxation phase, a pure relaxation test with periodic
BCs was performed for τcr = 0. No mechanical loading is prescribed. Both fields, βp and u, now show rate
dependence (cf. Sect. 6.2). The initial conditions are zero displacement and a random distribution of the plastic
distortion, as shown in Eq. (85). This perturbed state (cf. Fig. 14, left) is energetically unfavorable, and thus,
there is a driving force of the system toward some equilibrium state. Therefore, dislocation patterns emerge,
as shown in Figs. 15 and 16.
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Fig. 14 Initial (left) and final (right) plastic distortion field for ϕ = 30◦ and periodic BCs
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Fig. 15 The dislocation density bands form perpendicular to the slip direction s

Mathematically speaking, Eq. (63b) [and thus also the more general Eq. (70)] constitutes a strongly
anisotropic diffusion problem where the flow is only allowed in one direction—the slip direction s. In reality,
multiple slip systems are active and prevent the crystal from such a strong plastic anisotropy. Nevertheless, the
bands shown in Fig. 15 have a physical interpretation: The dislocations are stapled one upon the other perpen-
dicular to s. This is a consequence of the repelling micro forces (backstresses) acting only in slip direction.
From the simplified stability analysis in Sect. 5.1, it can be inferred that perturbations decay exponentially.
Indeed, the simulations show that the emerging patterns cannot persist, and they are only transient. Formula
(66) gives interesting insights and shows that this extinction is twofold: Firstly, it depends on the scalar product
of wave vector and slip direction; secondly, it depends on the quotient of internal length and wavelength. The
conclusions are: The mode decays faster the shorter the wave length is. This represents an extinction of modes.
Finally, only long waves with a propagation direction perpendicular to the slip direction will be left over, as
shown in Fig. 16. Eventually, they fade away too.22

If τcr is taken into account, the extinction of modes will stop when τ < τcr everywhere. Hence, the pattern,
i.e., the dislocation configuration, is frozen.

A desirable comparison with experimental data is difficult since the initial state is somewhat artificial.
However, comparable DDD simulations exist, where the relaxation of an initial configuration of edge disloca-
tions was studied [19]: In the relaxed state, the dislocations are stapled one upon the other. This corresponds
exactly to the band structure in the presented CDT simulation results. Finally, the dislocation structure shows

22 The fact that the simulations show exactly this behavior justifies the simplified stability analysis from Sect. 5.1.
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Fig. 16 Evolution of the dislocation density during the relaxation test: As the free energy is reduced steadily, bandswith increasing
wave length and decreasing amplitude emerge

some similarities with typical dislocation vein structures of single crystals under fatigue loading [55]. There,
high dislocation density walls are separated by zones of low dislocation density. The characteristic width of
these zones is in the order of μm. This corresponds to the length scale found in the CDT simulations, cf. Figs. 6
and 15. However, persistent slip bands are much more complicated than the presented results. Of course, more
effects have to be taken into account in order to realistically simulate the emergence of these structures.

6.5 Monotonic compression tests on Cu single crystals

For the previous test examples, a desirable validation with experimental results was not possible since suitable
data could not be found. This is mostly due to the fact that it is very difficult to realize single-slip condi-
tions experimentally. In order to estimate the value of the simulation results, another test is simulated where
corresponding experimental data are indeed available: Uniaxial plane strain compression experiments on Cu
single crystals were studied thoroughly in a series of papers [13,14,42]. Single-slip conditions were realized
insofar as the crystals were oriented to maximize the shear stress in one octahedral slip system. As long as
only this primary slip system is active, the experimental results may be compared to simulation results under
the single-slip assumption (cf. Eq. (50)).

The crystal dimensions Ly = 15,000μmand Lx ≈ Ly/3 (according to [14]) aswell as theBCs are depicted
in Fig. 17. The boundary of the u(x, y) field has mixed character: On the top and bottom, the displacement
is prescribed via first kind BCs (72a), whereas the displacements at the left and right side can adjust freely
via second kind BCs (74a). For βp(x, y), only second kind BCs (74b) are applied. The domain in Fig. 17
was discretized by a grid with Nx ·Ny = 36 ·112 points. The total simulation time was Ttot = 1ms, with
Nt = 10,000 time steps. Initially, both primary fields were zero. The slip system orientation is ϕ = −45◦.
The maximum total compression was set to −1o/oo and rate-independent behavior of the crystal was assumed.
The elastic constants of Cu as well as b and τcr had to be taken from the literature, as given in Table 2. The
remaining constants were estimated in the way explained in Sect. 6.4. For this reason, it can only be expected
to qualitatively fit the experimental results.

Figure 17 shows the plastic slip field as well as the strain fields for a total compression of −1o/oo. The
maximal slip activity is located in the middle of the sample, whereas at the top and bottom the strain remains
very small. These simulation results are in perfect agreement with the experimental studies [13,14,42]. The
distribution of the compressive strain εyy accurately fits the experimental results obtained from digital image
correlation (cf. Figs. 4, 5 and 6 in [42]).23

In order to compare to the experimental displacement field data, the slip direction and normal are used as
a natural basis system. Hence, the coefficients of the displacement field read as us = u ·s and um = u ·m.

23 Unfortunately, the color scale in Fig. 4 [42] is too broad in the small strain regime for a quantitative comparison. However,
even for moderate strains the experimental results show a very similar distribution compared to the presented numerical results
for εxx and εyy .
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Table 2 Material parameters for Cu single crystals

μ/MPa λ/MPa τcr/MPa b/μm ρs/μm−2 k

44117.65 113445.38 1.00 2.56 × 10−4 1 × 104 6.5 × 10−4
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Fig. 18 Displacement field coefficients with respect to ex , ey, s,m, final state for a total compression of −1o/oo plotted on the
undeformed crystal domain: us = u ·s and um = u ·m clearly show the single-slip characteristics under ϕ = −45◦

Further, directional derivatives are introduced as

us,m = ∂us
∂m

= m ·(∇ ⊗ u)·s and um,s = ∂um
∂s

= s ·(∇ ⊗ u)·m. (87)

It is remarkable that despite the nonlinear distribution for ux(x, y) and uy(x, y), the fields us(x, y) and um(x, y)
are aligned with respect to the slip direction and the slip plane normal, as shown in Fig. 18. Exactly the same
behavior was observed experimentally [14].

The directional derivatives (87) contain more information about us(x, y) and um(x, y). Florando et al.
suggested that us,m is a measure of primary slip activity—here corresponding to the slip system s ⊗ m—
whereas um,s was attributed to orthogonal slip activity [14]. This seems plausible as us,m measures the change
of the displacement in slip direction orthogonal to this direction, i.e., for neighboring parallel slip planes.
Consequently, um,s(x, y) was expected to vanish under single slip. However, the experiments showed um,s to
be in the same order of magnitude as us,m . Despite considerable effort the experimenters did not succeed in
eliminating um,s , not even for small deformations. Thus, the nature of the apparent orthogonal slip activity
remained unclear [13]. The simulation results now offer an explanation for this behavior as they confirm the
experimental results under strict single-slip conditions, as shown in Fig. 19.

Note that derivatives us,m and um,s both enter PDE (61b) and (68), which hold for single slip. From a
physical point of view, this results from the resolved shear stress and the symmetry of the stress tensor [cf.
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Fig. 19 Directional derivatives according to Definition (87), left: fields for a total compression of −1o/oo, right: distribution in
the middle of the specimen along x = Lx/2 (dashed white line)

Eqs. (53)–(56) and (69)]. From amathematical point of view, there is no reason to expect um,s to always vanish.
In summary, this means: Single slip as modeled by Constraint (50) can be accompanied by gradients us,m and
um,s at the same time. Hence, it might be misleading to measure the activity of a primary and a possible
orthogonal slip system only looking at these gradients. This conclusion agrees perfectly with the experimental
results because in the Cu single crystals a slip system orthogonal to the primary one simply did not exist [14].
All in all, the simulation results confirm that the experimenters had indeed realized single-slip conditions (in
the small strain regime).

Remark 5 On the length scale of the results, in order to simulate the experiment accurately, the domain’s
dimensions had to be chosen much larger compared to the previous examples. Consequently, the spacial
discretization is too coarse to resolve any dislocation structures. Hence, the dislocation structures reported in
[13,42] cannot be used for the validation of the present results as they are on a much smaller scale. In order to
do so, a sub-model technique can be applied using a CDT on a finer scale, e.g., [1,32].

7 Conclusions and discussion

In this paper, the well-established continuum dislocation theory (CDT) was integrated into a general thermo-
dynamical framework with the goal of deriving suitable field equations. In doing so, special emphasis was put
on illustrating cross-references to other existing methods such as the phase field approach and potential energy
minimization. It was shown under which assumptions the same field equations are obtained. Conversely, ther-
modynamical consequences of the rather formal phase field approach were discovered. Therefore, possible
thermodynamical drawbacks and problems were discussed and remedies were offered as well. Additionally, a
new dynamic CDT formulation was proposed. As a mathematical benefit, this form is suitable for developing
numerical integration schemes. Furthermore, CDT was extended with respect to new dissipative phenomena.
For some of them, a clear physical interpretation was given, whereas others must remain abstract for the
moment. Still, mechanisms such as non-local dissipation could play an important role in order to describe
and predict effects known from experiments. The present work thus provides a thermodynamically consistent
framework of the CDT allowing comprehensive extensions.

A general point of criticism for thermodynamic approaches in higher gradient continuum theories is that
the potentials and power densities of the body are somewhat uncertain. It is clear that if a thermodynamic
approach is chosen—as in the present study—the form of potentials and power densities play the fundamental
role in the theory, far beyond mere thermodynamic consistency. The present study pursues another intention
in so far as the generic thermodynamic treatment of the CDT was used to clarify physical consequences of an
existing theory. This procedure provides a basis for new extensions. Along the way it is important to adapt the
form of the potentials, power densities, etc. as soon as new insights from statistical physics of dislocations are
available.

Different features of the CDT were exemplified by the simulation of various plane deformation processes
on Al and Cu single crystals. Thereby, only a selection of the manifold dissipative mechanisms discussed in
Sect. 4.4 could be considered: If the dissipation potential depends on the rate of plastic distortion, viscoplastic
behavior can be obtained. A simple quadratic form results in a linear relation between viscous stress and
slip rate. More elaborate forms that even consider a bounded dislocation velocity (and thus a bounded plastic
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strain rate) are conceivable as well. Of great value is the case when the dissipation potential depends both
on the absolute value and on the square of the rate of plastic distortion. Then, a model can be deduced
that shows striking analogies to phenomenological viscoplasticity such as the appearance of a Perzyna-type
flow rule. Moreover, this behavior was not explicitly introduced into the model, but results naturally from the
aforementioned assumptions. This offers the opportunity for physical validation of phenomenological material
laws. Furthermore, the numerical studies in this work were used to analyze the effect of different boundary
conditions (BCs). Shear tests with periodic BCs for both primary fields admit a homogeneous solution for the
plastic distortion field. In this case, dislocation density and backstresses vanish. For this reason, no Bauschinger
effect (kinematic hardening) due to backstresses was observable. Instead, a pronounced Bauschinger effect
arose from the slip system orientation (Schmid’s law). Confined bending tests were then used to enforce
significant plastic slip gradients. The resulting dislocation structures could be interpreted as pile-ups of edge
dislocations. However, a global effect from the corresponding backstress in the form of kinematic hardening
could only be achievedusingunphysically highdislocation energies.Otherwise, this higher-order effect remains
almost invisible under single-slip conditions. Pure relaxation tests revealed low energy dislocation patterns in
the form of band structures. These numerical results show a strong similarity to dislocation patterns obtained
in DDD simulations and some similarities to experimentally observed dislocation patterns. Finally, a direct
comparison to experimental field data from digital image correlation was possible for uniaxial compression
tests. For the distribution of the displacement and strain fields, a striking similarity between simulation and
experiment was found.

At the moment, the theory is restricted to small deformations. However, there is a lot of current work
[10,21,28,34,35] guiding the way to a consistent large strain formulation. Still, some problems remain open
(even for small strains). One of them, the apparent symmetry mismatch between stress and backstress tensor in
Eq. (36)2 from Sect. 4.4.1, was already investigated and solved [51]. The case of one active slip system is often
considered because of its simplicity and clearness—as in this paper as well. However, single slip causes the
plastic distortion to become highly anisotropic and hence imposes severe constraints on the crystal’s behavior.
Of course, this is far from the real slip behavior in many cases. A physically consistent extension to more
than one active slip system is desirable but not straightforward (cf., e.g., [11]). Particularly, the formulation of
the dislocation self and interaction energy is not fully clear at the moment though there are some promising
approaches [12]. When slip system-dependent dislocation densities are introduced, care should be taken that
the kinematics is still redundance-free [51]. Next, the 2D plane strain scenario used in this work implicitly
assumes straight dislocation lines as there is no curvature of dislocations considered. In fact, there is a 3D
CDT, which captures curved dislocation loops by introducing a higher space dimension [48]. However, the
theoretical and computational effort seems high. The advantage of the presented CDT, in turn, is its clarity and
compactness, and there are new developments into ways of including curved dislocation lines as well [34].

In future research, the consistent extension of the theory to several slip systems [51] and geometrical
nonlinearitywill be investigated.Of special importancewill be the interaction of slip systems, such as cross-slip.
This strongly affects the self-organized behavior and can lead to stationary dislocation structures [59].Of utmost
importance is the validation of theoretical predictions with experimental results. Though it is a challenging
task, more micromechanical experiments should be conducted on such a length scale that measurements of
dislocation tensor coefficients can be compared directly to numerical results [31,45]. Furthermore, it seems
promising to investigate the impact of non-proportional loading on dislocation patterns in more detail. Thus,
the validation of assumptions within coarser-grained models as well as a reasonable estimation of introduced
microstructural material parameters will become possible [53].
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Appendix A: elements of tensor calculus and tensor analysis

Especially in the context of a continuum theory, involving higher gradients of field variables, a clear, systematic,
compact and consistent tensor calculus is indispensable. In the present study, an elaborate formalism [43] is
adopted, which is applicable to tensor fields of arbitrary rank. Essential elements are briefly recapitulated in
the following paragraphs.
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Transposition of tensors

Transposition of tensors in the sense of this study means completely permuting the order of basis vectors. For
example,

uT = u, (88a)

(u ⊗ v)T = v ⊗ u, (88b)

(u ⊗ v ⊗ w)T = w ⊗ v ⊗ u, (88c)

(U ⊗ V )T = UT ⊗ V T. (88d)

Multiple dot products of tensors

Within this study, the following convention is used: Vertical dot products denote the contraction of adjoining
basis vectors, whereas horizontal dot products denote the laterally reversed contraction of basis vectors. For
example, consider a Cartesian base ea = {ex , ey, ez} and

u · v = ua ea · vbeb = uava, (89a)

U ·· V = Uab ea ⊗ eb ·· Vcd ec ⊗ ed = UabVba, (89b)

U ··· V = Uabc ea ⊗ eb ⊗ ec ··· Vdef ed ⊗ ee ⊗ e f = UabcVabc (89c)

and so on. Here, Einstein’s summation convention was also applied. The multiple contraction is important
for the definition of the scalar product of tensors and their norm, which has to be nonnegative. The following
definitions of the Euclidean norm fulfill this requirement:

‖u‖ =
√
u · uT, (90a)

‖U‖ =
√
U ·· UT, (90b)

‖U‖ =
√
U ··· UT. (90c)

Nabla operator

The Nabla operator is a vector-valued differential operator, which can be defined, e.g., using a Cartesian base:

∇ = ea
∂

∂xa
, ∇( ) = ( ),a ea . (91)

Right gradient

Assuming the following definitions for the total differential of a tensor field with respect to space

dα = grad(α) · dr , (92a)

du = grad(u) · dr , (92b)

dU = grad(U ) · dr , (92c)

yields a coordinate-free definition of the right gradient:

grad(α) = (∇ ⊗ α)T = ∇α, (93a)

grad(u) = (∇ ⊗ uT)T = (∇ ⊗ u)T, (93b)

grad(U ) = (∇ ⊗ UT)T, (93c)
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which can be easily generalized for tensors of arbitrary order, e.g.,

dV = grad(V ) · dr = (∇ ⊗ V T)T · dr = (V ⊗ ∇) · dr . (94)

If the operator is to stand left of the argument (which is the traditional notation in mathematics), the depicted
transposition must be used. Otherwise and only if there is no danger of confusing the argument, the operator
can also be put to the right of the argument. This saves multiple transposition. As an example with Cartesian
coordinates consider

grad(U ) = Aab,c ea ⊗ eb ⊗ ec, dU = Aab,c dxc ea ⊗ eb.

Right divergence

Assuming Gauss’ divergence theorem to be valid, i.e.,
∫ ∫ ∫

V
div(u) dV =

∫ ∫

A
u · n dA, (95a)

∫ ∫ ∫

V
div(U ) dV =

∫ ∫

A
U · n dA, (95b)

a coordinate-free definition of the divergence of a tensor field is obtained:

div(u) = lim
V→0

1

V

∫ ∫

A
u · n dA, (96a)

div(U ) = lim
V→0

1

V

∫ ∫

A
U · n dA. (96b)

The divergence can be expressed using the Nabla operator in the following ways:

div(u) = grad(u) ·· I = (∇ ⊗ uT)T ·· I = (∇ · uT)T = u · ∇, (97a)

div(U ) = grad(U ) ·· I = (∇ ⊗ UT)T ·· I = (∇ · UT)T = U · ∇. (97b)

As examples with Cartesian coordinates consider

div(u) = ub,b, div(U ) = Aab,b ea .

Right rotation

Assuming Stokes’ circulation theorem to be valid, i.e.,
∫ ∫

A
curl(u) · n dA =

∮

C
u · t dl, (98a)

∫ ∫

A
curl(U ) · n dA =

∮

C
U · t dl, (98b)

yields a coordinate-free definition of the curl of a tensor field:

curl(u) = lim
ΔA→0

1

ΔA

∮

C
u · t dl, (99a)

curl(U ) = lim
ΔA→0

1

ΔA

∮

C
U · t dl. (99b)

The curl can be expressed using the Nabla operator in the following ways:

curl(u) = grad(u) ·· ε = (∇ ⊗ uT)T ·· ε = (∇ × uT)T = − u × ∇, (100a)

curl(U ) = grad(U ) ·· ε = (∇ ⊗ UT)T ·· ε = (∇ × UT)T = − U × ∇. (100b)

As examples with Cartesian coordinates consider

curl(u) = − ua,bεabc ec, curl(U ) = − ea ⊗ Aab,c εbcd ed .
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Useful identities

The following identities are valid for tensors of arbitrary order:

curl(grad(U )) = 0, div(curl(U )) = 0. (101a)

Gradient fields are always curl-free and curl fields are always divergence-free.

Appendix B: second derivative of the free energy for single slip

The partial derivative of the free energy with respect to the gradient of the plastic slip is calculated. Recalling
Eqs. (50), (51) and (52) and introducing the abbreviation α := s · ∇βp gives Eq. (58) in the following form:

∂φ

∂∇βp
= ∂α

∂∇βp

∂φ

∂α

(11)= s
kμ

bρs

(
1 − |α|

bρs

)−1
α

|α| . (102)

Taking the divergence then yields

div

(
∂φ

∂∇βp

)
= ∇·s

⎡

⎢⎢⎢⎣
kμ

bρs

(
1 − |α|

bρs

)−1

︸ ︷︷ ︸
f (α)

α

|α|

⎤

⎥⎥⎥⎦ . (103)

The directional gradient is a scalar operator, denoted by s ·∇ := ∇s . Applying the chain rule now gives:

div

(
∂φ

∂∇βp

)
= kμ

bρs

[
α

|α|∇s f (α) + f (α)∇s

(
α

|α|
)]

. (104)

The first summand is found:

∇s f (α) = ∇s

(
1 − |α|

bρs

)−1

= ∂ f

∂|α|
∂|α|
∂α

∇sα = (− f 2
) (−1

bρs

)
α

|α|∇sα. (105)

The second summand may be neglected due to:

∇s

(
α

|α|
)

= 1

|α|∇sα + α

|α|2
α

|α|∇sα =
(
1 − α2

|α|2
) ∇sα

|α| = 0 ∀ α �= 0. (106)

Hence, everywhere with α �= 0 we obtain:

div

(
∂φ

∂∇βp

)
= kμ

bρs

[
α

|α|
(

f 2

bρs

)
α

|α|∇sα + f (α) · 0
]

= kμ

(bρs)2
α2

|α|2 f 2∇sα = C

(
1 − |α|

bρs

)−2

∇sα. (107)

A smooth function with respect to the dislocation density is obtained. However, strictly speaking it is only
valid for regions with α �= 0. In order to fulfill this requirement, dislocations must nucleate. Therefore, some
energetic barriermust be overcome [38]. Fromamathematical point of view, this property stems fromDefinition
(7) in combination with the dislocation energy (11). The effect of the energetic barrier can be demonstrated
analytically [38]. Numerically, it seems difficult to preserve this property. With Eq. (107) it is lost. However,
if the energetic barrier is less than or equal to the dissipative threshold resulting from τcr, then the energetic
barrier plays no role anymore and may be ignored.
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