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Abstract A general solution is obtained for a magneto-electro-elastic half-space x3 ≥ 0 subjected to arbitrary
point forces or arbitrary point dislocations, as well as electric andmagnetic influence by using two-dimensional
Fourier transform. The final results are presented as single integrals over a unit circle. Using the theory of
generalized functions, all basic parameters at the half-space boundary are defined in a finite form, and no
computation of any integral is needed. Knowledge of Green’s functions in finite form allows us to derive the
governing integral equations for the normal and tangential contact and crack problems, as well as to establish
certain relationship between the kernels of the relevant integral equations.We also established some interesting
general properties of the determinants, which might be new.
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1 Introduction

Contemporary nanotechnology and intelligent material systems require further development of mathematical
methods for treatment of various problems of practical interest in magneto-electro-elastic (MEE) composites.
Quite a few publications appeared in the past 20 years devoted to generally anisotropic MEE materials, as
well as to various particular cases, such as the case of transverse isotropy, piezoelasticity. We refer mainly
to books, which compile various results in specific fields. Ding and Chen [2] published solutions to various
three-dimensional problems in transversely isotropic piezoelastic bodies. The most general case of transverse
isotropy was considered by Hou et al. [5], where they gave fundamental solutions for the case of thermo-
magneto-electro-elastic body.

The first book on anisotropic elasticity was published by Lekhnitskii [7]. More advanced results on
anisotropic elasticity can be found in Ting [12]. Efficient method of computation of Green’s function and
their derivatives suitable for BEM was published by Shiah et al. [11]. The residue approach to derive Green’s
function in the case of multiple roots was employed by Phan et al. [10]. Yet another approach to evaluation
of Green’s function by using advanced Stroh’s formalism and Radon transform is presented in Xie et al. [13].
One of the earliest treatments of the problem of evaluation of Green’s function for magneto-electro-elastic
anisotropic body was achieved by Pan [8]. Evaluation of Green’s function as well as it derivatives can found
in Buroni and Saez [1].

Recently, Pan and Chen published their book [9], where detailed results are given for the most general case
of anisotropic MEE materials, as well as for particular cases of transverse isotropy and isotropy. There seems
to be no publication on relationship between contact and crack problems in MEE materials, similar to the one
described below. This article may be considered as generalization of recently published results ([3] and [4]).
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2 Mathematical formulation of the problem and its solution

We consider magneto-electro-elastic half-space subjected to electric and mechanical point sources. Such half-
space (x3 ≥ 0) is described by 5 partial differential equations of second order

5∑

k=1

3∑

t,m=1

aktmn
∂2uk

∂xt∂xm
= 0, n = 1, 2, 3, 4, 5. (1)

Here aktmn are physical constants; u1, u2 and u3 are the displacements of the half-space in the directions
of x1, x2 and x3, respectively, u4 and u5 are the electric and magnetic potentials. Without loss of generality,
we presume that this half-space is subject to the following boundary conditions at x3 = 0

5∑

k=1

3∑

m=1

bkmn
∂uk
∂xm

= αnδ(x1, x2), n = 1, 2, 3, 4, 5. (2)

Here bkmn are physical constants, which have certain relation with the set aktmn;αn are given source
intensities, some of which could be zero as well; δ(·, ·) is the two-dimensional Dirac delta function.

We presume the solution in the form of two-dimensional Fourier transforms:

uk = 1

2π

∫ ∞

−∞

∫ ∞

−∞

5∑

s=1

uks exp(−ζs x3) exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2, k = 1, . . . 5. (3)

Here uks and ζs are yet unknown functions of ξ1 and ξ2. Substitution of (3) in the set (1) and application
of inverse Fourier transform leads to the following

⎡

⎢⎢⎢⎣

M11 M12 M13 M14 M15
M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45
M51 M52 M53 M54 M55

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

u1s
u2s
u3s
u4s
u5s

⎤

⎥⎥⎥⎦ = 0. (4)

The general component of the matrix M is defined as

Mi j = a j33iζ
2 + iζ

(
2∑

t=1

a jt3iξt +
2∑

m=1

a j3miξm

)
−

2∑

t,m=1

ajtmiξmξt . (5)

As system of linear algebraic equation (4) is homogeneous, it can have non-trivial solutions, only if the
determinant of M is zero. This leads to the tenth-order algebraic equation with respect to ζ

10∑

s=0

i shs(ξ1, ξ2)ζ
10−s = 0 (6)

Here i = √−1 is the imaginary unit; hs are homogeneous polynomials of ξ1 and ξ2 with real coefficients
of the total order of s. This means that (6) can be factorized as follows

h0

5∏

s=1

(ζ − ζs)(ζ + ζ̄s) = 0, (7)

where ζs are the roots of (6) and the overbar indicates the complex conjugate value. The structure of (7)
confirms that 5 of the roots ζs will have positive real parts, while the remaining 5 will have negative real parts.
We take only the roots with positive real parts in order to keep the integrals in (3) convergent.

We can find the non-trivial solutions of (4) by assuming

uks = Xksu1s, k = 2, 3, 4, 5; s = 1, 2, 3, 4, 5 (8)
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and

X1s = 1 for s = 1, 2, 3, 4, 5. (9)

The parameters Xks for k = 2, 3, 4, 5 can be found from the set of linear algebraic equations

⎡

⎢⎣

M12(ζs) M13(ζs) M14(ζs) M15(ζs)
M22(ζs) M23(ζs) M24(ζs) M25(ζs)
M32(ζs) M33(ζs) M34(ζs) M35(ζs)
M42(ζs) M43(ζs) M44(ζs) M45(ζs)

⎤

⎥⎦

⎡

⎢⎣

X2s
X3s
X4s
X5s

⎤

⎥⎦ =
⎡

⎢⎣

−M11(ζs)
−M21(ζs)
−M31(ζs)
−M41(ζs)

⎤

⎥⎦ (10)

After the parameters Xks are found, the remaining parameters u1s can be defined from the boundary
conditions (2), which will lead to the set of linear algebraic equations with respect to u1s , namely,

⎡

⎢⎢⎢⎣

C11 C12 C13 C14 C15
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

u11
u12
u13
u14
u15

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

α1/2π
α2/2π
α3/2π
α4/2π
α5/2π

⎤

⎥⎥⎥⎦ , (11)

where

Cns =
5∑

k=1

Xks(−bk1niξ1 − bk2niξ2 − bk3nζs). (12)

The solution of (11) will take the form

u1s = 1

Dc

5∑

n=1

αn

2π
(−1)n+s D(n,s)

c . (13)

Here Dc is the determinant of the matrix C and D(n,s)
c is its minor, corresponding to the nth row and sth

column. Now substitution of (13) into (3) gives the complete solution in the form

uk(x1, x2, x3) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞

5∑

s=1

Xks

5∑

n=1

αn(−1)n+s D
(n,s)
c

Dc
exp[−x3ζs − i(x1ξ1 + x2ξ2)]dξ1dξ2. (14)

Taking into consideration that Xks is homogeneous with respect to ξ1 and ξ2 of the order zero, ζs is
homogeneous of the order 1; D(n,s)

c and Dc are homogeneous of the orders 4 and 5, respectively, the introduction
of polar coordinates

ξ1 = ρ cosϑ, ξ2 = ρ sin ϑ (15)

allows us to compute the integral with respect to ρ and simplify (14) as follows

uk(x1, x2, x3) = 1

4π2

∫ 2π

0

5∑

s=1

5∑

n=1

αn(−1)n+sXks(ϑ)D(n,s)
c (ϑ)

Dc(ϑ)[x3ζs(ϑ) + i(x1 cosϑ + x2 sin ϑ)]dϑ. (16)

The solution may be considered in principle as finished, since all the parameters of interest can now be
computed by simple differentiation of (16). We should note though that (16) is not valid at x3 = 0. A different
procedure needs to be followed. The integral (14) will take the form

uk(x1, x2, 0) = 1

4π2

∫ 2π

0

∫ ∞

0

5∑

s=1

Xks(ϑ)

5∑

n=1

αn(−1)n+s D
(n,s)
c (ϑ)

Dc(ϑ)

× exp[−iρ(x1 cosϑ + x2 sin ϑ)]dρdϑ. (17)



1862 V. I. Fabrikant

Since ρ enters only the exponential, we can use the theory of generalized functions to get
∫ ∞

0
exp[−iρ(x1 cosϑ + x2 sin ϑ)]dρ = πδ(x1 cosϑ + x2 sin ϑ). (18)

Here δ(·) is the Dirac delta function. The following property of delta functions can be found in [6]

δ[ f (ϑ)] =
∑

n

δ(ϑ − ϑn)

| f ′(ϑn)| , (19)

where ϑn are all the roots of equation f (ϑ) = 0. In our case, f (ϑ) = x1 cosϑ + x2 sin ϑ and we have 2 roots
in the interval 0 ≤ ϑ < 2π

ϑ1 = π − tan−1(x1/x2), ϑ2 = 2π − tan−1(x1/x2) (20)

with

| f ′(ϑ1)| = | f ′(ϑ2)| =
√
x21 + x22 . (21)

Now the final result will take the form

uk(x1, x2, 0) = 1

2π
\Re

[
5∑

s=1

Xks(−x2, x1)
5∑

n=1

αn(−1)n+s D
(n,s)
c (−x2, x1)

Dc(−x2, x1)

]
. (22)

Here \Re stands for the real part of the expression to follow and each parameter with the arguments
(−x2, x1) is understood as similar parameter in the article with ξ1 formally replaced by −x2 and ξ2 is replaced
by x1. In order to better visualize (22), we may deduce that

5∑

s=1

Xks(−x2, x1)(−1)n+s D(n,s)
c (−x2, x1) = Dcnk, (23)

which is the determinant of the matrix C(see 11) with the nth row replaced by Xks . Now (22) can be rewritten
as

uk(x1, x2, 0) = 1

2π
\Re

[
5∑

n=1

αn
Dcnk(−x2, x1)

Dc(−x2, x1)

]
. (24)

Now we can proceed to application of the results of this section to contact and crack problems.

3 Normal contact and crack problems and their relationship

Presume that we have a magneto-electro-elastic generally anisotropic half-space x3 ≥ 0, which is indented by
a rigid punch, whose surface may be described in the system of coordinates (x1, x2, x3) as

x = w(x1, x2). (25)

In the general case, the domain of contact S should be considered unknown. The governing integral equation
can be presented in the form

∫

S

∫
Kc(x1 − x10, x2 − x20)σ3(x10, x20)dx10dx20 = δ − w(x1, x2). (26)

Here δ denotes yet unknown (in general case) maximum penetration of the punch. The kernel Kc in (26)
represents the normal displacement of the point (x1, x2, 0) of our half-space due to the action of a unit normal
force applied at the point (x10, x20, 0). The result is readily available from (24) by taking all αn = 0, except
α3 = −1. This means that

Kc(x1, x2) = − 1

2π
\Re

[
Dc33(−x2, x1)

Dc(−x2, x1)

]
. (27)
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For the purpose of clarity, we write below explicitly that Dc33 is the determinant of the following matrix

Dc33 =

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
C21 C22 C23 C24 C25
X31 X32 X33 X34 X35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

. (28)

Now we turn to the investigation of the normal crack problem. We have a flat crack of shape S, located
in the plane x3 = 0 of a magneto-electro-elastic generally anisotropic space. This crack is being opened by a
normal stress

σ33 = −σ330(x1, x2) for (x1, x2) ⊆ S. (29)

Due to the symmetry of the problem, it can be reduced to the one for the half-space, subjected to a unit
normal dislocation with the boundary conditions, leading to the set of linear algebraic equations

⎡

⎢⎢⎢⎣

C11 C12 C13 C14 C15
C21 C22 C23 C24 C25
X31 X32 X33 X34 X35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

u11
u12
u13
u14
u15

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

0
0

1/2π
0
0

⎤

⎥⎥⎥⎦ , (30)

Its solution will have the form

u1s = (−1)3+s D(3,s)
c33

2πDc33
, (31)

where D(3,s)
c33 is the minor of Dc33, with the third row and sth column deleted. Taking into consideration that

σ33(x1, x2, 0) = 1

2π

∫ ∞

−∞

∫ ∞

−∞

5∑

s=1

C3su1s exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2. (32)

and that

5∑

s=1

C3s(−1)3+s D(3,s)
c33 = Dc, (33)

we may conclude that the normal stress at the surface of the half-space due to a unit normal dislocation will
be defined as

σ33(x1, x2, 0) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Dc

Dc33
exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2. (34)

Utilization of (14) allows us towrite the following expression for the normal displacements on the boundary
of half-space due to a unit normal concentrated force as

u3(x1, x2, 0) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
Dc33

Dc
exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2. (35)

Since the kernels of governing integral equations of the normal crack and contact problems come directly
from (34) and (35), respectively, we may conclude that the integrands of Fourier transforms of both kernels
are inverse to each other.

Recalling that Dc33 and Dc are homogeneous with respect to ξ1 and ξ2 of the order 4 and 5, respectively,
we may conclude that the integration in (34) is divergent. In order to regularize (34), we rewrite it as follows:

σ33(x1, x2, 0) = − 1

4π2�12

∫ ∞

−∞

∫ ∞

−∞
Dc

(ξ21 + ξ22 )Dc33
exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2. (36)
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Here

�12 = ∂2

∂x21
+ ∂2

∂x22
. (37)

Now the integration in (36) is convergent and may be performed in exactly the same manner, as it was
done in (15–21). The final result is

σ33(x1, x2, 0) = − 1

2π
\Re

⎡

⎣�12

⎛

⎝ Dc(−x2, x1)√
x21 + x22Dc33(−x2, x1)

⎞

⎠

⎤

⎦ . (38)

This result allows us to formulate the governing integral equation of the normal crack problem for a flat
crack of the shape S, located in the plane x3 = 0 of the magneto-electro-elastic anisotropic space and subjected
to normal pressure σ330 as follows:

∫

S

∫
Kcr (x1 − x10, x2 − x20)u3(x10, x20)dx10dx20 = σ330(x1, x2)

with

Kcr (x1, x2) = 1

2π
\Re

⎡

⎣�12

⎛

⎝ Dc(−x2, x1)√
x21 + x22Dc33(−x2, x1)

⎞

⎠

⎤

⎦ . (39)

4 Tangential contact problems

We consider a magneto-electro-elastic anisotropic half-space x3 ≥ 0. We presume that inside an arbitrary
domain S in the plane x3 = 0 some arbitrary tangential displacements u1(x1, x2) and u2(x1, x2) in the
directions of the axes Ox1 and Ox2, respectively, are prescribed, while the rest of the boundary is free of
tangential stresses, and the normal stress vanishes all over the boundary x3 = 0. There is also no outside
electrical or magnetic interference. We need to derive governing integral equations, relating the tangential
displacements with tangential stresses.

The set of governing integral equations can be written in the following form

u1 =
∫

S

∫
K11(x1 − x10, x2 − x20)τ31(x10, x20)dx10dx20

+
∫

S

∫
K12(x1 − x10, x2 − x20)τ23(x10, x20)dx10dx20, (40)

u2 =
∫

S

∫
K21(x1 − x10, x2 − x20)τ31(x10, x20)dx10dx20

+
∫

S

∫
K22(x1 − x10, x2 − x20)τ23(x10, x20)dx10dx20. (41)

Here Ki j is the displacement in the i direction of the point (x1, x2, 0) due to a unit force Pj applied at the point
(x10, x20, 0). We can find Ki j as a solution of a particular case of (11) with α1 = −P1, α2 = −P2, α3 = α4 =
α5 = 0. Here P1 and P2 are unit concentrated forces applied at the coordinates origin in the directions Ox1
and Ox2, respectively. According to (13), the solution will take the form

u1s = (−1)s

2πDc

(
P1D

(1,s)
c − P2D

(2,s)
c

)
for s = 1, 2, 3, 4, 5. (42)
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Taking into consideration that

5∑

s=1

(−1)s D(1,s)
c = −

∥∥∥∥∥∥∥∥∥

1 1 1 1 1
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= D11, (43)

−
5∑

s=1

(−1)s D(2,s)
c = −

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
1 1 1 1 1
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= D12, (44)

5∑

s=1

(−1)sX2s D
(1,s)
c = −

∥∥∥∥∥∥∥∥∥

X21 X 22 X 23 X24 X 25
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= D21, (45)

−
5∑

s=1

(−1)sX2s D
(2,s)
c = −

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
X21 X 22 X 23 X24 X 25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= D22, (46)

we may conclude that

K11(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D11

Dc
exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2, (47)

K12(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D12

Dc
exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2 (48)

K21(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D21

Dc
exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2, (49)

K22(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D22

Dc
exp[−i(x1ξ1 + x2ξ2)]dξ1dξ2. (50)

Since D11, D12, D21 and D22 are homogeneous in ξ1 and ξ2 of the order 4 and Dc is homogeneous of the
order 5, the integrals in (47–50) can be computed in the same way as it was done (15–21). The final results are

K11(x1, x2) = 1

4π

(
D11(−x2, x1)

Dc(−x2, x1)
+ D11(x2, −x1)

Dc(x2, −x1)

)
, (51)

K12(x1, x2) = 1

4π

(
D12(−x2, x1)

Dc(−x2, x1)
+ D12(x2, −x1)

Dc(x2, −x1)

)
, (52)

K21(x1, x2) = 1

4π

(
D21(−x2, x1)

Dc(−x2, x1)
+ D21(x2, −x1)

Dc(x2, −x1)

)
, (53)

K22(x1, x2) = 1

4π

(
D22(−x2, x1)

Dc(−x2, x1)
+ D22(x2, −x1)

Dc(x2, −x1)

)
. (54)

Since the first term in (51–54) is complex conjugate to the second, the final results there will be real, as
they should. The basic derivation for the governing integral equations of the tangential contact problem for a
magneto-electro-elastic anisotropic half-space may be considered finished.
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5 Tangential crack problems

Nowwe start the derivation of the governing integral equations for the tangential crack problem.We have a flat
crack of shape S, located in the plane x3 = 0. Crack faces are subjected to the tangential stresses τ310(x1, x2)
and τ230(x1, x2), acting in opposite directions. Due to symmetry, the problem can be reduced to that for a
half-space with the following boundary conditions at x3 = 0

τ31 = −τ310(x1, x2), τ23 = −τ230(x1, x2) for (x1, x2) ⊆ S, (55)

u1 = u2 = 0 for (x1, x2) /∈ S; σ33 = 0 for − ∞ < (x1, x2) < ∞. (56)

The conditions in (56) become evident from the fact that tangential stresses applied to the crack faces are
anti-symmetric with respect to the plane x3 = 0, as well as from the presumption that electrical displacement
and magnetic induction are presumed zero all over the plane x3 = 0. The governing integral equations may
be written in the form

∫

S

∫
K 0
11(x1 − x10, x2 − x20)u10(x10, x20)dx10dx20 +

+
∫

S

∫
K 0
12(x1 − x10, x2 − x20)u20(x10, x20)dx10dx20 = −τ310, (57)

∫

S

∫
K 0
21(x1 − x10, x2 − x20)u10(x10, x20)dx10dx20 +

+
∫

S

∫
K 0
22(x1 − x10, x2 − x20)u20(x10, x20)dx10dx20 = −τ320. (58)

The physical meaning of K0
nk is the tangential stress in the direction xn at the point (x1, x2, 0) due to a unit

dislocation in the direction xk at the point (x10, x20, 0). The auxiliary problem to be solved has the boundary
conditions at x3 = 0

σ33 = 0, u1 = u10δ(x1 − 0, x2 − 0), u2 = u20δ(x1 − 0, x2 − 0). (59)

Instead of (11) we shall have the following set of equations
⎡

⎢⎢⎢⎣

1 1 1 1 1
X21 X22 X23 X24 X25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

u11
u12
u13
u14
u15

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

u10/2π
u20/2π

0
0
0

⎤

⎥⎥⎥⎦ (60)

The solution of (60) will have the form

u1s = 1

2πDcrt

(
(−1)1+s D(1,s)

crt u10 + (−1)2+s D(2,s)
crt u20

)
for s = 1, 2, 3, 4, 5. (61)

Here

Dcrt =

∥∥∥∥∥∥∥∥∥

1 1 1 1 1
X21 X 22 X 23 X24 X 25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

(62)

and D(n,s)
crt are the minors of the first order, corresponding to nth row and sth column.

K 0
11(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D0
11

Dcrt
exp[−i(x1ξ + x2η)]dξdη, (63)

K 0
12(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D0
12

Dcrt
exp[−i(x1ξ + x2η)]dξdη, (64)
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K 0
21(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D0
21

Dcrt
exp[−i(x1ξ + x2η)]dξdη, (65)

K 0
22(x1, x2) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
D0
22

Dcrt
exp[−i(x1ξ + x2η)]dξdη, (66)

with

D0
11 =

5∑

s=1

(−1)1+sC1s D(1,s)
crt =

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
X21 X 22 X 23 X24 X 25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= −D22 (67)

D0
12 =

5∑

s=1

(−1)2+sC1s D(2,s)
crt = −

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
1 1 1 1 1
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= D12 (68)

D0
21 =

5∑

s=1

(−1)1+sC2s D(1,s)
crt = −

∥∥∥∥∥∥∥∥∥

X21 X 22 X 23 X24 X 25
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= D21 (69)

Here we used the property of determinant to change its sign, when two rows interchange places.

D0
22 =

5∑

s=1

(−1)2+sC2s D(2,s)
crt =

∥∥∥∥∥∥∥∥∥

1 1 1 1 1
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

= −D11 (70)

6 Additional relationships between contact and crack problems

Equations (67–70) provide clear connections between tangential contact and crack problems, and the relation-
ship does not end there. In order to make an educated guess, we may present Eqs. (40–41) in a schematic form
as follows

u1 = D11

Dc
τ31 + D12

Dc
τ23, u2 = D21

Dc
τ31 + D22

Dc
τ23 (71)

The solution of the algebraic equations (71) will take the form

τ31 = D22u1 − D12u2
D11D22 − D12D21

Dc τ23 = D11u2 − D21u1
D11D22 − D12D21

Dc (72)

Using the same schematic, we can rewrite Eqs. (57–58) as follows

− τ31 = D0
11

Dcrt
u1 + D0

12

Dcrt
u2, −τ23 = D0

21

Dcrt
u1 + D0

22

Dcrt
u2. (73)

Comparing (72) with (73) and taking into consideration (67–70), we may conclude that they would be
identical, if an additional relationship held, namely,

D11D22 − D12D21 = DcrtDc. (74)
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In matrix form, Eq. (74) will take the form
∥∥∥∥∥∥∥∥∥

1 1 1 1 1
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
X21 X 22 X 23 X24 X 25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

−

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
1 1 1 1 1
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥

X21 X 22 X 23 X24 X 25
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

=

=

∥∥∥∥∥∥∥∥∥

C11 C12 C13 C14 C15
C21 C22 C23 C24 C25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥

1 1 1 1 1
X21 X 22 X 23 X24 X 25
C31 C32 C33 C34 C35
C41 C42 C43 C44 C45
C51 C52 C53 C54 C55

∥∥∥∥∥∥∥∥∥

. (75)

One can verify directly that (75) is indeed an identity for arbitrary values of Cmk,Xk and that we can
replace the row of ‘1’ by arbitrary values of Yk , and the identity will still hold. One can also verify that such
relationship will be valid for matrices of arbitrary order. Thus, we have proven that the integrands in the Fourier
integral transform of the kernels of the governing integral equations for tangential contact and crack problems
are related to one another as if they were in linear algebraic equations.

Taking into consideration that D0
nk in (63–66) are homogeneous with respect to ξ1 and ξ2 of the order 4

and Dcrt is homogeneous of the order 3, we may conclude that the integrals (63–66) are divergent. They can
be regularized and computed, as it was done in (36–38) and the final result is

Knk(x1, x2) = − 1

2π
\Re

⎡

⎣�12

⎛

⎝ D0
nk(−x2, x1)√

x21 + x22Dcrt(−x2, x1)

⎞

⎠

⎤

⎦ for (n, k) = 1, 2.

We remind that �12 is defined in (37).

7 Discussion

Bymethod of trial and error, we established several properties of determinants, which are valid for determinants
of arbitrary order andmight be new.We show the properties on determinants of the third order, but generalization
to an arbitrary order would be clear. We have two determinants

Da =
∥∥∥∥∥∥

a11 a12 a13
a21 a22 a23
a31 a32 a33

∥∥∥∥∥∥
, Db =

∥∥∥∥∥∥

b11 b12 b13
b21 b22 b23
b31 b32 b33

∥∥∥∥∥∥
. (76)

Let us combine them as follows

d11 =
∥∥∥∥∥∥

b11 b12 b13
a21 a22 a23
a31 a32 a33

∥∥∥∥∥∥
, d12 =

∥∥∥∥∥∥

a11 a12 a13
b11 b12 b13
a31 a32 a33

∥∥∥∥∥∥
, d13 =

∥∥∥∥∥∥

a11 a12 a13
a21 a22 a23
b11 b12 b13

∥∥∥∥∥∥
(77)

d21 =
∥∥∥∥∥∥

b21 b22 b23
a21 a22 a23
a31 a32 a33

∥∥∥∥∥∥
, d22 =

∥∥∥∥∥∥

a11 a12 a13
b21 b22 b23
a31 a32 a33

∥∥∥∥∥∥
, d23 =

∥∥∥∥∥∥

a11 a12 a13
a21 a22 a23
b21 b22 b23

∥∥∥∥∥∥
(78)

d31 =
∥∥∥∥∥∥

b31 b32 b33
a21 a22 a23
a31 a32 a33

∥∥∥∥∥∥
, d32 =

∥∥∥∥∥∥

a11 a12 a13
b31 b32 b33
a31 a32 a33

∥∥∥∥∥∥
, d33 =

∥∥∥∥∥∥

a11 a12 a13
a21 a22 a23
b31 b32 b33

∥∥∥∥∥∥
(79)

The interesting result is obtained, if we compute the determinant

Dd =
∥∥∥∥∥∥

d11 d12 d13
d21 d22 d23
d31 d32 d33

∥∥∥∥∥∥
= D2

a Db. (80)
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If we take matrices {aik} and {bik} of rank n and create the matrix {dik} bymixing them in the samemanner,
as in (77–79), then the determinant of the matrix {dik} will be equal to Dn−1

a Db.
Yet another interesting property can be demonstrated on the following example. We have three linear

algebraic equations, which can be written in matrix form as
⎡

⎣
d11 d12 d13
d21 d22 d23
d31 d32 d33

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ =
⎡

⎣
y1
y2
y3

⎤

⎦ . (81)

The solution will have the form
⎡

⎣
x1
x2
x3

⎤

⎦ = 1

DaDb

⎡

⎣
g11 g12 g13
g21 g22 g23
g31 g32 g33

⎤

⎦

⎡

⎣
y1
y2
y3

⎤

⎦ . (82)

Here

g11 =
∥∥∥∥∥∥

a11 a12 a13
b21 b22 b23
b31 b32 b33

∥∥∥∥∥∥
, g12 =

∥∥∥∥∥∥

b11 b12 b13
a11 a12 a13
b31 b32 b33

∥∥∥∥∥∥
, g13 =

∥∥∥∥∥∥

b11 b12 b13
b21 b22 b23
a11 a12 a13

∥∥∥∥∥∥
, (83)

g21 =
∥∥∥∥∥∥

a21 a22 a23
b21 b22 b23
b31 b32 b33

∥∥∥∥∥∥
, g22 =

∥∥∥∥∥∥

b11 b12 b13
a21 a22 a23
b31 b32 b33

∥∥∥∥∥∥
, g23 =

∥∥∥∥∥∥

b11 b12 b13
b21 b22 b23
a21 a22 a23

∥∥∥∥∥∥
, (84)

g31 =
∥∥∥∥∥∥

a31 a32 a33
b21 b22 b23
b31 b32 b33

∥∥∥∥∥∥
, g32 =

∥∥∥∥∥∥

b11 b12 b13
a31 a32 a33
b31 b32 b33

∥∥∥∥∥∥
, g33 =

∥∥∥∥∥∥

b11 b12 b13
b21 b22 b23
a31 a32 a33

∥∥∥∥∥∥
. (85)

The rule of creation of the inverse matrix can be deduced just by observation of (83–85). If we call creation
of the matrix {dik} as mosaic of matrix {bik} into matrix {aik}, then creation of the inverse matrix {gik} we call
mosaic of the matrix {aik} into matrix {bik} and divided by the product of Da and Db. It is obvious that similar
rule will be true for the matrices of arbitrary rank n. We do not know whether these properties are new in the
theory of matrices and determinants, but they are certainly beautiful.
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