
Arch Appl Mech (2017) 87:1845–1857
DOI 10.1007/s00419-017-1292-3

ORIGINAL

Chang-Sheng Lin

Parametric estimation of systems with modal interference

Received: 3 January 2017 / Accepted: 9 August 2017 / Published online: 21 August 2017
© Springer-Verlag GmbH Germany 2017

Abstract The topic of this paper is the accuracy improvements in parametric estimation of systemswithmodal
interference. A channel-expansion technique has been previously used in the Ibrahim time domain method to
well perform the modal identification. However, the error involved in the determination of system order from
the frequency response function or the Fourier spectrum associated with each of the response channels would
generally lead to a distortion in the modal identification, especially for a system with modal interference. In
the present paper, the singular value decomposition in conjunction with least-squares analysis is introduced
in the procedure of Ibrahim time domain method to obtain the system matrix and determine the system order.
Also, the phase angle diagram of frequency response function can be employed to distinguish the structural
modes influenced by modal interference and then avoid the phenomenon of omitted modes from the distortion
of system order determined by frequency response function. Numerical simulations, including two examples
of a model of the motor vehicle, and a linear two-dimensional model of one-half of a railway vehicle, confirm
the validity of the proposed method for modal identification of a system with modal interference.

Keywords Parametric estimation · Modal interference · Singular value decomposition

1 Introduction

The purpose of the modal identification is based on the input and output data of a system to estimate modal
parameters. In the process of modal estimation, the measurement data contaminated with noise and the extent
of interference among the structural modes may often, however, affect the accuracy of identification results
and even cause the problem of identifiability. Modal interference refers to the phenomenon that vibration
energy of each mode of a system may overlap with other modes within certain frequency range. Major causes
of modal interference include close frequencies, high damping ratios, and non-proportional damping. The
serious problems of modal interference may result in the difficulty of modal identification, especially for
a structure with axisymmetrical model, i.e., having close (even repeated) modes. Structures that are nearly
axisymmetric play important roles in engineering applications, including disk and drum brakes, computer
disk drives, gas turbine assemblies, and motor or railway vehicle system [1]. Consequently, it is desirable to
develop techniques for modal identification without the influence on the serious problem of modal interference
of structures and the effect of noise from measurement input and output data.

Numerous papers have been presented on system identification, acquiring the estimation of important
parameters from measured data. During the 1970s, Ibrahim proposed a method developed in the time domain,
which is usually referred to as the Ibrahim time domain method (ITD Method) [1]. The ITD method was
employed to extract the modal characteristics of the structures such as the cantilever beams or the payload
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models [2]. The method is effective in identifying complex modes even for closely spaced modes with distinct
damping ratios [3]. Although we can use the ITD method to perform modal identification via an eigenvalue
analysis, the ITD method applies only to problems involving the free-decay response data of structures and
sometimes its efficiency is low due to its large numerical computation. In addition, the modes identified by the
ITDmethod generally include some fictitious modes due to numerical computation. In 1978, Ibrahim proposed
the modal confidence factor (MCF) [4], which is to be computed for each and every identified mode, and the
structural modes can then be separated from the computational modes accordingly, i.e., to decide whether a
mode is a structural mode or not [5]. Gao and Randall further presented the so-called mode-shape coherence
and confidence factor (MSCCF) [6] using the overall information of mode shapes to sort out physical modes
from the identified modes. Because the calculation of MSCCF value is not just the information of a single
mode as in the calculation of MCF, the MSCCF values are generally more reliable than the MCF values in
distinguishing the structural modes from computational modes.

Based on the Prony’s theory, Brown et al. developed the least square complex exponential algorithm
(LSCE) [7] using a squared output matrix constructed by multichannel impulse response functions, which is
a well-known technique in conventional modal analysis yielding global estimates of residues and poles. The
pseudo-inverse technique is employed to estimate the coefficients of the Prony’s polynomials and then extract
the modal parameters of a system through the Prony’s technique. In 1982, Vold et al. further proposed poly
reference complex exponential method (PRCE) [8] to perform modal identification for the case that one of the
modes may not be present in the response data. Although repeated eigenvalues or closely spaced modes are
said to be resolved by PRCE method, the judgment about the appropriate model order remains subjective and
open to experimentation followed by construction of stabilization diagram to choose the proper model order
and modal properties. In 1985, among follow-up developments on minimal realization algorithm and singular
value decomposition (SVD) [9], Juang and Pappa [10] proposed the Eigensystem Realization Algorithm
(ERA) using the impulse response or the free-vibration response of the system to construct the Hankel matrix,
which is an augmented matrix containing Markov parameters, for reducing the effect of noise, and making
the parameters estimation more accurate. The modal parameters of the system are identified through SVD of
the Hankel matrix, and the accuracy of identification results will, however, be low when high noise levels are
present in measurements. Subsequently, Fahey and Pratt [11] took up some applicable time domain algorithms
by reviewing the complex exponential algorithm, Pisarenko harmonic decomposition, ITD method, and ERA.
They also pointed out the quality of a fitting function of system damping is one significant difference between
time and frequency domain techniques. In general, the time domain techniques outperform frequency domain
techniques for a system with light damping [11]. A lightly damped response may distribute its effects over the
entire duration of a time domain record, but produce only a few spectral lineswhen transformed to the frequency
domain. Also, principal component analysis (PCA) may be used to resolve the issues of the number of degree
of freedom of a system being less than the number of measured response channel. In 1986, Leuridan et al.
[12] used a multivariate model in the form of a nonhomogeneous finite difference equation to identify modal
parameters of a mechanical structure. By applying the multiple-input and multiple-output (MIMO) concept,
the modal parameters of this equation are estimable from vibration data, and improved global estimates of
modal parameters can then be obtained, including the highly coupled and pseudo-repeated modes of vibration.

In this paper, we propose a modification to the technique of channel-expansion in Ibrahim time domain
method to improve the accuracy of system identification for structures with modal interference. In general,
the accurate estimation the order of system matrix in Ibrahim time domain method is important for well-
implemented modal identification. By introducing the singular value decomposition in conjunction with the
method of least squares, the system matrix can be obtained and the order of system can be determined,
the phenomenon of omitted modes can then be avoided. Additionally, the phase angle diagram of frequency
response function can be used to more easily distinguish the structural modes influenced by modal interference
and then improve the accuracy in parametric estimation of systems with modal interference.

2 Ibrahim time domain method

The Ibrahim time-domain method uses free-decay responses of several outputs of a structure under test to
estimate its modal parameters in complex form [1] and has been extensively used in the engineering application
[13–15]. From the measured free-decay responses at n stations on a structure under test, each with q sampling
points, we define a system matrix [A], which is an n × n matrix, such that

[A][X] = [Y] (1)
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where [X] and [Y] are, respectively, n × q data-expansion matrices of the free decay and its time-shifted
response. The number q is generally chosen to be larger than the number of measurement channels n, and the
system matrix [A] can be therefore estimated from [X] and [Y] through the least-squares method.

It can be shown that the natural frequencies and the damping ratios of the original vibrating system are
directly related to the eigenvalues of the systemmatrix [A], and themode shapes correspond to the eigenvectors
of [A]. Denote an eigenvalue of [A] and a characteristic root of the original vibrating system as ρr = βr + iγr
and sr = σr + ivr, respectively. One can derive [1]{

σr = 1
2�τ

ln
(
β2
r + γ 2

r

)
vr = 1

�τ
tan−1

(
γ
β

) (2)

from which the natural frequencies ωnr and damping ratios ζr of the structural system can be obtained to be{
ωnr = √

σ 2
r + v2r

ζr = |σr |√
σ 2
r +v2r

(3)

Hence, once the system matrix [A] is obtained via least-squares analysis from measured data, the modal
parameters of the structural system can be determined by solving the eigenvalue problem associated with the
system matrix [A].

2.1 Channel-expansion technique

In reality, we do not know in advance how many modes are required to describe the dynamic behavior of the
observed structural system. The number of (real) modes m involved in the response determines the number of
measurement channels, which is chosen to be at least twice of the number of modes of interest to appropriately
identify the 2m complex modes. If the number of measurement channels does not actually reach 2m, we may
employ the technique of channel expansion [3] with sampling time shifted to reach the total available number
of measurement channels. It should be noted that, however, the identified mode shapes are composed of the
components corresponding only to those physically measured response channels. In addition, due to the fact
that the results of modal identification may be poor from the noise effect, through the channel-expansion
technique in ITD method, which uses time-delayed sampling points from the original response to increase
the total numbers of sampling points and measurement channels, we can therefore reduce the effect of noise
to improve the accuracy of modal estimation based on the property of consistency in the theory of system
identification. It should be mentioned that the channel-expansion technique requires significant computing
capacity, so it is necessary to use appropriate and efficient sampling time shifted in ITD method, as described
next.

2.2 Discussion of sampling time shifted

In this section, we will discuss the condition of sampling time shifted in ITD method to avoid the distortion of
modal identification. Note that in driving Eq. (2), vr is a damped natural frequency ωdr of a structural system.
Therefore, the solution of ωdr is not unique and can be expressed as

ωdr = 1

�τ

[
tan−1

(
γ

β

)
+ kπ

]
(4)

in which −π
2 < tan−1

(
γ
β

)
< π

2 , k = 0, 1, 2, 3, . . ., and �τ is the sampling time shifted in ITD method.

To avoid the ambiguous use of Eq. (4), it is necessary to specify that all the modes which contribute to the
response corresponding to frequencies which can be calculated from the equation by using only a single value

for k. Due to inequality of tan−1
(

γ
β

)
in Eq. (4), and that all values of ωdr in the frequency range of interest

are required to be considered, Eq. (2) can be therefore written as the following inequality

kπ

�τ
< ωd <

(2k + 1)π

2�τ
(5)
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Also, define the sampling frequency fs as fs = 2π
�τ

, and consider the maximum and minimum of damped
natural frequencies, say, fmin and fmax, involved in free-decay response data of a system, and the following
simplified inequality can be obtained from Eq. (4)

4 fmax

2k + 1
< fs <

2 fmin

k
, k = 0, 1, 2, 3, . . . (6)

One can, therefore, derive

fmax

fmin
<

2k + 1

2k
(7)

Eq. (7) defines the maximum width of the frequency range used with the various k, and the appropriate k’s
chosen for all the frequencies of interest can then employed in Eq. (6) to determine the allowable sampling
frequencies. Consider two practically general cases of fmax/ fmin ≥ 3/2 and 4/4 < fmax/ fmin < 3/2,
respectively, for the conditions of k = 0 and k = 1, and the following inequality can then derived

{
fs > 4 fmax

2 fmin > fs > 4
3 fmax

(8)

or {
�τ < 1

4Tmin
1
2Tmax < �τ < 3

4Tmin
(9)

where Tmin and Tmax correspond to the maximum and minimum of damped natural frequencies fmax and fmin
of a system. It should be mentioned that, under the aforementioned conditions of properly chosen sampling
time shifted �τ ’s, modal identification can then be well performed in ITD method.

3 Determination of the system order using singular value decomposition

In general, the important modes of a system under consideration could be roughly found by examining the
Fourier spectra associated with the measured response histories. The number of (real) modes involved in the
response then determines the order n of the system matrix [A] in Eq. (1); however, it may lead to a distortion
in the modal identification, especially for a system having a serious problem with modal interference among
the modes. In this paper, we introduce the singular value decomposition (SVD) in the procedure of modal
identification of ITD method to appropriately estimate the order of a system and then avoid the disadvantage
of omitted mode. Through insertion of the SVD algorithm into eigenvalue analysis associated with the system
matrix [A] in ITD method, Eq. (1) can be rewritten as follows:

[A] = [Y][X]T([U][�][V]T)−1 (10)

where [U][�][V]T = [X][X]T , [U] and [V] are both unitarymatrices, and [�] is a rectangularmatrix consisting
of zeromatriceswith appropriate dimensions and a diagonalmatrixwithmonotonically non-increasing singular
values. Since [U] and [V] are the matrices with orthonormal property, (i.e., [U]−1 = [U]T, [V]−1 = [V]T),
Eq. (10) can then be derived as

[A] = [Y][X]T[V][�]−1[U]T (11)

It should be mentioned that, by examining the numbers of the nonzero singular values of [�] associated with
the responses of the system, we could determine the order, as well as the number of modes to be identified,
of a system, and also further confirm if the phenomenon of omitted modes exists. In addition, by performing
the SVD analysis of [X][X]T, we could directly determine the order of a system without the procedures of
examining the Fourier spectrum associated each of the response channels to roughly find the important modes
of the system under consideration and also significantly reduce relatively much calculations required in the
conventional channel-expansion technique.
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4 Quantity estimation of identified modes from frequency response function

In the preceding, we introduce the singular value decomposition to improve the accuracy of the estimation the
order of a system matrix when performing the ITD method. One can estimate the numbers of structural modes
to be identified by examining the Fourier spectrum associated with each of the response channel; however, the
modal interference among the modes with relatively high damping and closely spaced modes can generally
lead to a distortion in the quantity estimation of identified modes. To verify the quantity estimation of the
structural modes to be identified, the phase of frequency of response function will be employed in modal
identification, as described in the following.

Consider a single-degree-degree-of-freedom system, whose frequency of response function H (ω) can be
expressed as follows

H(ω) = 1(−ω2M + iωC + K
) (12)

In Eq. (12), H(ω) is the complex function. Define the frequency ratio as ω̄ = ω
ω0
, whereω andω0 are the applied

loading frequency and natural free-vibration frequencies, respectively, and introduce ω̄ into the Eq. (12), H(ω)
can be rewritten as

H(ω) = 1

K

[
1 − ω̄2

(1 − ω̄2)2 + (2ξω̄)2
+ i

−2ξω̄

(1 − ω̄2)2 + (2ξω̄)2

]
(13)

Additionally, H(ω) can also be expressed as

H(ω) = HR (ω) + H I (ω) (14)

where HR (ω) and H I (ω) are, respectively, the real and imaginary parts of H(ω) . The phase ϕH of H(ω) can
be defined as

ϕH (ω) = tan−1
(
H I (ω)

HR (ω)

)
(15)

Through insertion of Eqs. (13) and (14) into Eq. (15), ϕH (ω) can also be rewritten as follows in the form of ξ
and ω̄,

ϕH (ω) = tan−1
( −2ξω̄

1 − ω̄2

)
(16)

It should be mentioned that, in Eq. (16), ϕH ≈ −90◦, ϕH ≈ 0, and ϕH ≈ 90◦ are, respectively, in the
case of ω̄ = 1−, ω̄ ≈ 0, and ω̄ > 1−. The phase ϕH of the frequency of response function H(ω) will vary
instantaneously from−90◦ to 90◦ when natural free-vibration frequencies of a structure are equal to the applied
loading frequency. We can therefore estimate the quantity of structural modes to be identified by examining
the phase ϕH of the frequency of response function H(ω) .

5 Numerical simulation

When a structure is subjected to dynamic tests under external force excitation, the modal parameters could be
identified from the excitation and response data of a structural system. However, the implementation of the
dynamic testing of large-scale structure is difficult and the exact modal information of a practical structure
is not usually available, so it is necessary to verify in advance the effectiveness of the proposed theory and
algorithm through the numerical simulations.

To demonstrate the effectiveness of the presentmethod,wefirst consider a 7-dof systemof the vehiclemodel
with two pairs of closely spacedmodes (frequency separation smaller than 0.03Hz).A schematic representation
of this model is shown in Fig. 1. The vehicle model is a 7-dof system with u = [u1, u2, u3, u4, u5, u6, u7],
where u2 = ϕ and u3 = θ are the rotational displacement of pitch and roll behavior of the motor vehicle,
respectively, and others are the vertical displacement of bounce behavior of the motor vehicle and four wheels
as shown in Fig. 1. The mass matrix is a diagonal matrix, diag M = [m1,m2,m3,m4,m5,m6,m7], where



1850 C.-S. Lin

Fig. 1 Schematic plot of the 7-dof system of a motor vehicle

m2 = Iy andm3 = Ix are, respectively, the pitch and roll moment of inertia of the motor vehicle. The stiffness
matrix can be obtained as

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + k2 + k3 + k4 −L1k1 + L2k2 − L1k3 + L2k4 −L3k1 − L3k2 + L4k3 + L4k4 −k1 −k2 −k3 −k4

−L1k1 + L2k2 − L1k3 + L2k4 L2
1k1 + L2

2k2 + L2
1k3 + L2

2k4 L1L3k1 − L2L3k2 − L1L4k3 + L2L4k4 L1k1 −L2k2 L1k3 −L2k4

−L3k1 − L3k2 + L4k3 + L4k4 L1L3k1 − L2L3k2 − L1L4k3 + L2L4k4 L2
3k1 + L2

3k2 + L2
4k3 + L2

4k4 L3k1 L3k2 −L4k3 −L4k4

−k1 L1k1 L3k1 k1 + k11 0 0 0

−k2 −L2k2 L3k2 0 k2 + k12 0 0

−k3 L1k3 −L4k3 0 0 k3 + k13 0

−k4 −L2k4 −L4k4 0 0 0 k4 + k14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where L1 and L2 are, respectively, the half of axle track of front and rear wheel, L3 and L4 are the distances
to respectively, front and rear axle from the center of gravity of a motor, and the summation of L3 and L4 is
the wheelbase of a motor. k1 (= k2) and k3 (= k4) are front and rear suspension spring stiffness, respectively,
k11 = k12 and k13 = k14 are front and rear tire stiffness, respectively. Throughout this numerical study,
[m1,m4,m4,m6,m7] = [1365, 46.8, 46.8, 41.4, 41.4] kg, m2 = Iy = 1.831 × 103 kgm2 and m3 = Ix =
4.98 × 102 kgm2; k1 = k2 = 2.2428 × 104 N/m, k3 = k4 = 2.7022 × 104 N/m, k11 = k12 = 2.32342 ×
105 N/m, and k13 = k14 = 2.92982× 105 N/m; L1 = L2 = 0.7165m, L3 = 1.1135m, and L4 = 1.5415m;
C = 0.1M + 0.001K Ns/m. Note that the system has proportional damping, because the damping matrix C
can be expressed as a linear combination of M and K . The simulated impulse function serves as the excitation
input acting on the seventh mass point of the system. The sampling interval is chosen as �t = 0.005 s, and
the sampling period is T = Nt · �t = 60.000 s. Assume the system is initially at rest, and the displacement
responses of the system can be obtained using Newmark’s method [16] as shown in Fig. 2.

The Newmark integration method is based on the assumption that the acceleration varies linearly between
two instants of time. The parameters α and β in the Newmark’s method indicate how much the acceleration at
the end of the interval enters into the velocity and displacement equations at the end of the time interval �t in
the resulting expressions for the velocity and displacement vectors for a multi-degree-of-freedom system. α
and β can be chosen to obtain the desires accuracy and stability characteristics. In the numerical simulations
of this paper, we choose the average acceleration method for the Newmark’s algorithm in the case of α = 1/4
and β = 1/2, which correspond to the assumption of constant acceleration within �t . Noted that the average
acceleration method is unconditionally stable no matter how �t is large and it is accurate only if �t is small
enough.

In general, the important modes of a system under consideration could be roughly found by examining
the Fourier spectra associated with the measured response histories. However, it may lead to a distortion in
the modal identification, especially for a system with modal interference among the modes. The typical plots
of amplitude frequency response functions of the system are also shown in Fig. 2, where we clearly see the
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Fig. 2 Typical plots of the displacement responses and the corresponding amplitude frequency response functions and phases
associated with impulse responses of the 1st and 4th DOF of the system of a motor vehicle

serious problems of modal interference. According to the theory presented in the precious sections, the phase
angle diagram of frequency response function, as also shown in Fig. 2, can be employed to distinguish the
structural modes influenced by modal interference and then avoid the phenomenon of omitted modes from the
distortion of system order determined by frequency response function. A typical plot of the phase frequency
response function H47(ω) is shown at least the 5 excited modes of this 7-DOF systemwith modal interference.
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Fig. 3 Distribution of the singular values associated with (a) [A] and (b) [X][X]T, respectively, of the impulse responses of a
7-DOF motor vehicle subjected to an impulse excitation

Table 1 Results of modal identification of the 7-dof system of a motor vehicle through the ITD method with channel-expansion
technique

Mode Natural frequency (Hz) Damping ratio (%)

Exact ITD Error (%) Exact ITD Error (%)

1 0.80 0.81 0.69 1.25 1.25 0.01
2 1.24 1.27 2.16 1.03 1.03 0.01
3 2.94 3.08 4.76 1.19 1.19 0.07
4 11.74 11.99 2.09 3.76 3.40 9.63
5 11.76 11.70 0.50 3.76 3.82 1.57
6 13.99 13.36 4.54 4.45 4.03 9.60
7 14.02 13.94 0.54 4.46 4.53 1.62

Furthermore, by referring to Sect. 3 in this paper, the singular value decomposition (SVD) in conjunction
with least-squares analysis is introduced in the procedure of Ibrahim time domain method to obtain [A] and
accurately determine the system order. The number of nonzero singular values is the rank of [X][X]T and is
also the system order. By performing the SVD algorithm of [X][X]T, we could directly determine the system
order without the procedures of examining the Fourier spectrum associated each of the response channels to
roughly find the important modes of the system under consideration. Comparing the singular values of [A]
with those of [X][X]T from the free-decay response data of a 7-DOF motor vehicle subjected to an impulse
excitation, as shown in Fig. 3, the distribution of the singular values of [X][X]T shows a relatively obvious
drop around the singular value number 14, which determines system order and the number of modes to be
identified and reduces more calculations. The results of modal parameter identification are summarized in
Table 1, which shows that the errors in natural frequencies are less than 1% and the error in damping ratios
is less than 10%. The identified mode shapes are also compared with the exact values in Fig. 4, in which we
observe good agreement. The first three mode shapes are modal behavior with bounce, pitch, and roll modes
of the global motor vehicle, while the last four mode shapes are modal behavior with bounce modes of the
local left front, right front, left rear, and right rear wheels.

To further examine the effectiveness of the present method for the more complex structural, we consider
a linear two-dimensional model of one-half of a railway vehicle excited by a simulated impulse loading. The
dynamic system used in the numerical study (a sketch is shown in Fig. 5) is identical to that in Reference
[17–19] and has the features of modal damping levels ranging from low (1.74%) to relatively high (18.78%)
and a pair of closely spaced modes (frequency separation smaller than 0.25 Hz). The system is a 6-DOF
system with u = [u1, u2, u3, u4, u4, u6], where u4 = θ is the rotational displacement of pitch behavior of
car body and others are the vertical displacement of bounce behavior of the car body, leading (trailing) bogies
and leading (trailing) wheelsets. The mass matrix is a diagonal matrix, diag M = [m1,m2,m3,m4,m4,m6],
where m4 = IB is the mass moment of inertia of the rigid body B at the top of the structure. The stiffness and
damping matrices can be obtained as
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Fig. 4 Comparison between the identified mode shapes and the exact mode shapes of the 7-DOF system of a motor vehicle
subjected to an impulse input
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Fig. 5 Schematic plot of the 6-dof system of a linear two-dimensional model of one-half of a railway vehicle [16–18]

K =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 −k3L 0 0
0 −k3 k3 + k4 k3L − k4L −k4 0
0 −k3L k3L − k4L k3L2 + k4L2 k4L 0
0 0 −k4 k4L k4 + k5 −k5
0 0 0 0 −k5 k5 + k6

⎤
⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 0 0 0 0
−c2 c2 + c3 −c3 −c3L 0 0
0 −c3 c3 + c4 c3L − c4L −c4 0
0 −c3L c3L − c4L c3L2 + c4L2 c4L 0
0 0 −c4 c4L c4 + c5 −c5
0 0 0 0 −c5 c5 + c6

⎤
⎥⎥⎥⎥⎥⎦

where L is the horizontal distance between the center of the rigid body B and the springs/dashpots. Throughout
this numerical study, [m1,m2,m3,m4,m6] = [1200, 850, 4125, 850, 1220] kg, and m4 = IB = 1.25 ×
105 kgm2; k1 = k6 = 3.0×107 N/m, k2 = k4 = 1.0×106 N/m and k3 = k4 = 6.0×106 N/m; c1 = c6 = 0,
c2 = c4 = 6.0 × 103 N s/m, and c3 = c4 = 1.8 × 104 N s/m; L = 8.53 m. Note that this 6-DOF system of
one-half of a railway vehicle has non-proportional damping, since the damping matrix C cannot be expressed
as a linear combination of M and K. The simulated impulse function serves as the excitation input acting on
the sixth mass point of the system. The sampling interval is chosen as �t = 0.001 s, and the sampling period
is T = Nt · �t = 1.000 s. Assume the system is initially at rest, and the simulated impulse responses of the
system can be obtained using Newmark’s method as shown in Fig. 6. The typical plots of amplitude frequency
response functions of the system are also shown in Fig. 6, where we clearly see the serious problems of modal
interference among the modes with relatively high damping and a pair of closely spaced modes. A typical plot
of the phase frequency response function H16(ω) is shown at least the 5 excited modes of this 6-DOF system
with modal interference. Through the SVD analysis, the distribution of the singular values of [X][X]T shows
a clear drop around the 12th singular value, as shown in Fig. 7, from which the order of the system model, i.e.,
the number of modes to be identified, is determined to be 12. The results of modal estimation obtained from
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Fig. 6 Typical plots of free-decay responses and the corresponding amplitude frequency response functions and phases associated
with impulse responses of the 1st and 3rd DOF of the system of a railway vehicle

the simulated impulse response data contaminated with 5% noise are summarized in Table 2, which shows
that the both errors in natural frequencies and damping ratios are less than 3%. Note that for a system with
non-proportional damping, the “exact” modal parameters listed in Table 2 are actually the equivalent values
obtained by solving a simplified generalized eigenvalue problem of equation of motion in the state-space form
for free-vibration analysis. Also, it is good agreement with the minimum value of MAC (Modal Assurance
Criterion) [20] between the identified and exact mode shapes of about 0.90.
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Fig. 7 Distribution of the singular values associated with [X][X]T of the impulse responses (contaminated with 5% noise)
corresponding to an impulse input

Table 2 Results of modal identification of the 6-dof system of a railway vehicle through the ITD method with channel-expansion
technique (from simulated impulse response data contaminated with 5% noise)

Mode Natural frequency (Hz) Damping ratio (%) MAC

Exact ITD Error (%) Exact ITD Error (%)

1 2.79 2.83 1.43 4.89 5.01 2.45 0.90
2 3.71 3.71 0.07 6.62 6.61 0.15 0.98
3 16.55 17.29 4.47 16.65 16.78 0.78 0.96
4 19.27 20.23 4.98 18.78 18.77 0.05 0.97
5 25.36 25.30 0.24 1.74 1.75 0.57 0.96
6 25.57 25.56 0.04 1.75 1.73 1.14 0.95

Note that in the formulations of motor and railway vehicles of the numerical simulations, the both mass
matrices are diagonal; however, the both stiffness matrices are not diagonal, but are symmetric. It indicates that
the resultant motion of the two types of vehicle is both translational and rotational when either a displacement
or torque is applied through the center of gravity of the body as an initial condition [21]. Thus, using these
coordinates, the models of motor and railway vehicles in the numerical simulations are both statically coupled,
but not dynamically coupled.

6 Conclusions

Modal interference often degrades the accuracy of identification results and even causes problems of identifia-
bility in the process of modal identification. An extended channel-expansion technique in Ibrahim time domain
method (ITD) is presented in this paper for modal identification of structures with modal interference. In addi-
tion, the accurate estimation of the order of system matrix is important when performing the ITD method. By
introducing the singular value decomposition in conjunction with least-squares analysis to solve the system
matrix, without the procedures of examining the Fourier spectrum associated each of the response channels
to roughly confirm the rich frequency content around the structure modes of interest, the order of the system
can be determined to avoid the phenomenon of omitted modes and also significantly reduce relatively much
calculations required in the conventional channel-expansion technique. Furthermore, the phase angle diagram
of frequency response function can be employed to effectively distinguish the structural modes influenced by
modal interference. Through numerical simulations, including two examples of a model of the motor vehicle,
and a linear two-dimensional model of one-half of a railway vehicle, the proposed method has been confirmed
the validity for modal identification of a system with modal interference.
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