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Abstract In this paper, we present a general methodology for solving buckling problems for inhomogeneous
columns. Columns that are treated are functionally graded in axial direction. The buckling mode is postulated
as the general order polynomial function that satisfies all boundary conditions. For specificity, we concentrate
on the boundary conditions of simple support, and employ the second-order ordinary differential equation that
governs the buckling behavior. A quadratic polynomial is adopted for the description of the column’s flexural
rigidity. Satisfaction of the governing differential equation leads to a set of nonlinear algebraic equations that
are solved exactly. In addition to the recovery of the solutions previously found by Duncan and Elishakoff,
several new solutions are arrived at.
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1 Introduction

Leonhard Euler [1] was the first investigator that derived a solution for the buckling load of inhomogeneous
column. In the next, in the nineteenth century, Engesser [2] determined a closed-form solution, although
with vanishing flexure rigidity values at the ends of the column. The twentieth century witnessed several
other closed-form solutions. Namely, Duncan [3] derived the following closed-form solution for the beam. He
studied the column with variable moment of inertia

I =
(
1 − 3

7
ξ2

)
I0 (1)

with I0 being the moment of inertia at the origin, and ξ = x/L is the nondimensional axial coordinate, L
being the column’s length. Duncan postulated the mode-shape f (ξ) of buckling as a fifth-order polynomial

f (ξ) = 7ξ − 10ξ2 + 3ξ5 (2)

and arrived at the following closed-form expression for the buckling load PCr

PCr = 60

7

E I0
L2 (3)
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where E is the modulus of elasticity. Duncan [3] did not explain how he derived the expression for the buckling
mode and the moment of inertia.We note that since the governing differential equation contains the product EI,
with E denoting modulus of elasticity, one can treat the Duncan’s problem as that of the axially functionally
graded column with variable flexural rigidity D(ξ)

D(ξ) = E(ξ)I (ξ), (4)

since it is immaterial whether the modulus of elasticity or the moment of inertia constitutes the variable
property.

Elishakoff [4,5] suggested to postulate a fourth-order polynomial as representing the buckling mode shape

f (ξ) = ξ − 2ξ3 + ξ4 (5)

He also postulated polynomial expression for the flexural rigidity

D(ξ) = b0 + b1ξ + b2ξ
2 (6)

and derived the following expression for the buckling load

PCr = −12b2
L2 (7)

where in order to guarantee the positive value of the buckling load the coefficient b2 must take a negative value.
Numerous other solutions are summarized in the monograph by Elishakoff [6]. Recently Elishakoff et. al. [7]
gave the complete derivation of the solutions by Duncan and Elishakoff, and obtained two additional solutions
which are rederived hereto. These results were obtained for parabolic variation of the axially functionally
graded member stiffness, and using a fifth-order polynomial function for the buckling mode shape.

In this study we generalize both the Duncan’s [3], Elishakoff’s [6] and Elishakoff’s et al. [7] solutions
in such a manner that our methodology yields novel solutions that have not been reported elsewhere. Recent
studies devoted to Buckling of nonhomogeneous columns include those by Eisenberger [8,9], Ayadoğlu [10],
Li [11], Maalawi [12], Singh and Li [13], Coscun [14], Darbandi et al. [15], Huang and Li [16], Huang and
Luo [17], Bubilio [18].

2 Basic equations

We study buckling of a functionally graded column that is simply supported at its both ends. We resort to the
governing differential equation

D(ξ)
d2 f (ξ)

dξ2
+ PcrL

2 f (ξ) = 0 (8)

Instead of postulating the fourth-order polynomial for f (ξ) as was done by Elishakoff [4,5], or the fifth-order
polynomial as was adopted by Duncan [3], we resort to a higher-order polynomial. Let us demonstrate how the
suggested methodology is performing for ninth-order polynomial, postulating the buckling mode as follows:

f (ξ) =
∑9

i=0
aiξ

i = a0 + a1ξ + a2ξ
2 + a3ξ

3 + a4ξ
4

+ a5ξ
5 + a6ξ

6 + a7ξ
7 + a8ξ

8 + a9ξ
9 (9)

Satisfaction of the boundary condition f (0) = 0 leads to a0 = 0. The demand that the bending moment
vanishes at ξ = 0, results in a2 = 0. Enforcement of the condition that the displacement vanishes at the end
ξ = 1 yields the condition

a1 + a3 + a4 + a5 + a6 + a7 + a8 + a9 = 0 (10)

Likewise, the demand that the bending moment vanishes at ξ = 1 leads to

6a3 + 12a4 + 20a5 + 30a6 + 42a7 + 56a8 + 72a9 = 0 (11)



A general way of obtaining novel closed-form solutions 1643

The second term in Eq. (8), namely PCrL2 f (ξ) represents a ninth-order polynomial. In the first term, f
′′
(ξ)

constitutes a seventh-order polynomial. In order that the first term D(ξ) f
′′
to represent the ninth-order poly-

nomial, as is the second term, the flexural rigidity must be a quadratic polynomial equation:

D(ξ) = b0 + b1ξ + b2ξ
2 (12)

where D0 is the value of the flexural rigidity at the origin of the coordinate system. We substitute Eqs. (9) and
(12) into Eq. (8) subject to constraints given in Eqs. (10) and (11). The result is the ninth-order polynomial,

R(ξ) = r0 + r1ξ + r2ξ
2 + r3ξ

3 + r4ξ
4 + r5ξ

5 + r6ξ
6 + r7ξ

7

+ r8ξ
8 + r9ξ

9 = 0 (13)

In order Eq. (8) to be fulfilled, it is necessary and sufficient all coefficients ri vanish, i.e.

r0 = 0 (14)

r1 = 6D0a3 + PcrL
2a1 = 0 (15)

r2 = 6a3b1 + 12a4 = 0 (16)

r3 = 12D0a4b1 + 6D0a3b2 + 20D0a5 + PcrL
2a3 = 0 (17)

r4 = 20D0a5b1 + 12D0a4b2 + 30D0a6 + PcrL
2a4 = 0 (18)

r5 = 30D0a6b1 + 20D0a5b2 + 42D0a7 + PcrL
2a5 = 0 (19)

r6 = 42D0a7b1 + 30D0a6b2 + 56D0a8 + PcrL
2a6 = 0 (20)

r7 = 56D0a8b1 + 42D0a7b2 + 72D0a9 + PcrL
2a7 = 0 (21)

r8 = 72D0a9b1 + 56D0a8b2 + PcrL
2a8 = 0 (22)

r9 = 72D0a9b1 + PcrL
2a9 = 0 (23)

We obtain 11 equations (10–11, 15–23) with 11 unknowns: a1, a3, a4, a5, a6, a7, a8, a9, b1, b2, and PCr .

Table 1 Results of the coupled equations for the mode and stiffness variation (14 solutions)

SN 1 2 3 4 5 6 7 8 9 10 11 12 13 14
PD 9 7 5 8 5 5 6 4 6 6 7 7 7 9

a0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a1
34157
23516

44286
26963

7
3

13254
10157

8
3 − 1

6
64769
44449 1 5125

40412
7808
6343

488
6343

2048
98059

5231
72232

10462
9029

a2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a3 − 55679
24227

57335
22686 − 10

3 − 149729
67087

20
3

5
3 − 52577

20371 −2 − 22825
29977 − 102480

42211 − 25620
42211 − 22147

70033 − 20292
38435 − 77882

36879

a4 0 0 0 14179
69336 −5 − 5

2
20320
44449 1 52041

209587
20496
29963

10248
29963

30706
124377

10973
68422

10973
34211

a5 1 1 1 1 1 1 1 0 1 1 1 1 1 1

a6 0 0 0 − 12405
70033 0 0 − 1

3 0 − 29977
48846 − 46612

82005 − 40517
35641 − 28947

18380 − 35140
58579

17570
58579

a7 − 20805
127444 − 9271

80517 0 − 8289
61910 0 0 0 0 0 9271

114174
15623
48100

17776
28515 − 12837

26099 − 12837
104396

a8 0 0 0 7951
237542 0 0 0 0 0 0 0 0 25433

51128
5521
88791

a9
5319

593060 0 0 0 0 0 0 0 0 0 0 0 − 12641
114355 − 1599

231442

d0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d1 0 0 0 7795
42537

3
2 3 20065

56641 1 19447
29817

15124
26839

30248
26839

44650
28597

19369
31882

16647
54803

d2 − 18008
136575 − 7562

34401 − 3
7 − 7795

42537 − 3
4 −3 − 20065

56641 −1 − 25960
21619 − 27087

96137
30248
26839 − 33227

15361
19369
31882 − 16647

109606

Pcr 9.4935 9.2324 8.5714 10.2621 15 60 10.6275 12 36.0239 11.8337 47.3347 90.8492 43.7415 10.9354
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3 Derived solutions

Using Maple we obtain 14 distinct solution for the 11 unknowns. These are given in Table 1 ordered in
the sequence of derivation. The order of the polynomial in each solution is given too. One can see that the
Duncan’s [3], Elishakoff’s [6], and Elishakoff’s et. al. [7] solutions are listed as solution number 3, 8, 5 and
6, respectively. One can also identify that there are solutions with significantly higher buckling loads, and
these are related to the second and even third buckling modes. In Table 2 the buckling mode shapes f (ξ),
and the stiffness variation D(ξ), are plotted schematically indicating symmetric, anti-symmetric or general
behavior of the mode shape and/or grading variations. Additionally, the solutions numbers are indicated for
the solutions that have the above general shapes. In parentheses the polynomial order is given. It can be seen

Table 2 Buckling modes and stiffness variations

Type F(x) D(x) Solutions 

A 
1(9) 
2(7) 
3(5) 

Symmetric Descending 

B 

4(8) 
7(6) 
8(4) 

Symmetric Symmetric 

C 

5(5) 
10(7) 
14(9) 

Symmetric Ascending 

D 

6(5) 
11(7) 
13(9) 

Anti-symmetric Symmetric 

E 9(6) 

General General 

F 12(7) 

General General 
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Table 3 Efficiency calculations for the 14 solutions

Solution number Solution type Polynomial degree Dave Pcr Ef

First mode
8 B 4 1.167 12 1.0422
7 B 6 1.059 10.6275 1.0168
3 A 5 0.857 8.5714 1.0132
5 C 5 1.5 15 1.0132
2 A 7 0.927 9.2324 1.0094
10 C 7 1.188 11.8337 1.0094
4 B 8 1.031 10.2621 1.009
1 A 9 0.956 9.4935 1.0061
14 C 9 1.101 10.9354 1.0061
Second mode
6 D 5 1.5 60 1.0132
11 D 7 1.188 47.3347 1.0094
13 D 9 1.101 43.7415 1.0061
9 E 6 0.926 36.0239 0.9856
Third mode
12 F 7 1.06 90.8492 0.9652

that types A,B, and C are for the first mode, D and E are for the second, and F is for the third mode. All the
first order modes have symmetric mode shapes; moreover, they differ with respect to the stiffness variation.
Case D is for symmetric stiffness variation and anti-symmetric buckling mode, and for the remaining cases E
and F there are no indications of symmetry, these constituting general cases.

In Table 3 additional values are given for the solution. First, an “equivalent uniform stiffness”, Dave, for
each case is given. It is defined as

Dave =
∫ 1

0
D(ξ)dξ (24)

and it will allow us to compare the efficiency of each solution. Another measure of effectiveness of the solution
is also given—the nondimensional ratio of buckling loads

Ef = PcrL

π2Dave
(25)

constituting the buckling load of the graded column divided by the normalized buckling load for a constant
cross section member. Then, observation of the first 9 solutions listed in Table 3 for the first mode buckling
loads, enables one to deduce that there are solutions for all the polynomial degrees between 4 and 9. For the
odd values, 5, 7, and 9, there are two solutions which are found to be identical, if one reverses the direction
of the variation, and this is not clear as we normalize D(ξ) with respect to the value at ξ = 0. The values in
Table 3 for Ef are descending, and it can be seen that the best solution is the fourth-order variation (Elishakoff
[4,5]), and then the sixth (Elishakoff [7]), fifth (Duncan [3]), seventh-, eighth- and ninth-order solution. We
have to stress that over all the differences are small.
Here, we also like to comment that if one tries to use higher-order functions for the mode shapes in Eq. (9),
the set of the nonlinear equations that is obtained does not yield additional new buckling modes.

4 Summary

In this study we present a novel method to find functionally graded beams, with axial stiffness variation, to
obtain simple polynomial buckling modes. It was found that in addition to four previously known such modes
one can obtain many other solutions for the first buckling mode, and also for higher-order buckling modes. It
was shown that for the fourth-order polynomial variation (Elishakoff, [4,5]), one will obtain the best effective
solution, with over 4% increase in overall performance. The pertinent question arises on the importance
of the found closed-form solutions. As Shan and Chen [19] write “the mechanical instability of materials,
especially biological materials, is often associated with material inhomogeneity and nonlinearity. In particular,
exploring the role of mechanical instability in the morphogenesis of living tissues and organs represents new
challenges to engineers. For example, not only does mechanical buckling have significant implications in



1646 M. Eisenberger, I. Elishakoff

addressing cytoskeletal mechanics, but also it plays an important role in the morphogenesis of tortuous veins
often observed in a variety of diseases…” In light of these observations obtaining closed-form solutions that
can serve as benchmark problems appear important. Another question that might interest the reader appears
to be why we limited ourselves by the ninth-order polynomials. The previous studies dealt with fourth-order
[6] and fifth-order [3] polynomials. Our goal in this work was to devote a study to higher-order polynomial
solutions. Naturally, the higher the order of the polynomial more closed-form solutions presumably could be
determined. Only the complexity of the derivations limits the order of the treated polynomials. We envision
that in the future arbitrary order of polynomials could be treated by some artificial intelligence techniques.

The study on buckling of functionally graded columns with boundary constrains is underway and will
be reported elsewhere, because of its importance [20] to implications in snake locomotion and buckling of
microtubules of cell cytoskeleton.

Acknowledgements Authors appreciate constructive comments of the anonymous reviewers.
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