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Abstract Linear matching method has been widely used for the numerical analysis of limit and shakedown.
It has been proved theoretically that linear matching method could offer the monotonically reducing sequence
of upper bound. Nevertheless, it still remains open whether linear matching method can obtain the conversed
and reliable lower bound or not. Thus, an elastic compensation method is used generally for the evaluation of
lower bound, but limit analysis using linear matching method and elastic compensation method needs double
iterative computations. Moreover, the convergence can be checked only after the computation is finished
because linear matching method and elastic compensation method cannot be performed simultaneously. From
this, we propose a simple method in order to improve the numerical solution of lower bound by linear matching
method. The Young’s modulus varying spatially is determined in every iteration such that not only the stress
state lies on the yielding surface but also the strain state does not exceed a certain value of reference strain,
leading to the evaluation of lower bound based on the strain state but not the stress one. The proposed method
can improve the numerical solution of lower bound by linear matching method without any affection on the
upper bound. ANSYS UserMat is used for implementing the current method. The limit analysis is performed
like the general elastic finite element analysis in ANSYS. Some numerical examples are considered in order
to confirm the effectiveness of proposed approach. Numerical examples showed the validity and improvement
of numerical accuracy of our approach. It should be mentioned that our approach can predict the lower bound
and upper one simultaneously within the framework of only linear matching method without using the elastic
compensation method.

Keywords Linear matching method · Elastic compensation method · Limit analysis · Finite element
analysis · ANSYS UPF

1 Introduction

Conventional numerical methods in the limit and shakedown analysis are mostly based on the mathematical
programming such as interior-point method or second-order cone programming (SOCP) [1,2]. Numerical
methods based on the mathematical programming are successfully implemented, combining the finite element
software with the optimization packages. For example, Simon and Weichert [2] used the commercial finite
element software ANSYS for elastic stress computation as well as the software package IPSA for numerical
optimization and compared obtained results with ones by various packages including LANCELOT, IPDCA
and IPOPT.

The linear matching method (LMM) originally proposed by Ponter et al. [3,4] makes it possible to conduct
the limit analysis using only finite element analysis but not using the mathematical programming. The LMM
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of which the iterative process can be considered as the nonlinear mathematical programming in essence is a
powerful method for limit analysis via the iteration of linear elastic FEAs. It has been proved theoretically that
the LMM could offer a monotonically reducing sequence of upper bound.

Even though the LMM has been widely used for the limit analysis of metal structures [5–7] as well as
composite materials [8–11] subjected to thermal and mechanical loading and implemented by using the finite
element software such as ABAQUS [6,12] and ADINA [9], it has an important disadvantage that the lower
bound computed in iterative process could not be used for the evaluation of error of upper bound.

This is due to the fact that solution of lower bound may be seriously oscillated in iteration process in
spite that lower bound converges to upper one as the iteration number increases. Moreover, the evaluation of
lower bound needs much of iterations for its convergence. To overcome this difficulty, Pisano et al. [9–11]
proposed to use the LMM for the evaluation of upper bound and the Elastic Compensation Method (ECM) for
the computation of lower bound. Nevertheless, in author’s opinion, their method for obtaining the lower bound
by the ECM and evaluating the upper one by LMM may be failed to compute lower bound and upper one
simultaneously and to evaluate the error between lower bound and upper one in real-time in iterative process
due to the difference in both algorithms. In addition, this method needs nearly the double size of computational
cost.

In this paper, a simple method is proposed in order to improve the numerical solution of lower bound by
the LMM. The Young’s modulus varying spatially is determined in every iteration such that not only stress
state lies on the yielding surface but also strain state does not exceed a certain value of reference strain, leading
to the evaluation of lower bound based on strain state but not stress one. The proposed method can improve
the numerical solution of lower bound by LMM without any affection on the upper bound. The lower bound
newly evaluated based on the strain is always smaller than the upper bound in the iterative process and finally
equal to the upper bound after sufficient numbers of iteration go on. Some numerical examples are considered
in order to confirm the effectiveness of proposed approach. Numerical examples show the validity and the
improvement of numerical accuracy of our approach. It should be mentioned that our approach can predict
lower bound and upper one simultaneously within the framework of only the LMM without using the ECM.

This paper is organized as follows: The basic formulation of LMM and its algorithm is briefly introduced
in Sect. 2. Section 3 describes a modified algorithm of LMM and proofs of some lemmas. Several numerical
problems including plane problem, axisymmetric problem and three dimensional problem are illustrated in
Sect. 4 for the validation of proposed approach. Finally, concluding remarks are presented in Sect. 5.

2 Linear matching method

2.1 Upper and lower bound theorem

The material is assumed to be rigid/perfectly-plastic which follows the von Mises yielding condition. It is
assumed that a body occupies the volume V with the surface S where a traction is given as zero or P · pi (x) on
ST and displacement ūi = 0 is specified on Su(S = ST + Su). Here, P is a scalar parameter defining relative
magnitude of applied load as compared with a reference load pi . The lower and upper bound theorem of limit
load can be postulated as follows, respectively [3].

Lower bound theorem
If, for the external load P = PLB, there exists a statically possible stress field σ ∗

ij such that

f
(
σ ∗
ij

)
≤ σy (1)

at every point within V , then PL ≥ PLB. Here, f is a von Mises yield function and σy is the uniaxial yield
stress. Thus, one can know that a maximum value of PLB becomes lower bound of limit load PL.

Upper bound theorem
If, for the external load P = PUB, there exists a kinematically possible displacement rate field u̇∗

i and its
corresponding strain rate field ε̇∗

ij such that

PUB

∫

ST
pi u̇

∗
i =

∫

V
σ
p∗
ij ε̇∗

ijdV (2)

where σ
p∗
ij is a stress point at yield associated with ε̇∗

ij, then satisfies PL ≤ PUB. Hence, one can know that a
minimum value of PUB becomes upper bound of limit load PL.



A modified algorithm of linear matching method… 1401

According to above theorems, the upper and lower bound of limit load can be extracted by reducing into
the optimization problem, respectively.

2.2 Conventional linear matching method

For the LMM, the Young’s modulus is changed spatially such that the stress field corresponding to a certain
kind of kinetically possible strain field is placed on the yielding surface at every point ofmaterial. The Poisson’s
ratio is recommended to take the value close to 0.5 in order to account for the plastic incompressibility, in
general [3,4]. Thus, we adopt the Poisson’s ratio as 0.4999999 in this work.

The LMM algorithm could be formulated as follows [3].

• Initialization: Set P0
UB = 1 and E1(x) = E .

• kth iteration:

The linear elastic analysis with the Young’s modulus of Ek(x) is performed under a load of p and as
a result, σ k

ij , εkij and uki is obtained, respectively. And then, lower and upper bounds of the limit load at kth
iteration are evaluated as

Pk
LB = σy

max
(
σeq

(
σ k
ij

)) (3)

Pk
UB =

∫
V σyεeq

(
εkij

)
dV

∫
ST

pi uki dS
(4)

where σeq and εeq denote the equivalent stress and equivalent strain, respectively.
The Ek+1 at k + 1th iteration is taken as follows.

Ek+1 = σy

εeq

(
εkij

) (5)

Equation (5) gives Ek+1 at k + 1th iteration such that the stress field corresponding to strain field εkij
obtained at kth iteration lies on the yielding surface.

3 A modified linear matching method

We update the Young’s modulus at k + 1th iteration as

Ẽk+1 = Eref

Ek+1
min

Ek+1 (6)

where Ẽk+1 is the Young’s modulus, Ek+1 the one obtained by Eq. (5), Ek+1
min = min(Ek+1(x)). Eref , being

an arbitrary constant, is taken as actual Young’s modulus in this work, in convenience.
The lower bound at kth iteration is newly evaluated as follows but not Eq. (3).

P̄k
LB = εy

max
(
εeq

(
εkij

)) (7)

Here, εy = σy/Eref .
We denote the upper and lower bounds evaluated according to Eqs. (3) and (4) by P̃k

UB and P̃
k
LB, respectively,

at kth iteration of the LMM with Young’s modulus computed by Eq. (6). To distinguish this LMM from the
conventional one, we call P̃k

UB and P̃k
LB the modified upper and lower bound, respectively.

To make clear the meaning of Eq. (6), we assume two distributions of Young’s modulus with E1(x) and
E2(x) = αE1(x) for the same structure, respectively. Here, α is a constant. Denoting the stress and strain field
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Fig. 1 Modified LMM

corresponding to E1(x) as σ1 and ε1, and E2(x) = αE1(x) as σ2 and ε2, it is self-evident that one can get
following relation according to the elasticity theory.

σ2 = σ1, ε2 = 1

α
ε2 (8)

Equation (8) implies that only the strain field decreases (or increases) by α times without the change in
stress field when the distribution of Young’s modulus increases (or decreases) by α times. Equation (6) could
be rewritten as follows.

Ẽk+1 = Eref

Ek+1
min

Ek+1 = max εkeq

εy
Ek+1 = αEk+1 (9)

Equation (9) implies that ourmodifiedLMMyields the elasticitymodulus Ẽk+1, being theYoung’smodulus
Ek+1 in the classical LMM multiplied by a certain constant. From Eqs. (9) and (8), considering expression
(5) of the Young’s modulus in the classical LMM, one can know that α scales the strain field obtained at kth
iteration lest the equivalent strain exceeds a certain value of strain, εy , and that Ek+1 makes the stress field to
lie on the yielding surface for such a scaled strain field. This is shown schematically from Fig. 1.
Furthermore, from Ek+1

min ≤ Ek+1, one can get following relation.

Ẽk+1 ≥ Eref (10)

Based on above discussions, we can get three comments as follows.
First comment The modified upper bound and lower bound, P̃k

UB and P̃k
LB, are equal to the conventional

upper bound and lower one, Pk
UB and Pk

LB, respectively. Here, P̃
k
UB and P̃k

LB means the upper bound and the
lower one evaluated by Eqs. (4) and (3) in our modified LMM, respectively.

This comment can be proved as follows.
According to Eq. (9), the modified Young’s modulus, Ẽk , is expressed as

Ẽk = αEk . (11)

From Eq. (8), one can know that stress field, σ̃ k
ij , strain field, ε̃kij, and displacement field, ũki , are related to

the conventional σ k
ij , ε

k
ij and u

k
i as follows.

σ̃ k
ij = σ k

ij , ε̃kij = 1

α
εkij, ũki = 1

α
uki (12)
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Substituting the second and the third in Eq. (12) into Eq. (4), one can obtain the following expression.

P̃k
UB =

∫
V σyεeq

(
ε̃kij

)
dV

∫
ST

pi ũki dS
=

∫
V σyεeq

(
εkij

/
α
)
dV

∫
ST

pi uki
/
αdS

=
∫
V σyεeq

(
εkij

)
dV

∫
ST

pi uki dS
= Pk

UB (13)

Thus, the convergence of modified upper bound, P̃k
UB, can be proved naturally by the convergence of upper

bound in the conventional LMM.
Likewise, substituting the first in Eq. (12) into Eq. (3) yields following relation.

P̃k
LB = Pk

LB (14)

Second comment The newly evaluated lower bound P̄k
LB is smaller than or equal to the upper bound Pk

UB.
This comment can be proved as follows.
According to Clapeyron’s theorem of the elasticity theory, the work done by external surface traction pi is

twice the strain potential energy as great as it is [13]. Namely,
∫

ST
pi u

k
i =

∫

V
σ k
ij ε

k
ijdV =

∫

V
σ k
eqε

k
eqdV =

∫

V
Ẽkεkeqε

k
eqdV (15)

Substituting Eq. (15) into Eq. (4), one gets the following.

Pk
UB =

∫
V σyε

k
eqdV∫

V Ẽkεkeqε
k
eqdV

(16)

Introducing εkeqmax = max
(
εkeq(x)

)
and considering Ẽk ≥ Eref at all points according to Eq. (10), following

relation can be obtained.

Pk
UB =

∫
V σyε

k
eqdV∫

V Ẽkεkeqε
k
eqdV

≥ εy

εkeqmax

∫
V Erefε

k
eqdV∫

V ẼkεkeqdV
≥ εy

εkeqmax

∫
V εkeqdV∫
V εkeqdV

≥ εy

εkeqmax
= P̄k

LB (17)

Namely, the newly evaluated lower bound P̄k
LB is smaller than or equal to the upper bound Pk

UB.
In similar way, one can prove that the lower bound Pk

LB evaluated by Eq. (3) is smaller than or equal to the
upper bound Pk

UB.
In fact, combining Eq. (15) with Eq. (4), following relation is obtained.

Pk
UB =

∫
V σyε

k
eqdV∫

V σ k
eqε

k
eqdV

≥ σy

max
(
σ k
eq

)
∫
V εkeqdV∫
V εkeqdV

≥ σy

max
(
σ k
eq

) = Pk
LB (18)

Third comment The newly evaluated lower bound evaluated by Eq. (7) converges to Pk
LB and Pk

UB as
k → ∞. Namely, P̄k

LB → Pk
LB and P̄k

LB → Pk
UB, k → ∞.

This comment can be proved as follows.
After performing sufficient numbers of iterations, let εk−1

eq = εkeq.
According to Eqs. (5) and (6),

Ẽk = Eref

min σy

εk−1
eq

· σy

εk−1
eq

= Eref
max εk−1

eq

εk−1
eq

= Eref
max εkeq

εkeq
(19)

σ k
eq = Ẽkεkeq = Eref

max εkeq

εkeq
εkeq = Eref max εkeq. (20)

Substituting Eq. (20) into Eq. (3), one can obtain the following relation.

Pk
LB = σy

max σ k
eq

= σy

Eref max εkeq
= εy

max εkeq
= P̄k

LB (21)



1404 J.-H. Ri, H.-S. Hong

This means that the lower bound evaluated by Eq. (7) satisfies the lower bound theorem after performing
sufficient numbers of iterations.

Meanwhile, one can easily prove that the lower bound P̄k
LB evaluated by Eq. (7) converges to the upper

bound. In fact, combining Eqs. (20), (15) and (4), one can get the following relation.

Pk
UB =

∫
V σyε

k
eqdV∫

V Eref max
(
εkeq

)
εkeqdV

= σy

Eref max
(
εkeq

) = εy

max
(
εkeq

) = P̄k
LB (22)

Therefore, the lower bound P̄k
LB satisfies the lower bound theorem and becomes the upper bound in the

limit state of εk−1
eq = εkeq.

4 Numerical examples

As discussed above, the LMM is based on the analysis of elastic problem considering the incompressibility
with the Young’s modulus varying spatially. In order to perform the elastic analysis which is necessary for the
implementation of LMM, the commercially available FE code ANSYS was used in this paper. The incom-
pressibility of material can be considered sufficiently by using the element integration technology and the
element formulae in ANSYS which are appropriate for the incompressible property. The Young’s modulus
varying spatially can be defined by using UserMat, ANSYS subroutine. The value of Young’s modulus to be
used in current iteration is saved in the state variable of UserMat in the previous iteration. Once the current
iteration for implementing the LMM is finished, the upper bound is evaluated by using Eq. (4) and the lower
bound by using Eq. (3) or (7). Next, the analysis process is restarted in order to continue the next iteration.

4.1 Square plate with a hole in its center

The square plate with a hole in its center subjected to the uniform pressure p = σy is considered as shown
from Fig. 2. The limit load factor is equal to 0.8 for plane stress condition with R/L = 0.2. The FE model
consists of 5000 PLANE182 elements and 5151 nodal points. B-bar Method (Selective Reduced Integration)
is used for the element integration. Figure 3 compares the upper bound and the lower one predicted using the
modified LMM with the predictions evaluated by the ECM as the iteration number increases. In this figure,
solid line denotes the upper bound, dashed line represents the lower bound evaluated using Eq. (3), dotted line
shows the lower bound computed using Eq. (7), and dash-dot line indicates the lower bound predicted by ECM.
As seen from Fig. 3, the evaluation of lower bound by modified LMM using Eq. (7) shows the best trend of
convergence. Meanwhile, the prediction of lower bound by ECM also indicates the good trend of convergence,
but the convergence rate in that case is smaller than in the case using Eq. (7). Moreover, the computation of
lower bound by LMM using Eq. (3) shows the convergence with local oscillations.

Figure 4 shows the relative errors of lower bound evaluated using Eq. (7) and ECM against the analytical
solution of 0.8, respectively.

Necessary parameters such as stress components, strain ones andYoung’smodulus can be obtained at every
iteration. Figure 5 shows the distribution of von Mises stress and equivalent strain evaluated at 40th iteration
of modified LMM.

4.2 Single-edge cracked plate subjected to tension (SE(T))

Figure 6 shows the geometry of single-edge cracked plate under tension. Assuming plane strain condition,
the width b is equal to a half of the length 2L and a/b = 0.6 as well as b = 1 is applied. Here, a is a crack
length. Figure 7 presents FE mesh applied. The FE model consists of 7301 PLANE182 elements and 7455
nodal points. Considering the incompressibility, B-bar Method (Selective Reduced Integration) and mixed u-p
formulation are used.

The analytical solution of limit load factor λ = p/σy in plane strain condition is expressed as

λ = 1.702γ
{[

(0.206 − x)2 + 0.5876(1 − x)2
]1/2 + (0.206 − x)

}
x > 0.545 (23)

λ ≥ γ (1 − x − 1.232x2 + x3)
λ ≤ γ

(
1 − x − 1.232x2 + x3 + 22x3(0.545 − x)2

)
}

x < 0.545, (24)
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Fig. 2 Square plate with a hole in its center
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Fig. 3 Convergence process of upper bound and the lower one versus iteration number
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Fig. 4 Relative error of lower bound obtained using modified LMM and ECM as iterative process goes on

where x = a/b [14,15].

Here, γ is equals to 2/
√
3 for the vonMises yielding condition and 2/

√
3 for the Tresca yielding condition,

respectively.
According to Eq. (23), an analytical limit load factor is equals to 0.207 for this example. We computed

the lower bound of limit load by using the LMM, the modified LMM and the ECM, respectively. Figure 8
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Fig. 5 Distribution of von Mises stress and equivalent strain evaluated at 40th iteration of modified LMM: a von Mises stress; b
equivalent strain

Fig. 6 Geometry of SE(T) specimen

Fig. 7 FE mesh

compares the values of lower bound obtained using three different approaches as well as the upper bound as
iterative process goes on.

As seen from Fig. 8, the values of lower bound evaluated using the LMM show the some numerical
oscillations, while the convergence rate of ECM is slower than that of modified LMM even though it converges
to the upper bound.
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Fig. 8 Convergence process of upper and lower bound versus iteration number

Fig. 9 Relative error of lower bound obtained using modified LMM and ECM versus iteration number

Due to numerical error of finite element analysis, we assume that the ECM is the reliable approach for
the evaluation of lower bound and thus choose a value of 0.2096 obtained via 500 iterations of the ECM as a
reference value of lower bound. Figure 9 shows the relative error of lower bound evaluated using the modified
LMM and the ECM against the reference value, respectively. As shown from this figure, the LMM always
yields the smaller relative error than the ECM for the evaluation of lower bound of limit load.

4.3 Axisymmetric pressure vessel subjected to the internal pressure

The axisymmetric pressure vessel is studied, which has been investigated by many researchers [16,17], as
shown in Fig. 10. The geometrical dimension of Rb = 4500mm, Rz = L = 3000mm, l = 658.2mm,
Rk = 360mm and s = 225mm is assumed, respectively.

For the internal pressure of p = σy , the limit load factor is found as 0.0746 ∼ 0.083 in Ref [16] and as
0.078 in Ref [17], respectively.

The FEmodel consists of 384 PLANE182 elements and 485 nodal points. B-barMethod (SelectiveReduced
Integration) and mixed u-p formulation are used.

Figure 11 depicts the convergence process of lower bound evaluated using three different approaches as
well as upper bound. As seen from this figure, the evaluation of lower bound by the modified LMMhas the best
trend of convergence. A lower bound of 0.0783 was predicted via 500 iterations using the ECM. This value
was taken as a reference value, and the relative error was compared based on this value as shown in Fig. 12.

4.4 Pipe-junction under internal pressure

The 3D pipe-junction subjected to the internal pressure is considered for limit analysis as shown in Fig. 13.
The geometrical dimension of D = 39mm, d = 15mm and s = t = 3.4mm is assumed, respectively. For
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Fig. 10 a Geometry of pressure vessel; b FE mesh for limit analysis

Fig. 11 Convergence process of lower bound and upper one versus iteration number

Fig. 12 Relative error of lower bound obtained using modified LMM and ECM versus iteration number

the internal pressure of p = σy , a limit load factor is known as 0.1443 in Ref. [17] and as 0.134 in Ref. [18],
respectively.

The FE model consists of 2889 SOLID185 elements and 7037 nodal points. B-bar Method (Selective
Reduced Integration) and mixed u-p formulation are used.
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Fig. 13 a FE mesh for the limit analysis; b geometry of 3D pipe-junction
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Fig. 14 Convergence process of limit load factor for 3D pipe-junction
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Fig. 15 Relative error of lower bound obtained using modified LMM and ECM versus iteration number

Figure 14 depicts the convergence process of upper bound and the lower one evaluated using three different
approaches. As seen from Fig. 14, the evaluation of lower bound by the modified LMM has the best trend of
convergence.

A lower bound of 0.1485 computed via 500 iterations using the ECM was used as the reference value for
the comparison of relative error as shown in Fig. 15.
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5 Conclusion

In this paper, we proposed a modified LMM and a newly defined lower bound for improving the convergence
LMM. It was proved that this modified LMMnever affects the numerical solution of lower and upper bounds of
conventional LMM and that the newly evaluated lower bound satisfies the lower bound theorem and converges
to the upper bound after sufficient numbers of iteration go on. Several numerical examples confirmed that the
proposed algorithm is more accurate than other approaches. Moreover, our approach can effectively predict
the upper bound as well as the lower one simultaneously only using LMM.

It should be noted that the current method can be applied effectively to the limit analysis of large scale
problems in practice because it can be implemented using ANSYS UserMat and moreover the limit analysis
is performed like the general elastic FEA in ANSYS.
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