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Abstract Thermal effects on vibration and buckling behaviors of generally layered composite beams with
arbitrary boundary conditions are dealt with in this paper. The composite beam is modeled using third-order
shear deformation beam theory in which the Poisson effect is incorporated. A constant temperature change
through the beam thickness is assumed. An exact dynamic stiffness matrix is formulated by directly solving the
differential equations of motion governing the natural vibration of the composite beams subjected to uniform
temperature changes along the beam thickness. Application of the derived dynamic stiffness matrix together
with the Wittrick–Williams algorithm to compute the natural frequencies and buckling temperature changes
of two particular composite beams is discussed. The correctness and accuracy of the derived dynamic stiffness
matrix is evaluated by comparing the present results with the available solutions in literature. The influences of
Poisson effect, boundary condition, temperature change, thermal expansion coefficient andmaterial anisotropy
on the natural frequencies of the composite beams are studied.

Keywords Composite beams · Natural vibration · Thermal buckling · Poisson effect · Third-order shear
deformation beam theory

1 Introduction

Laminated composite beams are widely used in many engineering applications owing to many advantages that
they can provide: high strength-to-weight ratio, high stiffness-to-weight ratio, superior fatigue characteristics,
ability to be tailored to meet the design requirements by varying the fiber orientation, material and stacking
pattern [1,2]. Composite beams may be subjected to severe thermal environments, and their thermal stability
is of paramount importance in specific cases [3–12,12]. Geometrically perfect composite beams generally
develop compressive axial stresses due to heating or cooling and buckle at a specific temperature.

A great deal of research is devoted to analyzing the vibration and mechanical buckling behaviors of
laminated composite beams. However, the existing studies on the thermal buckling of composite beams are
relatively few. Kapania and Raciti [1,2] presented a review of the advances in the buckling and vibration
analyses of laminated beams until 1989. Based on the first-order shear deformation theory, Mathew et al.
[3] developed a one-dimensional beam finite element to investigate the thermal buckling of antisymmetric
cross-ply composite beams. Lan et al. [4] developed a finite element model to explore the thermal buckling of
three-layer sandwich beams with the effects of transverse shear deformation in the facings and the effects of
stretching and bending deformations in the core considered. Abramovich [5] used the first-order deformation
theory based on the Timoshenko-type equations to investigate the thermal buckling of cross-ply symmetric
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and non-symmetric laminated composite beams. Mannini [6] studied the thermal buckling of symmetric and
antisymmetric cross-ply composite beams using the first-order shear deformation theory in conjunction with
the Rayleigh–Ritz method. Suresh et al. [7] proposed a semi-analytical approach to determine the nonlinear
dynamic stability characteristics of asymmetrically laminated composite beams based on the first-order shear
deformation theory. Lee and Choi [8] studied the thermal buckling and postbuckling behaviors of a composite
beam with embedded shape memory alloy wire actuators under a uniform temperature change on the basis of
the classical lamination beam theory. Khdeir [9] adopted the state space concept in conjunction with Jordan
canonical form to solve exactly the thermal buckling of cross-ply laminated composite beams. Aydogdu [10]
presented the thermal buckling analysis of cross-ply laminated composite beams subjected to different sets of
boundary conditions. The analysis was based on a three-degree-of-freedom shear deformable beam theory, and
the numerical resultswere obtained by theRitzmethod. Pradeep et al. [11] investigated the vibration and thermal
buckling behaviors of sandwich beams with composite facings and viscoelastic core. Each composite laminate
wasmodeled as an equivalent single layer, and the transverse shear deformationwas neglected. Xiang andYang
[12] investigated the free and forced vibration behaviors of a three-layer laminated functionally graded beam
subjected to one-dimensional steady heat conduction in the thickness direction based on the Timoshenko beam
theory and differential quadrature method. Mahi et al. [13] used an analytical method to investigate the free
vibration of symmetric functionally graded beams with general boundary conditions and subjected to initial
thermal stresses on the basis of a unified higher-order shear deformation beam theory. Wattanasakulpongn
et al. [14] adopted an improved third-order shear deformation beam theory and the Ritz method to study the
thermal buckling and vibration of functionally graded beams with various immovable boundary conditions.
Kiani et al. [15] studied the buckling behaviors of functionally graded material beams with surface-bonded
piezoelectric layers subject to both the thermal loading and the constant voltage based on the Timoshenko beam
theory. Based on the Euler–Bernoulli beam theory, Fu et al. [16] investigated the thermal buckling, nonlinear
free vibration and dynamic stability of the clamped–clamped functionally graded material beam with surface-
bonded piezoelectric actuators in thermal environment. Vosoughi et al. [17] presented the thermal buckling
and postbuckling analysis of symmetric composite beams with temperature-dependent properties based on
the first-order shear deformation beam theory and differential quadrature method. Anandrao et al. [18] used
the finite element method to study the buckling and free vibration of functionally graded beams in thermal
environment based on the Timoshenko beam formulation. Fu et al. [19] presented the analytical solutions of
the thermal buckling and postbuckling of symmetrically laminated beams under the uniform temperature rise
on the basis of the Timoshenko beam theory. Based on the Euler–Bernoulli beam theory and Reddy beam
theory, Emam and Eltaher [20] studied the hygrothermal buckling and postbuckling behaviors of composite
beams whose material properties are temperature- and moisture-dependent.

A literature survey indicates that almost all of the previous studies on the thermal buckling of composite
beams are focused on the cross-ply laminated beams. To the best of authors’ knowledge, there is no investigation
on the thermal buckling of general lay-up composite beams reported in literature. To achieve the maximum
structural efficiency, it is often necessary to adopt the composite laminates with various stacking sequences.
Therefore, there is a need to study the thermal buckling problem of generally layered composite beams.
Furthermore, it seems that there is no work dealing with the effect of temperature change on the natural
frequency of laminated composite beams.

In order to accurately and effectively predict the natural vibration and thermal buckling characteristics of
generally laminated composite beams, a comprehensive structural model must be developed. It is well known
that the classical beam theory with shear deformation and rotary inertia neglected overestimates the vibration
frequency and buckling load of composite beams. Considering the fact that the transverse shear modulus of
composite materials is much lower compared with the in-plane modulus, the shear deformation effect is taken
into account in the present structural model. The material couplings among the extensional, bending and shear
deformations, which are commonly present in the generally laminated composite beams, are also included in
the present model. Furthermore, the Poisson effect which is often ignored in the analysis of cross-ply composite
beams is incorporated in the present model for accurate prediction of the vibration and buckling characteristics
of composite beams with arbitrary lay-ups.

In the present paper, the dynamic stiffness method is employed to investigate the natural vibration and
thermal buckling of generally layered composite beams subjected to uniform temperature change along beam
thickness for various classical boundary conditions. The third-order shear deformation beam theory [21] is
used in the analysis, which assumes in-plane displacement as cubic function of thickness coordinate yielding
parabolic transverse shear strain distribution through beam thickness and satisfying the strain-free conditions
on the upper and lower surfaces of the beam. The coupled differential equations governing the natural vibra-
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tion of generally laminated composite beams subject to uniform temperature changes are derived by use of the
Hamilton’s principle. In the derivations, it is assumed that the material properties are independent of temper-
ature, thus temperature enters the formulation only through constitutive equations. Also, the Poisson effect is
accounted for in the one-dimensional beam constitutive equations. A dynamic stiffness matrix is established
from the exact analytical solutions of the homogeneous differential equations of the general lay-up composite
beams. Because of the use of the exact analytical solutions, the dynamic stiffness matrix describes themass dis-
tribution within a composite beam element exactly. This property makes the dynamic stiffness method [22–24]
very attractive to obtain the higher-order natural frequencies with better accuracy and reduce the computational
cost when compared with the conventional finite element technique and other approximate approaches. The
derived dynamic stiffnessmatrix in conjunctionwith theWittrick–Williams algorithm [25] is used to accurately
evaluate the natural frequency and critical temperature change of the composite beams. Comparisons between
the present critical buckling temperatures and the available results in literature are given to demonstrate the
correctness and accuracy of the proposed formulation. Natural frequencies for antisymmetric cross-ply and
generally layered composite beams are also given for different boundary conditions, temperature changes,
thermal expansion coefficients and material anisotropy.

2 Theoretical analysis

Consider a uniform straight laminated beam having length L , breadth b and thickness h as shown in Fig. 1.
The laminated beam is made of linearly elastic orthotropic layers, and the principal material axes of each
layer may be oriented at an arbitrary angle with respect to the x-axis. In the right-handed Cartesian coordinate
system, the x-axis is coincident with the beam axis and the origin is in the middle plane of the beam. Only the
deformation of the laminated beam in the x−z plane is considered in the present work.

The assumed displacement field for the laminated composite beam on the basis of third-order shear defor-
mation theory [21] can be written as

u1(x, z, t) = u(x, t) + z

[
φ − 4

3

( z

h

)2 (
φ + ∂w

∂x

)]
(1a)

u2(x, z, t) = 0 (1b)

u3(x, z, t) = w(x, t) (1c)

where u1(x, z, t), u2(x, z, t) and u3(x, z, t) denote the displacements of any point in the laminated beam
domain along the x , y and z directions, respectively. u(x, t) and w(x, t) represent the displacements of a point
in the beam mid-plane along the x and z directions, respectively. φ(x, t) is the rotation of the section normal
to the mid-plane about the y-axis, t is time.

The strain–displacement relations are obtained from the displacement field given by Eqs. (1a)–(1c)

εx = ε0x + zκ0
x + z3κ2

x (2a)

γxz = γ 0
xz + z2κ2

xz (2b)

where

ε0x = ∂u

∂x
κ0
x = ∂φ

∂x
κ2
x = − 4

3h2

(
∂φ

∂x
+ ∂2w

∂x2

)
(2c)

x

y

z

L b

h

Fig. 1 Geometry of laminated beam and coordinate system
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γ 0
xz =

(
φ + ∂w

∂x

)
κ2
xz = − 4

h2

(
φ + ∂w

∂x

)
(2d)

It can be seen from Eqs. (2b) and (2d) that the displacement field given by Eqs. (1a)–(1c) accommodates
quadratic variation of transverse shear strain (and hence stress) and vanishing of transverse shear stress on the
top and bottom surfaces of the laminated beam. Thus, there is no need to use the shear correction factor.

According to the third-order shear deformation laminate theory, when the thermal effect is present, the
constitutive equations of the laminated composite plate can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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E16 E26 E66 F16 F26 F66 H16 H26 H66

⎤
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(3a)

⎧⎪⎨
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Qyz
Qxz
Ryz
Rxz

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣
A44 A45 D44 D45
A45 A55 D45 D55
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⎤
⎥⎦
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⎫⎪⎪⎬
⎪⎪⎭

(3b)

where Nx , Ny and Nxy denote the in-plane forces, Mx , My and Mxy the bending and twisting moments, Px ,
Py and Pxy the higher-order bending and twisting moments, Qyz and Qxz the shear forces, Ryz and Rxz the
higher-order shear forces. NT

x , N
T
y and NT

xy denote the in-plane thermal forces, MT
x , M

T
y and MT

xy the thermal
bending and twisting moments, PT

x , PT
y and PT

xy the higher-order thermal bending and twisting moments. ε0x ,
ε0y , γ

0
xy , γ

0
yz and γ 0

xz represent the mid-plane strains, κ0
x , κ

0
y and κ0

xy the bending and twisting curvatures, κ
2
x , κ

2
y ,

κ2
xy , κ

2
yz and κ2

xz the higher-order bending and twisting curvatures. Ai j , Bi j , Di j , Ei j , Fi j , Hi j (i, j = 1, 2, 6)
and Ai j , Di j , Fi j (i, j = 4, 5) are the laminate stiffness coefficients.

For the case of the laminated beam under consideration, its width direction is free of stresses. Therefore,
the in-plane forces Ny and Nxy , the bending and twisting moments My and Mxy , the higher-order bending and
twisting moments Py and Pxy , and the shear forces Qyz and Ryz are assumed to be equal to zero while the
mid-plane strains ε0y , γ

0
xy and γ 0

yz , the bending and twisting curvatures κ0
y and κ0

xy , and the higher-order bending
and twisting curvatures κ2

y , κ
2
xy and κ2

yz are assumed to be nonzero. The following constitutive equations for
the laminated beam, in which the temperature effect and Poisson effect are taken into account, can be obtained
from Eqs. (3a) and (3b)

⎧⎨
⎩

Nx
Mx
Px

⎫⎬
⎭ =

⎧⎨
⎩

N̄x

M̄x

P̄x

⎫⎬
⎭ −

⎧⎨
⎩

N̄ T
x

M̄T
x

P̄T
x

⎫⎬
⎭ (4a)

{
Qxz
Rxz

}
=

[
Ā55 D̄55
D̄55 F̄55

] {
γ 0
xz

κ2
xz

}
(4b)

where ⎧⎨
⎩

N̄x

M̄x

P̄x

⎫⎬
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⎣ Ā11 B̄11 Ē11
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⎤
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Ā55 D̄55
D̄55 F̄55

]
=
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−

[
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The laminate stiffness coefficients Ai j , Bi j , Di j , Ei j , Fi j , Hi j (i, j = 1, 2, 6) and Ai j , Di j , Fi j (i, j =
4, 5) appearing in Eqs. (3a) and (3b) are defined in terms of the transformed reduced stiffness constants Q̄i j
as follows

(
Ai j Bi j Di j Ei j Fi j Hi j

) =
∫ h

2

− h
2

Q̄i j
(
1 z z2 z3 z4 z6

)
dz (i, j = 1, 2, 6) (6a)

(
Ai j Di j Fi j

) =
∫ h

2

− h
2

Q̄i j
(
1 z2 z4

)
dz (i, j = 4, 5) (6b)

The thermal forces and moments appearing in Eq. (3a) can be expressed as⎧⎪⎪⎨
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where αx , αy and αxy are the transformed thermal coefficients of the laminate, which are defined in the
“Appendix.” �T is a constant temperature change from a reference state.

The transformed reduced stiffness constants Q̄i j (i, j = 1, 2, 6) and Q̄i j (i, j = 4, 5) are given in the
“Appendix.”

The strain energy of the laminated composite beam shown in Fig. 1 can be written as

V = 1

2

∫ L

0

(
N̄xε

0
x + M̄xκ

0
x + P̄xκ

2
x + Qxzγ

0
xz + Rxzκ

2
xz

)
bdx (8a)
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Substituting Eqs. (2c) and (2d) into Eq. (8a), one obtains

V = 1

2

∫ L

0

[
N̄x

∂u

∂x
+ M̄x

∂φ

∂x
− P̄x

4

3h2

(
∂φ

∂x
+ ∂2w

∂x2

)
+ Qxz

(
φ + ∂w

∂x

)
− Rxz

4

h2

(
φ + ∂w

∂x

)]
bdx

(8b)

The kinetic energy of the laminated composite beam can be expressed as

T = 1

2

∫ L

0

∫ h
2

− h
2

ρ

[(
∂u1
∂t

)2

+
(

∂u2
∂t

)2

+
(

∂u3
∂t

)2
]
bdzdx (9a)

where ρ is the mass density of the lamina material.
Introduction of Eqs. (1a)–(1c) into Eq. (9a) results in

T = 1

2

∫ L

0

[
I1u̇2 + I3φ̇2 + 16

9h4
I7

(
φ̇ + ∂ẇ

∂x

)2 + 2I2u̇φ̇ − 8
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I4u̇
(
φ̇ + ∂ẇ

∂x

)
− 8

3h2
I5φ̇

(
φ̇ + ∂ẇ

∂x

) + I1ẇ2

]
bdx (9b)

where the overdots represent the partial differentiation with respect to the time t , and

(
I1 I2 I3 I4 I5 I7

) =
∫ h

2

− h
2

ρ
(
1 z z2 z3 z4 z6

)
dz (9c)

The work We done by the external load of the laminated composite beam is given by

We = 1

2

∫ L

0
N̄ T
x

(
∂w

∂x

)2

bdx (10)

The Hamilton’s principle is employed to derive the governing equations of motion and the related boundary
conditions of the laminated composite beam:

δ

∫ t2

t1
(T − V + We)dt = 0 (11)

δu = δw = δφ = δw′ = 0 at t = t1, t2
where δ denotes the first variation, t1 and t2 are two arbitrary time instants, the superscript prime denotes

the partial differentiation with the coordinate x .
Inserting Eqs. (8b), (9b) and (10) together with Eqs. (2c)–(2d), (4b) and (5a)–(5d) into Eq. (11), integrating

by parts and noting that the variation must vanish leads the following governing equations of motion of the
laminated composite beam
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′ −
(
I2 − 4

3h2
I4
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(
16

9h4
I7 − 4

3h2
I5

)
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9h4
H̄11

)
w′′′

−
(
Ā55 − 8

h2
D̄55 + 16

h4
F̄55

) (
φ + w′) = 0 (12c)
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and the appropriate boundary conditions at the laminated beam ends (x = 0, L) are
[
Ā11u

′ +
(
B̄11 − 4

3h2
Ē11

)
φ′ − 4

3h2
Ē11w

′′
]

δu = 0 (13a)

[
4

3h2
I4ü − 16

9h4
I7ẅ

′ −
(

16

9h4
I7 − 4

3h2
I5

)
φ̈ − 4

3h2
Ē11u

′′ + 16

9h4
H̄11w

′′′

−
(

4

3h2
F̄11 − 16

9h4
H̄11

)
φ′′ −

(
Ā55 − 8

h2
D̄55 + 16

h4
F̄55

) (
φ + w′) + N̄ T

x w′
]

δw = 0 (13b)
[
−

(
B̄11 − 4

3h2
Ē11

)
u′ −

(
D̄11 − 8

3h2
F̄11 + 16

9h4
H̄11

)
φ′ +

(
4

3h2
F̄11 − 16

9h4
H̄11

)
w′′

]
δφ = 0 (13c)

[
4

3h2
Ē11u

′ +
(

4

3h2
F̄11 − 16

9h4
H̄11

)
φ′ − 16

9h4
H̄11w

′′
]

δw′ = 0 (13d)

3 Dynamic stiffness method

For the case of undamped natural vibration, it can be seen that Eqs. (12a)–(12c) have solutions that are separable
in time and space and that the time dependence is harmonic. Letting

{
u(x, t) w(x, t) φ(x, t)

} = {
U (x) W (x) �(x)

}
eiωt (14)

where ω is the circular frequency, U (x), W (x) and �(x) are the mode shapes of the harmonically varying
axial displacement, bending displacement and normal rotation, respectively.

Substituting Eq. (14) into Eqs. (12a)–(12c) results in the following ordinary differential equations

I1ω
2U −

(
4

3h2
I4 − I2

)
ω2� − 4

3h2
I4ω

2W ′ + Ā11U
′′ +

(
B̄11 − 4

3h2
Ē11

)
�′′ − 4

3h2
Ē11W

′′′ = 0

(15a)

I1ω
2W + 4

3h2
I4ω

2U ′ −
(

16

9h4
I7 − 4

3h2
I5

)
ω2�′ − 16

9h4
I7ω

2W ′′ + 4

3h2
Ē11U

′′′

+
(

4

3h2
F̄11 − 16

9h4
H̄11

)
�′′′ − 16

9h4
H̄11W

′′′′ +
(
Ā55 − 8

h2
D̄55 + 16

h4
F̄55

) (
�′ + W ′′) − N̄ T

x W
′′ = 0

(15b)(
I2 − 4

3h2
I4

)
ω2U +

(
I3 + 16

9h4
I7 − 8

3h2
I5

)
ω2� −

(
4

3h2
I5 − 16

9h4
I7

)
ω2W ′

+
(
B̄11 − 4

3h2
Ē11

)
U ′′ +

(
D̄11 − 8

3h2
F̄11 + 16

9h4
H̄11

)
�′′

+
(

16

9h4
H̄11 − 4

3h2
F̄11

)
W ′′′ +

(
8

h2
D̄55 − Ā55 − 16

h4
F̄55

) (
� + W ′) = 0 (15c)

The solutions to Eqs. (15a)–(15c) can be expressed as{
U (x) W (x) �(x)

} = {
Ã B̃ C̃

}
eκx (16)

Introducing Eq. (16) into Eqs. (15a)–(15c) obtains a set of algebraic equations. Letting the determinant of
the coefficientmatrix of Ã, B̃ and C̃ equal to zero produces the characteristics equation,which is an eighth-order
polynomial equation in κ:

η4κ
8 + η3κ

6 + η2κ
4 + η1κ

2 + η0 = 0 (17)

where the coefficients ηk(k = 0 − 4) are listed in the “Appendix.”
Equation (17) can be reduced to a fourth-order polynomial equation

χ4 + a1χ
3 + a2χ

2 + a3χ + a4 = 0 (18a)
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where

χ = κ2 a1 = η3

η4
a2 = η2

η4
a3 = η1

η4
a4 = η0

η4
(18b)

The solutions to Eq. (18a) can be found in closed-form [26].
Equations (15a)–(15c) are a set of linear homogeneous ordinary differential equations with constant coef-

ficients, the general solutions to which can be written as

U (x) = A1e
κ1x + A2e

−κ1x + A3e
κ2x + A4e

−κ2x + A5e
κ3x + A6e

−κ3x + A7e
κ4x + A8e

−κ4x

=
4∑
j=1

(
A2 j−1e

κ j x + A2 je
−κ j x

)
(19a)

W (x) = B1e
κ1x + B2e

−κ1x + B3e
κ2x + B4e

−κ2x + B5e
κ3x + B6e

−κ3x + B7e
κ4x + B8e

−κ4x

=
4∑
j=1

(
B2 j−1e

κ j x + B2 je
−κ j x

)
(19b)

�(x) = C1e
κ1x + C2e

−κ1x + C3e
κ2x + C4e

−κ2x + C5e
κ3x + C6e

−κ3x + C7e
κ4x + C8e

−κ4x

=
4∑
j=1

(
C2 j−1e

κ j x + C2 je
−κ j x

)
(19c)

where κ j = √
χ j ( j = 1 − 4). A1 − A8, B1 − B8 and C1 − C8 are three sets of eight constants, which are

dependent. Substituting Eqs. (19a)–(19c) into Eqs. (15a) and (15b) obtains the following relations between
the constants

A2 j−1 = t jC2 j−1 A2 j = t jC2 j (20a)

B2 j−1 = t̄ jC2 j−1 B2 j = −t̄ jC2 j (20b)

where

t j =
((

−3
(
3B̄11

(
16F̄55 − 8D̄55h

2 + h4
(
Ā55 − N̄ T

x

))
+ 4Ē11h

2 N̄ T
x

)
κ4
j

−16
(
Ē11 F̄11 − B̄11 H̄11

)
κ6
j + κ2

j

(−144F̄55 I2 + 3h2
(
4Ē11 I1 + 24D̄55 I2

− 3h2
(
B̄11 I1 + Ā55 I2

) + (
3h2 I2 − 4I4

)
N̄ T
x

)
+ 16

(
H̄11 I2 − F̄11 I4

− Ē11 I5 + B̄11 I7
)
κ2
j

)
ω2 −

(
9h4 I1 I2 − 12h2 I1 I4 + 16 (I4 I5 − I2 I7) κ2

j

)
ω4

))
/� j (20c)

t̄ j = −
(
κ j

(
4

(
Ē11κ

2
j + I4ω

2
) (

4Ē11κ
2
j − 3B̄11h

2κ2
j + (−3h2 I2 + 4I4)ω

2
)

+
(
Ā11κ

2
j + I1ω

2
) (

144F̄55 − 72D̄55h
2 + 9 Ā55h

4 + 4
(
3F̄11h

2 − 4H̄11
)
κ2
j

+ 4
(
3h2 I5 − 4I7

)
ω2))) /� j (20d)

� j =
(
16

(
Ē11κ

3
j + I4κ jω

2
)2 +

(
Ā11κ

2
j + I1ω

2
) (

9
(
16F̄55 − 8D̄55h

2

+ h4
(
Ā55 − N̄ T

x

))
κ2
j − 16H̄11κ

4
j +

(
9h4 I1 − 16I7κ

2
j

)
ω2

))
(20e)

It can be seen from Eqs. (20a) and (20b), only eight of the twenty-four constants are independent. It may
be noted that if any of the χ j ’s are zero or are repeated in the solution of Eq. (18a), Eqs. (19a)–(19c) must be
modified according to the well-known technique of ordinary differential equations with constant coefficients,
for those particular values of χ j .

Following the sign convention established in Fig. 2, the expressions of normal force N (x), shear force
S(x), bending moment M(x) and higher-order bending moment P(x) can be derived from Eqs. (13a)–(13d)
and Eqs. (19a)–(19c) with the help of Eqs. (20a) and (20b)

N (x) =
4∑
j=1

[
Ā11κ j t j −

(
4

3h2
Ē11 − B̄11

)
κ j − 4

3h2
Ē11κ

2
j t̄ j

] (
C2 j−1e

κ j x − C2 je
−κ j x

)
(21a)
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N

S

M

N
S M P P

Fig. 2 Sign convention for positive normal force N (x), shear force S(x), bending moment M(x) and higher-order bending
moment P(x)
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1W
1P

'
2W
2P

Fig. 3 Boundary conditions for generalized displacements and generalized forces of laminated beam

S(x) =
4∑
j=1

[
− 4

3h2
I4ω

2t j +
(

− 4

3h2
I5 + 16

9h4
I7

)
ω2 + 16

9h4
I7ω

2κ j t̄ j

− 4

3h2
Ē11κ

2
j t j +

(
16

9h4
H̄11 − 4

3h2
F̄11

)
κ2
j + 16

9h4
H̄11κ

3
j t̄ j

+
(

8

h2
D̄55 − Ā55 − 16

h4
F̄55

) (
1 + κ j t̄ j

) + N̄ T
x κ j t̄ j

] (
C2 j−1e

κ j x + C2 je
−κ j x

)
(21b)

M(x) =
4∑
j=1

[(
4

3h2
Ē11 − B̄11

)
κ j t j +

(
8

3h2
F̄11 − D̄11 − 16

9h4
H̄11

)
κ j

+
(

4

3h2
F̄11 − 16

9h4
H̄11

)
κ2
j t̄ j

] (
C2 j−1e

κ j x − C2 je
−κ j x

)
(21c)

P(x) =
4∑
j=1

[
4

3h2
Ē11κ j t j +

(
4

3h2
F̄11 − 16

9h4
H̄11

)
κ j − 16

9h4
H̄11κ

2
j t̄ j

] (
C2 j−1e

κ j x − C2 je
−κ j x

)
(21d)

Referring to Fig. 3, the boundary conditions for the generalized displacements and generalized forces of
the laminated composite beam can be written as

x = 0 : U = U1 W = W1 � = �1 W ′ = W ′
1 (22a)

x = L : U = U2 W = W2 � = �2 W ′ = W ′
2 (22b)

x = 0 : N = −N1 S = S1 M = M1 P = P1 (22c)

x = L : N = N2 S = −S2 M = −M2 P = −P2 (22d)

Introducing Eqs. (22a) and (22b) into Eqs. (19a)–(19c) and considering Eqs. (20a) and (20b), the nodal
displacement vector {D} can be expressed in terms of the constant vector {C}

{D} = [R]{C} (23)

where

{D} = {
U1 W1 �1 W ′

1 U2 W2 �2 W ′
2

}T
{C} = {

C1 C3 C5 C7 C2 C4 C6 C8
}T
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[R] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1 t2 t3 t4 t1 t2 t3 t4
t̄1 t̄2 t̄3 t̄4 −t̄1 −t̄2 −t̄3 −t̄4
1 1 1 1 1 1 1 1
κ1 t̄1 κ2 t̄2 κ3 t̄3 κ4 t̄4 κ1 t̄1 κ2 t̄2 κ3 t̄3 κ4 t̄4
t1eκ1L t2eκ2L t3eκ3L t4eκ4L t1e−κ1L t2e−κ2L t3e−κ3L t4e−κ4L

t̄1eκ1L t̄2eκ2L t̄3eκ3L t̄4eκ4L −t̄1e−κ1L −t̄2e−κ2L −t̄3e−κ3L −t̄4e−κ4L

eκ1L eκ2L eκ3L eκ4L e−κ1L e−κ2L e−κ3L e−κ4L

κ1 t̄1eκ1L κ2 t̄2eκ2L κ3 t̄3eκ3L κ4 t̄4eκ4L κ1 t̄1e−κ1L κ2 t̄2e−κ2L κ3 t̄3e−κ3L κ4 t̄4e−κ4L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Substituting Eqs. (22c) and (22d) into Eqs. (21a)–(21d), the nodal force vector {F} corresponding to the
nodal displacement vector {D} can also be written in terms of the constant vector {C}

{F} = [H ]{C} (24)

where

{F} = {
N1 S1 M1 P1 N2 S2 M2 P2

}T

[H ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−t̂1 −t̂2 −t̂3 −t̂4 t̂1 t̂2 t̂3 t̂4
t̃1 t̃2 t̃3 t̃4 t̃1 t̃2 t̃3 t̃4¯̄t1 ¯̄t2 ¯̄t3 ¯̄t4 −¯̄t1 −¯̄t2 −¯̄t3 −¯̄t4
ˆ̂t1 ˆ̂t2 ˆ̂t3 ˆ̂t4 −ˆ̂t1 −ˆ̂t2 −ˆ̂t3 −ˆ̂t4
t̂1eκ1L t̂2eκ2L t̂3eκ3L t̂4eκ4L −t̂1e−κ1L −t̂2e−κ2L −t̂3e−κ3L −t̂4e−κ4L

−t̃1eκ1L −t̃2eκ2L −t̃3eκ3L −t̃4eκ4L −t̃1e−κ1L −t̃2e−κ2L −t̃3e−κ3L −t̃4e−κ4L

−¯̄t1eκ1L −¯̄t2eκ2L −¯̄t3eκ3L −¯̄t4eκ4L ¯̄t1e−κ1L ¯̄t2e−κ2L ¯̄t3e−κ3L ¯̄t4e−κ4L

−ˆ̂t1eκ1L −ˆ̂t2eκ2L −ˆ̂t3eκ3L −ˆ̂t4eκ4L ˆ̂t1e−κ1L ˆ̂t2e−κ2L ˆ̂t3e−κ3L ˆ̂t4e−κ4L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which

t̂ j = Ā11κ j t j −
(

4

3h2
Ē11 − B̄11

)
κ j − 4

3h2
Ē11κ

2
j t̄ j

t̃ j = − 4

3h2
I4ω

2t j +
(

− 4

3h2
I5 + 16

9h4
I7

)
ω2 + 16

9h4
I7ω

2κ j t̄ j − 4

3h2
Ē11κ

2
j t j + N̄ T

x κ j t̄ j

+
(

16

9h4
H̄11 − 4

3h2
F̄11

)
κ2
j + 16

9h4
H̄11κ

3
j t̄ j +

(
8

h2
D̄55 − Ā55 − 16

h4
F̄55

) (
1 + κ j t̄ j

)

¯̄t j =
(

4

3h2
Ē11 − B̄11

)
κ j t j +

(
8

3h2
F̄11 − D̄11 − 16

9h4
H̄11

)
κ j +

(
4

3h2
F̄11 − 16

9h4
H̄11

)
κ2
j t̄ j

ˆ̂t j = 4

3h2
Ē11κ j t j +

(
4

3h2
F̄11 − 16

9h4
H̄11

)
κ j − 16

9h4
H̄11κ

2
j t̄ j ( j = 1 − 4)

The relationship between the nodal force vector {F} and the nodal displacement vector {D} can be obtained
by eliminating the constant vector {C} from Eqs. (23) and (24), which produces the dynamic stiffness equation

{F} = [K ]{D} (25)

where [K ] = [H ][R]−1 is the exact dynamic stiffness matrix, which is frequency-dependent. It should be
mentioned that although the explicit analytical expressions for the elements of the dynamic stiffness matrix
may be determined in partitioned form using the symbolic manipulator software such as Mathematica [27],
they are too lengthy to list in the paper.

Having obtained the dynamic stiffness matrix, it can be directly applied to calculate the natural frequencies,
thermal buckling loads and mode shapes of a laminated composite beamwith various boundary conditions or a
structure composed of such beams. An accurate, reliable and efficient method to obtain the natural frequencies
and buckling loads of the laminated beam structure using the dynamic stiffness technique is to apply the
Wittrick–Williams algorithm [25] which has been discussed and utilized in a number of papers [23] and is not
reiterated here for brevity. The algorithm uses the Sturm sequence property of the dynamic stiffness matrix
and ensures that there is no possibility of missing an eigenvalue (i.e., natural frequency in the natural vibration
problem, or buckling load in the buckling problem) of the structure.
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4 Numerical examples

In order to demonstrate the correctness and accuracy of the proposed dynamic stiffness formulation for the
analysis of natural vibration and thermal buckling behaviors of laminated composite beams, two illustrative
examples including a cross-ply composite beam and a generally laminated composite beam subjected to a
constant temperature change through beam thickness are investigated.

Two classical boundary conditions at each end of the composite beams (x = 0, L) are considered, which
are given as follows

For the clamped boundary (C): U = W = � = W ′ = 0
For the hinged boundary (H): U = W = M = P = 0
The first example is a two-layer antisymmetric cross-ply [0◦/90◦] composite beam having a rectangular

cross section. All the details about the geometric properties of the beam and the material properties of each
lamina used here are given below

E1 = 138 × 109 Pa E2 = 6.9 × 109 Pa G12 = G13 = 4.14 × 109 Pa G23 = 3.45 × 109 Pa

ν12 = 0.25 ρ = 1550.1kg/m3 L = 0.381m h = 0.0381m

α1 = 6 × 10−61/ ◦C α2 = 18 × 10−61/ ◦C

Numerical results are given for the cross-ply composite beam for different temperature changes, different
boundary conditions and different thermal expansion coefficients. The Poisson effect is also discussed. This
example is chosen because of some available results in the previous studies [9,10].

In order to see the influences of temperature change and boundary condition on the natural frequencies
of the cross-ply composite beam, three different temperature changes (i.e., �T = 0 ◦C, �T = 100 ◦C and
�T = −100 ◦C) and three different boundary conditions (i.e., C–C, C–H and H–H) are considered in this
example. For various boundary conditions, the first six natural frequencies of the cross-ply composite beamwith
no temperature change (�T = 0 ◦C), temperature rise (�T = 100 ◦C) and temperature fall (�T = −100 ◦C)
are shown in Tables 1 and 2. The natural frequencies are calculated by using the derived dynamic stiffness
formulation and discretizing the whole beam with one element. In order to demonstrate the accuracy of
the present formulation, the natural frequencies of the cross-ply composite beam with �T = 0 ◦C are also
calculated by the general purpose finite element code ANSYS. The element type selected in calculating the
natural frequencies in ANSYS is a layered solid element SOLID191, which is defined by 20 nodes having
three degrees of freedom per node. The element mesh used in the ANSYS model is 80 divisions along x
direction, eight divisions along y direction and 1 division along z direction. For the clamped end, all degrees
of freedom are constrained to zero at all nodes on the end surface. For the hinged end, all degrees of freedom
are constrained to zero only at nodes on the line of intersection between beam mid-plane and end surface. The
first six natural frequencies of the cross-ply composite beam vibrating in the oxz plane obtained by ANSYS
are also given in Table 1. The ANSYS results are taken as a reference for the evaluation of the accuracy of
the present formulation. The percentage errors, shown in Table 1, are calculated by using ANSYS results as
baseline.

Table 1 shows that the present results are in good agreementwith theANSYS results. Thenatural frequencies
predicted by the present formulation are generally on the higher side of the ANSYS results. The maximum
percentage differences in the first six natural frequencies obtained by the present formulation for the C–C, C–H
andH–Hboundary conditions are 7.4, 7.0 and 8.6%, respectively, as compared to theANSYS results. It can also
be found fromTables 1 and 2 that the temperature change has a significant effect on the lower natural frequencies
of the cross-ply composite beam. Also, the effect of temperature change on the higher natural frequencies is

Table 1 Natural frequencies (in Hz) of cross-ply composite beam with �T = 0 ◦C

Mode no. C–C C–H H–H

Present %Error ANSYS Present %Error ANSYS Present %Error ANSYS

1 999.6 1.6 983.4 783.1 1.5 771.3 663.4 2.8 645.3
2 2426.4 3.2 2350.7 2139.4 2.8 2081.2 1756.8 2.0 1723.1
3 4211.9 4.7 4023.6 3905.8 4.3 3744.4 3663.7 4.4 3510.6
4 6207.6 6.1 5853.4 5867.8 5.6 5558.3 5391.3 4.9 5137.3
5 8353.5 7.4 7779.0 7615.2 4.2 7307.8 7176.9 8.6 6606.1
6 8430.1 −1.4 8552.9 8198.1 7.0 7663.1 7804.1 7.3 7272.9
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Table 2 Natural frequencies (in Hz) of cross-ply composite beam with �T = 100 ◦C and �T = −100 ◦C

Mode no. �T = 100 ◦C �T = −100 ◦C
C–C C–H H–H C–C C–H H–H

1 968.1 744.5 621.7 1030.0 819.7 702.5
2 2379.2 2088.5 1698.6 2472.6 2189.1 1813.1
3 4154.2 3845.6 3600.8 4268.8 3964.9 3725.6
4 6139.5 5800.4 5328.2 6274.9 5934.1 5452.9
5 8274.9 7593.6 7164.2 8430.5 7633.5 7190.1
6 8429.6 8135.3 7723.2 8431.4 8263.5 7884.1
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Fig. 4 Variation of fundamental frequency of cross-ply composite beamwith temperature rise for a C–C, bC–H, cH–H boundary
conditions

marginal. The percentage differences between the fundamental frequencies of the cross-ply composite beam
with temperature rise (�T = 100 ◦C) and the ones without temperature change for the C–C, C–H and H–H
boundary conditions are −3.2, −4.9 and −6.3%, respectively. Similarly, the percentage differences between
the fundamental frequencies of the cross-ply composite beam with temperature fall (�T = −100 ◦C) and
the ones without temperature change for the C–C, C–H and H–H boundary conditions are 3.0, 4.7 and 5.9%,
respectively. For the cross-ply composite beamunder study it is obvious that a temperature rise tends to decrease
all of the natural frequencies, whereas a temperature fall increases them. Furthermore, a temperature rise has
a more remarkable effect on the natural frequencies than the equal temperature fall. Tables 1 and 2 also show
that among all of the boundary conditions the effect of temperature change on the natural frequencies is the
most important for the H–H boundary condition and the least pronounced for the C–C boundary condition.

Next, the variation of the fundamental natural frequency of the cross-ply composite beamwith the variation
of the temperature rise is considered. Figure 4a–c shows the variation of the fundamental frequency with the
temperature rise for the C–C, C–H and H–H boundary conditions, respectively.
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Fig. 5 First six mode shapes of the H–H cross-ply composite beam with �T = 820 ◦C: a mode 1; b mode 2; c mode 3; d mode
4; e mode 5; f mode 6

It can be observed from Fig. 4 that the variation in the fundamental natural frequency due to the temperature
rise is significant. The fundamental frequency decreases with the increase of the temperature rise, as expected.
Finally at about �T = 1530.1, 1011.9 and 820.4 ◦C for the C–C, C–H and H–H boundary conditions,
respectively, the fundamental frequency becomes zero which means that at this level of temperature rise,
thermal buckling of the cross-ply composite beam occurs as a degenerate case of natural vibration at zero
frequency.

The first six mode shapes of the H–H cross-ply composite beam with �T = 820 ◦C, which is very close to
the critical temperature change �Tcr = 820.4 ◦C, are calculated by the present formulation and are illustrated
in Fig. 5. It may be mentioned that the first six natural frequencies of the H–H cross-ply composite beam with
�T = 820 ◦C are 14.6, 1197.7, 3109.9, 4828.8, 7079.7 and 7112.4Hz, respectively.
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Table 3 Natural frequencies (in Hz) of cross-ply composite beam without Poisson effect

Mode no. �T = 0 ◦C �T = 100 ◦C �T = −100 ◦C
C–C C–H H–H C–C C–H H–H C–C C–H H–H

1 1000.1 783.6 663.9 967.5 743.6 620.7 1031.6 821.5 704.4
2 2427.4 2140.5 1757.8 2378.6 2087.7 1697.5 2475.2 2191.9 1816.1
3 4213.3 3907.3 3665.4 4153.5 3845.0 3600.2 4272.3 3968.6 3729.4
4 6209.3 5869.8 5393.8 6138.8 5800.0 5328.3 6279.1 5938.6 5457.6
5 8355.4 7620.3 7181.5 8274.0 7597.7 7168.3 8436.1 7639.4 7195.0
6 8437.0 8200.9 7806.4 8436.5 8136.0 7722.6 8437.5 8268.4 7889.2

Table 4 Natural frequencies (in Hz) of cross-ply composite beam (α2 = 60 × 10−61/◦C)

Mode no. �T = 0 ◦C �T = 100 ◦C �T = −100 ◦C
C–C C–H H–H C–C C–H H–H C–C C–H H–H

1 999.6 783.1 663.4 957.3 731.1 607.2 1039.9 831.6 715.1
2 2426.4 2139.4 1756.8 2363.3 2071.2 1678.7 2487.7 2205.4 1831.5
3 4211.9 3905.8 3663.7 4134.7 3825.4 3579.6 4287.6 3984.5 3746.0
4 6207.6 5867.8 5391.3 6116.6 5777.7 5306.8 6297.2 5956.0 5473.1
5 8353.5 7615.2 7176.9 8248.5 7585.6 7160.0 8430.7 7639.1 7194.6
6 8430.1 8198.1 7804.1 8429.4 8115.0 7696.1 8457.2 8285.6 7910.5

Figure 5 shows that the axial displacement and transverse displacement are coupled for all the six mode
shapes. For the first mode, this coupling is rather weak. However, for the fifth mode, this coupling is rather
strong.

To show the Poisson effect on the natural frequencies of the cross-ply composite beam, the first six natural
frequencies of the same composite beam without the Poisson effect included are calculated and the results
are displayed in Table 3. Again, three different temperature changes and three different boundary conditions
are considered. It may be mentioned that if the Poisson effect is ignored, the quantities Ā11, B̄11, D̄11, Ē11,
F̄11, H̄11, Ā55, D̄55, F̄55 and N̄ T

x appearing in the governing differential equations of motion and boundary
conditions should be replaced by the quantities A11, B11, D11, E11, F11, H11, A55, D55, F55 and NT

x .
Tables 1, 2 and 3 show that all of the natural frequencies of the cross-ply composite beam with the Poisson

effect ignored are almost the same as those with the Poisson effect considered, which implies that for the
cross-ply composite beam the accuracy lost in the natural frequency obtained by excluding the Poisson effect
is insignificant. However, this is not the case for the generally layered composite beam, as will be shown later.

To see the effect of thermal expansion coefficient on the natural frequency of the cross-ply composite
beam, α2 varies from α2 = 18× 10−61/ ◦C to α2 = 60× 10−61/ ◦C while the other material properties keep
the same. Three different temperature changes (namely, �T = 0 ◦C, �T = 100 ◦C and �T = −100 ◦C)
and three different boundary conditions (namely, C–C, C–H and H–H) are considered. The first six natural
frequencies of the cross-ply composite beam are shown in Table 4.

Tables 1, 2 and 4 clearly show that the variation of α2 has drastic effect on the natural frequencies of the
cross-ply composite beam. In addition, Tables 1, 2 and 4 show clearly that when the temperature rises, the
increase of α2 results in the decrease of the natural frequencies for all the boundary conditions. Also, Tables 1,
2 and 4 indicate that when the temperature falls, the larger the value of α2 is, the higher the natural frequencies
will be.

In order to validate the proposed dynamic stiffness formulation, it is used to evaluate the critical temperature
change of the cross-ply composite beam with two different values of α2 (namely, α2 = 18 × 10−61/ ◦C and
α2 = 60× 10−61/ ◦C). The critical temperature changes obtained by the present formulation are displayed in
Table 5 and compared with some available results in the literature [9,10].

It can be found from Table 5 that the present results generally are in good agreement with the available
results. The maximum percent differences between the present results and the available results in the literature
[9,10] are 3.7 and 6.3% for the cases of α2 = 18 × 10−61/ ◦C and α2 = 60 × 10−61/ ◦C, respectively. The
reasons for the differences are that different beam theories, constitutive equations, and solution methods are
used in the present study and the literature [9,10]. The first-order shear deformation beam theory (FOBT) and
third-order shear deformation beam theory (HOBT) are used in the literature [9], in which the shear correction
factor for the FOBT is set equal to 5/6. The exponential shear deformation beam theory (ESDBT) is used in the
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Table 5 Buckling temperature changes (◦C) of cross-ply composite beam

Boundary condition α2 = 18 × 10−61/ ◦C α2 = 60 × 10−61/ ◦C
Present FOBT [9] HOBT [9] ESDBT [10] Present FOBT [9] HOBT [9] ESDBT [10]

C–C 1530.1 1496.0 1542.8 1475.0 1147.6 1147.0 1182.8 1080.0
C–H 1011.9 N/A N/A N/A 759.0 N/A N/A N/A
H–H 820.4 N/A N/A N/A 615.3 N/A N/A N/A

Table 6 frequencies (in Hz) of composite beam with �T = 0 ◦C

Mode no. C–C C–H H–H

Present %Error ANSYS Present %Error ANSYS Present %Error ANSYS

1 807.9 0.9% 800.3 580.7 2.7% 565.3 386.9 0 387.0
2 2009.6 0.7% 1996.2 1724.4 3.5% 1666.8 1437.2 8.4% 1326.4
3 3544.2 0.6% 3524.3 3249.8 1.9% 3188.9 2947.3 5.1% 2804.3
4 4271.3 N/A N/A 4266.6 N/A N/A 4252.5 N/A N/A
5 5278.1 0.6% 5248.9 5008.3 0.9% 4965.9 4735.3 3.1% 4591.4
6 7138.6 0.6% 7098.3 6893.2 2.4% 6732.4 6637.9 2.3% 6490.4

literature [10]. The beam theory adopted in the present study is the same as the third-order shear deformation
beam theory in the literature [9]. The constitutive equations used in the literature [9,10] do not consider the
Poisson effect. However, the Poisson effect is considered in the present study. Although the Poisson effect may
be ignored for the cross-ply composite beam, it does have minor influence on the critical buckling temperature.
As for the solution method, the state space concept in conjunction with Jordan canonical form is used in the
literature [9], and the Ritz method with algebraic polynomial trial functions, which is an approximate solution
method, is used in the literature [10]. The exact dynamic stiffness method in conjunction with the Wittrick–
Williams algorithm is used to evaluate the natural frequency and critical temperature change in the present
study.

Table 5 shows that the critical temperature change obtained by the present formulation lies between the
results obtained by the FOBT [9] and HOBT [9]. Also, the critical temperature changes predicted by the
present formulation is on the higher side as compared to the results predicted by the ESDBT [10]. For the
case of α2 = 18 × 10−61/ ◦C the present result is closer to the HOBT solution, while for the case of α2 =
60× 10−61/ ◦C the present result is in excellent agreement with the FOBT solution. As stated previously, the
effect of increasing the value of α2 is to decrease the critical temperature change of the cross-ply composite
beam under considered. Increasing the value of α2 from 18 × 10−61/ ◦C to 60 × 10−61/ ◦C decreases the
critical temperature change of the C–C cross-ply composite beam by approximately 25%.

Now, consider a generally layered composite beam. The ply-stacking sequence used is [30◦/50◦/30◦/50◦].
The following geometric properties of the beam and material properties of each layer are used in the analysis.

E1 = 138 × 109 Pa E2 = 6.9 × 109 Pa G12 = G13 = 4.14 × 109 Pa G23 = 3.45 × 109 Pa

ν12 = 0.25 ρ = 1550.1 kg/m3 L = 0.381m h = 0.0381m

α1 = 6 × 10−61/ ◦C α2 = 18 × 10−61/ ◦C

The first six natural frequencies of the composite beam with various boundary conditions are calculated
using the proposed dynamic stiffness formulation, and the numerical results are presented in Tables 6 and 7,
in which three different temperature changes (i.e., �T = 0 ◦C, �T = 180 ◦C and �T = −180 ◦C) are
considered. The natural frequencies are obtained by idealizing the whole beamwith single element. The natural
frequencies of the composite beamwith�T = 0 ◦C are also calculated by the finite element software ANSYS.
The element type and mesh division used in computing the natural frequencies in ANSYS are the same as
those used in the cross-ply composite beam. The first five natural frequencies of the composite beam vibrating
in the oxz plane obtained by ANSYS are also shown in Table 6. It should be noted that the fourth natural
frequency obtained by the present formulation, which is a predominant longitudinal vibration frequency, is not
captured by ANSYS solutions. The reason for this is perhaps that the longitudinal displacement and boundary
condition of the beam are difficult to model using three-dimensional solid element. The ANSYS solutions are
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Table 7 Natural frequencies (in Hz) of composite beam with �T = 180 ◦C and �T = −180 ◦C

Mode no. �T = 180 ◦C �T = −180 ◦C
C–C C–H H–H C–C C–H H–H

1 782.4 546.0 339.6 832.6 613.3 429.0
2 1972.4 1682.8 1389.4 2046.0 1765.0 1483.5
3 3499.7 3202.4 2896.0 3588.2 3296.6 2997.7
4 4271.3 4266.3 4250.8 4271.4 4266.9 4254.0
5 5226.3 4954.8 4680.8 5329.3 5061.3 4789.5
6 7079.6 6832.8 6575.9 7197.1 6953.0 6699.2
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Fig. 6 Variation of fundamental frequency of composite beamwith temperature rise for aC–C,bC–H, cH–Hboundary conditions

regarded as a reference for the evaluation of the accuracy of the present formulation. The percentage errors
shown in Table 6 are calculated by using the ANSYS solutions as baseline.

As can be observed from Table 6, the natural frequencies predicted by the present formulation are also
found to be in good agreement with the ANSYS solutions. The natural frequencies produced by the present
formulation are also on the higher side of the ANSYS solutions. Tables 6 and 7 clearly show that for the case
of temperature rise, the lower natural frequencies decrease with fast rate and the higher natural frequencies
decrease with slow rate. Similarly, for the case of temperature fall, the lower natural frequencies increase with
fast rate and the higher natural frequencies increase with slow rate. The influence of temperature change on the
much higher natural frequencies is practically negligible. In addition, Tables 6 and 7 show that the temperature
change has virtually no influence on the fourth natural frequency of the C–C, C–H and H–H composite beam
because these frequencies correspond to the modes with predominance of longitudinal vibrations. Moreover,
Tables 6 and 7 clearly show that the H–H composite beam yields the lowest natural frequency and the C–C
composite beam produces the highest one.
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Fig. 7 First six mode shapes of the H–H composite beam with �T = 780 ◦C: a mode 1; bmode 2; c mode 3; d mode 4; e mode
5; f mode 6

To demonstrate the effect of temperature change on the fundamental natural frequency of the composite
beam, Fig. 6a–c illustrates the variation of the fundamental natural frequency of the composite beam with the
temperature rise for the C–C, C–H and H–H boundary conditions, respectively.

It can be noted from Fig. 6 that the change in the fundamental frequency due to temperature rise is
significant. The fundamental frequency monotonically reduces when the temperature rise increases. Finally,
the fundamental frequency becomes zero at about �T = 2752.6, 1510.7 and 784.3 ◦C for the C–C, C–H and
H–H boundary conditions, respectively. At this level of temperature rise, the thermal buckling of the composite
beam appears.

The first six mode shapes of the H–H composite beam with �T = 780 ◦C, which is very close to the
critical temperature change �Tcr = 784.3 ◦C, are plotted in Fig. 7. It may be noted that the first six natural
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Table 8 Natural frequencies (in Hz) of composite beam without Poisson effect

Mode no. �T = 0 ◦C �T = 180 ◦C �T = −180 ◦C
C–C C–H H–H C–C C–H H–H C–C C–H H–H

1 1231.0 937.3 667.0 1179.2 869.7 578.0 1280.3 999.9 745.4
2 2799.0 2532.9 2239.6 2714.4 2442.2 2139.3 2880.9 2620.4 2335.5
3 4663.4 4435.3 4200.3 4552.8 4320.9 4081.1 4771.4 4546.9 4316.2
4 6665.3 6462.4 6250.2 6528.6 6323.8 6109.6 6799.2 6598.0 6387.5
5 7904.4 7876.7 7860.8 7904.4 7873.9 7858.6 7904.5 7878.9 7863.0
6 8748.1 8562.0 8363.9 8585.6 8399.8 8198.1 8907.6 8721.8 8526.5

Table 9 Natural frequencies (in Hz) of composite beam (E1 = 69 × 109Pa)

Mode no. �T = 0 ◦C �T = 180 ◦C �T = −180 ◦C
C–C C–H H–H C–C C–H H–H C–C C–H H–H

1 747.6 534.0 353.8 723.9 501.7 309.6 770.5 564.3 393.0
2 1882.1 1603.1 1326.2 1848.1 1564.9 1282.1 1915.5 1640.5 1368.8
3 3351.8 3053.2 2749.1 3311.7 3010.2 2702.5 3391.4 3095.5 2795.0
4 3940.6 3936.9 3925.1 3940.6 3936.7 3923.9 3940.6 3937.1 3926.1
5 5030.0 4747.5 4460.9 4984.0 4699.6 4411.5 5075.6 4794.9 4509.9
6 6844.0 6582.3 6310.3 6792.0 6529.0 6255.4 6895.6 6635.2 6364.7

frequencies of the H–H composite beam with �T = 780 ◦C are 28.7, 1216.7, 2718.2, 4239.0, 4499.9, and
6365.0Hz, respectively.

Figure 7 shows that the axial displacement is coupled with the transverse displacement except for the
fundamental mode. The coupling between the axial displacement and the transverse displacement is rather
weak for the second the third modes. However, this coupling is rather strong for the fourth mode.

To show the Poisson effect on the natural frequencies of the composite beam, the first six natural frequencies
of the composite beam with the Poisson effect ignored for three boundary conditions and three temperature
changes (i.e., �T = 0 ◦C, �T = 180 ◦C and �T = −180 ◦C) are computed and presented in Table 8.

FromTables 6, 7 and 8, the influence of Poisson effect on the natural frequencies of the composite beam can
be assessed. It is clear that the natural frequencies obtainedwith the Poisson effect excluded significantly deviate
from the results predicted with the Poisson effect included. For the case of temperature rise (�T = 180 ◦C),
it is worthwhile to observe that the maximum percentage differences between the first six natural frequencies
obtained with and without the Poisson effect included are about 52.8, 59.3 and 70.2% for the C–C, C–H and
H–H boundary conditions, respectively. Also the average differences are about 40.6, 44.9 and 50.2% for the
C–C, C–H and H–H boundary conditions, respectively. The results presented in Tables 6, 7 and 8 indicate
that the natural frequencies predicted with the Poisson effect ignored have large errors when compared to the
results predicted with the Poisson effect included. Therefore, any one-dimensional laminated beam models
with the Poisson effect neglected cannot be used to accurately estimate the natural frequency of the composite
beams with general laminations.

The effect of material anisotropy on the first six natural frequencies of the composite beam with various
boundary conditions is shown in Table 9. It is noted that the value of E1 is varied from 138×109 to 69×109 Pa,
while the other material properties are kept the same.

Tables 6, 7 and 9 show clearly that the smaller the value of E1 is, the lower the natural frequency of the
composite beam is. For the case of temperature rise (�T = 180 ◦C), altering the value of E1 from 138× 109

to 69 × 109 Pa decreases the fundamental frequencies of the composite beam by approximately 7.5, 8.1 and
8.8%, and decreases the sixth natural frequencies of the composite beam by approximately 4.1, 4.4 and 4.9%
for the C–C, C–H and H–H boundary conditions, respectively. The natural frequencies of the composite beam
for the fundamental modes decrease with faster rate than for the sixth modes.

5 Conclusions

Natural vibration and buckling behaviors of generally laminated composite beams subjected to uniform tem-
perature changes along beam thickness are investigated. The third-order shear deformation beam theory is
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adopted and the Poisson effect is included in the one-dimensional beam constitutive equations. The cou-
pled differential equations governing the natural vibration of generally laminated composite beams subject
to uniform temperature changes are deduced using the Hamilton’s principle. The dynamic stiffness matrix is
formulated from the exact analytical solutions of the homogeneous governing equations of motion of generally
laminated composite beams. The dynamic stiffness method together with the Wittrick–Williams algorithm is
successfully applied to calculate the natural frequencies and critical temperature changes of the composite
beams. The proposed mathematical model and solution procedure gives good results for the prediction of
critical temperature changes when compared with the available results in literature. A parametric study is
presented to determine the influences of boundary conditions, Poisson effect, temperature change, thermal
expansion coefficient and material anisotropy on the natural frequencies of the composite beams. This study
is useful for the design engineers to choose the ply angle of laminated composite beams to shift the natural
frequencies and critical temperature change as desired or to control the vibration and buckling level.

Appendix

The transformed thermal coefficients αx , αy and αxy are defined by [28]

αx = α1 cos
2 ϑ + α2 sin

2 ϑ (26)

αy = α2 cos
2 ϑ + α1 sin

2 ϑ (27)

αxy = (α1 − α2) cosϑ sin ϑ (28)

where ϑ is the angle between the fiber direction and the beam axis, α1 and α2 are the thermal expansion
coefficients along the fiber direction and normal to the fiber direction, respectively.
The transformed reduced stiffness constants Q̄i j (i, j = 1, 2, 6) and Q̄i j (i, j = 4, 5) are defined by [28]

Q̄11 = Q11 cos
4 ϑ + 2(Q12 + 2Q66) sin

2 ϑ cos2 ϑ + Q22 sin
4 ϑ (29)

Q̄12 = (Q11 + Q22 − 4Q66) sin
2 ϑ cos2 ϑ + Q12(sin

4 ϑ + cos4 ϑ) (30)

Q̄22 = Q11 sin
4 ϑ + 2(Q12 + 2Q66) sin

2 ϑ cos2 ϑ + Q22 cos
4 ϑ (31)

Q̄16 = (Q11 − Q12 − 2Q66) sin ϑ cos3 ϑ + (Q12 − Q22 + 2Q66) sin
3 ϑ cosϑ (32)

Q̄26 = (Q11 − Q12 − 2Q66) sin
3 ϑ cosϑ + (Q12 − Q22 + 2Q66) sin ϑ cos3 ϑ (33)

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66) sin
2 ϑ cos2 ϑ + Q66(sin

4 ϑ + cos4 ϑ) (34)

Q̄44 = Q44 cos
2 ϑ + Q55 sin

2 ϑ (35)

Q̄45 = (Q55 − Q44) cosϑ sin ϑ (36)

Q̄55 = Q55 cos
2 ϑ + Q44 sin

2 ϑ (37)

where the reduced stiffness constants Q11, Q12, Q22, Q66 and Q44, Q55 can be obtained in terms of the
engineering constants [28]

Q11 = E1

1 − ν12ν21
(38)

Q12 = ν12E2

1 − ν12ν21
= ν21E1

1 − ν12ν21
(39)

Q22 = E2

1 − ν12ν21
(40)

Q66 = G12 (41)

Q44 = G23 (42)

Q55 = G13 (43)

The coefficients ηk(k = 0 − 4) appearing in Eq. (17) are

η4 = 16
(−2B̄11 Ē11 F̄11 + Ā11 F̄

2
11 + B̄2

11 H̄11 + D̄11
(
Ē2
11 − Ā11 H̄11

))
/
(
9h4

)
(44)
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η3 =
(
9 Ā11 D̄11

(
16F̄55 − 8D̄55h

2 + Ā55h
4) + 16Ē2

11 N̄
T
x − 24B̄11 Ē11h

2 N̄ T
x + Ā11

(
24F̄11h

2

−9 D̄11h
4 − 16H̄11

)
N̄ T
x + 32B̄11

(
H̄11 I2 − F̄11 I4 − Ē11 I5

)
ω2 + 16

(
F̄2
11 I1 − D̄11 H̄11 I1

−2 Ē11 F̄11 I2 + Ē2
11 I3 − Ā11 H̄11 I3 + 2D̄11 Ē11 I4 + 2 Ā11 F̄11 I5 − Ā11 D̄11 I7

)
ω2

+ B̄2
11

(
−144F̄55 + 72D̄55h

2 + 9h4
(
− Ā55 + N̄ T

x

)
+ 16I7ω

2
))

/
(
9h4

)
(45)

η2 =
(
9 Ā11

(
16F̄55 − 8 D̄55h

2 + Ā55h
4) N̄ T

x − 16 Ē2
11 I1ω

2 + (−9B̄2
11h

4 I1

− 8 Ā11
(
3F̄11h

2 − 2H̄11
)
I1 + 9 Ā11

(
16F̄55 − 8D̄55h

2 + Ā55h
4) I3 + 9D̄11 I1

(
16F̄55 − 8D̄55h

2

+ h4
(
Ā11 + Ā55 − N̄ T

x

))
+ (24F̄11h

2 I1 − 16H̄11 I1 − 24Ē11h
2 I2 − 9 Ā11h

4 I3 + 32Ē11 I4

+24 Ā11h
2 I5 − 16 Ā11 I7)N̄

T
x + 6B̄11

(−48F̄55 I2 + h2
(
4Ē11 I1 + 24D̄55 I2 − 3 Ā55h

2 I2

+ 3h2 I2 N̄
T
x − 4I4 N̄

T
x

)))
ω2 + 16

(
H̄11

(
I 22 − I1 I3

) − 2F̄11 I2 I4 + 2Ē11 I3 I4 + D̄11 I
2
4

+ 2F̄11 I1 I5 − 2Ē11 I2 I5 − 2B̄11 I4 I5 + Ā11 I
2
5 − (

D̄11 I1 − 2B̄11 I2 + Ā11 I3
)
I7

)
ω4) /

(
9h4

)))
(46)

η1 =
(
−9

(
16F̄55 − 8D̄55h

2 + Ā55h
4) I1

(
Ā11 − N̄ T

x

)
ω2 + (−24F̄11h

2 I 21 + 9D̄11h
4 I 21

+ 16H̄11 I
2
1 + 24Ē11h

2 I1 I2 − 18B̄11h
4 I1 I2 − 144F̄55 I

2
2 + 72D̄55h

2 I 22 − 9 Ā55h
4 I 22

+ 144F̄55 I1 I3 − 72D̄55h
2 I1 I3 + 9 Ā11h

4 I1 I3 + 9 Ā55h
4 I1 I3 − 32Ē11 I1 I4 + 24B̄11h

2 I1 I4
− 24 Ā11h

2 I1 I5 + 16 Ā11 I1 I7 + (
9h4

(
I 22 − I1 I3

) − 24h2 (I2 I4 − I1 I5)

+ 16
(
I 24 − I1 I7

))
N̄ T
x

)
ω4 + 16

(−2I2 I4 I5 + I1 I
2
5 + I 22 I7 + I3

(
I 24 − I1 I7

))
ω6

)
/
(
9h4

)
(47)

η0 = (
I1ω

4 (−9
(
16F̄55 − 8D̄55h

2 + Ā55h
4) I1 + (−9h4

(
I 22 − I1 I3

) + 24h2 (I2 I4 − I1 I5)

+ 16
(−I 24 + I1 I7

))
ω2)) /

(
9h4

)
(48)

References

1. Kapania, R.K., Raciti, S.: Recent advances in analysis of laminated beams and plates, part I: shear effects and buckling.
AIAA J. 27, 923–934 (1989)

2. Kapania, R.K., Raciti, S.: Recent advances in analysis of laminated beams and plates, part II: vibration and wave propagation.
AIAA J. 27, 935–946 (1989)

3. Mathew, T.C., Singh, G., Rao, G.V.: Thermal buckling of cross-ply composite laminates. Comput. Struct. 42, 281–287 (1992)
4. Lan, T., Lin, P.D., Chen, L.W.: Thermal buckling of bimodular sandwich beams. Compos. Struct. 25, 345–352 (1993)
5. Abramovich, H.: Thermal buckling of cross-ply composite laminates using first-order shear deformation theory. Compos.

Struct. 28, 201–213 (1994)
6. Mannini, A.: Shear deformation effects on thermal buckling of cross-ply composite laminates. Compos. Struct. 39, 1–10

(1997)
7. Suresh, R., Singh, G., Rao, G.V.: Nonlinear dynamic stability of laminated beams subjected to pulsating thermal loads. AIAA

J. 37, 521–524 (1999)
8. Lee, J.J., Choi, S.: Thermal buckling and postbuckling analysis of a laminated composite beamwith embeddedSMAactuators.

Compos. Struct. 47, 695–703 (1999)
9. Khdeir, A.A.: Thermal buckling of cross-ply laminated composite beams. Acta Mech. 149, 201–213 (2001)

10. Aydogdu,M.: Thermal buckling analysis of cross-ply laminated composite beamswith general boundary conditions. Compos.
Sci. Technol. 67, 1096–1104 (2007)

11. Pradeep, V., Ganesan, N., Bhaskar, K.: Vibration and thermal buckling of composite sandwich beams with viscoelastic core.
Compos. Struct. 81, 60–69 (2007)

12. Xiang, H.J., Yang, J.: Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat
conduction. Compos. Part B 39, 292–303 (2008)

13. Mahi, A., Adda Bedia, E.A., Tounsi, A., Mechab, I.: An analytical method for temperature-dependent free vibration analysis
of functionally graded beams with general boundary conditions. Compos. Struct. 92, 1877–1887 (2010)

14. Wattanasakulpongn, N., Prusty, B.G., Kelly, D.W.: Thermal buckling and elastic vibration of third-order shear deformable
functionally graded beams. Int. J. Mech. Sci. 53, 734–743 (2011)

15. Kiani, Y., Rezaei, M., Taheri, S., Eslami, M.R.: Thermo-electrical buckling of piezoelectric functionally graded material
Timoshenko beams. Int. J. Mech. Mater. Des. 7, 185–197 (2011)

16. Fu,Y.,Wang, J.,Mao,Y.:Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally
graded beams in thermal environment. Appl. Math. Model. 36, 4324–4340 (2012)

17. Vosoughi, A.R., Malekzadeh, P., Banan, M.R., Banan, M.R.: Thermal buckling and postbuckling of laminated composite
beams with temperature-dependent properties. Int. J. Nonlinear Mech. 47, 96–102 (2012)



A dynamic stiffness method for analysis of thermal effect 1315

18. Anandrao,K.S.,Gupta, R.K., Ramchandran, P., Rao,G.V.: Thermal buckling and free vibration analysis of heated functionally
graded material beams. Def. Sci. J. 63, 315–322 (2013)

19. Fu, Y., Wang, J., Hu, S.: Analytical solutions of thermal buckling and postbuckling of symmetric laminated composite beams
with various boundary conditions. Acta Mech. 225, 13–29 (2014)

20. Emam, S., Eltaher, M.A.: Buckling and postbuckling of composite beams in hygrothermal environments. Compos. Struct.
152, 665–675 (2016)

21. Reddy, J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. CRC Press, Boca Raton (1997)
22. Leung, A.Y.T.: Dynamic Stiffness and Substructures. Springer, London (1993)
23. Banerjee, J.R.: Dynamic stiffness formulation for structural elements: a general approach. Comput. Struct. 63, 101–103

(1997)
24. Lee, U.: Spectral Element Method in Structural Dynamics. Inha University Press, Incheon (2004)
25. Wittrick, W.H., Williams, F.W.: A general algorithm for computing natural frequencies of elastic structures. Q. J. Mech.

Appl. Math. 24, 263–284 (1971)
26. Li, J., Wang, S., Li, X., Kong, X., Wu, W.: Modeling the coupled bending-torsional vibrations of symmetric laminated

composite beams. Arch. Appl. Mech. 85, 991–1007 (2015)
27. Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer, 2nd edn. Addison-Wesley, Reading (1991)
28. Jones, R.M.: Mechanics of Composite Materials. McGraw-Hill, New York (1976)


	A dynamic stiffness method for analysis of thermal effect on vibration and buckling of a laminated composite beam
	Abstract
	1 Introduction
	2 Theoretical analysis
	3 Dynamic stiffness method
	4 Numerical examples
	5 Conclusions
	References




