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Abstract While the structural analysis of straight beams is straightforward, the behavior of curved beams
is more complex to predict. In the present work, a displacement approach of toroidal elasticity is used to
analyze thick isotropic curved tubes subjected to axial load, torque, and bending moment. The governing
equations are developed in a toroidal coordinate. The method of successive approximation is used to obtain
the general solution. The accuracy of the present methodology is tested comparing the numerical results with
those obtained by finite element method (FEM) and stress-based toroidal elasticity (SBTE). The proposed
methodology is computationally cost-effective, and its results reveal good agreements with FEM and SBTE
results. Finally, several numerical examples of stress distributions in thick isotropic curved tubes under axial
load, torque, and bending moment are presented. By using the present methodology, displacements as well as
stresses are obtained which are important information for fracture analysis.

Keywords Thick curved tubes · Toroidal elasticity · Displacement-based solution · Successive approxima-
tion · Mechanical load

List of symbols

a, b Inside and outside cross-sectional radius of the curved tube
c Reference length
an, bn, cn, dn, en, fn Constants of the nth-order complementary solution
Ani , Bni ,Cni Constants of the nth-order particular solution
E Young’s modulus
G Shear’s modulus
Fz , Tz , My Axial load, torque and bending moment
R Mean radius of an isotropic curved tube
uς , uφ , uθ Displacement components in toroidal coordinates
u, v, w Non-dimensional displacement components
uk, vk, wk The kth-order non-dimensional displacement components
U, V,W The first part of Navier function
Ū , V̄ , W̄ The second part of Navier function
Û , V̂ , Ŵ The third part of Navier function
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Uk, Vk,Wk The first part of Navier function of the kth order
Ūk , V̄k , W̄k The second part of Navier function of the kth order
Ûk , V̂k , Ŵk The third part of Navier function of the kth order
ε a/R
υ Poisson’s ratio
ς, φ, θ Toroidal coordinates
τςς , τφφ, τθθ Non-dimensional normal stress components
τςφ, τφθ , τςθ Non-dimensional shear stress components
τςςk, τφφk, τθθk The kth-order non-dimensional normal stress components
τςφk, τφθk, τςθk The kth-order non-dimensional shear stress components

1 Introduction

The stress analysis of curved structures is often theoretically and computationally complex. Governing equa-
tions of curved structures are much more complicated than straight structural elements [1,2]. The curve-like
structures exhibit complex deformation fields given their toroidal geometry and the multiplicity of external
load configurations. One type of the curve-like structures is isotropic curved tubes used in pressure vessel
industries, chemical reactors, steam generators and rotational gas compressor applications.

Von Karman [3] found a theoretical explanation to justify how a curved tube could have a higher bending
flexibility than a straight beam. The particular case of this problem, so-called Brazier effect, including the
buckling analysis of straight or curved tubes was found complex to be analyzed [4]. The research works of Von
Karman and Brazier provided basis for the subsequent analysis of tube problems. Ting [5,6] and Chen et al. [7]
investigated stress analysis in an anisotropic cylindrical tube under pressure, shear, torsion and tensile loads.
Boyle [8] used nonlinear shell theory shell to formulate the tube bending problem. Reissner [9] presented
a finite bending theory for curved tubes. Emmerling [10] determined the nonlinear deformation of elastic
curved tubes subjected to bending. In addition, he studied the precritical deformation of tubes on the basis of
a semi-membrane theory. The semi-membrane theory is free of drawbacks of the membrane theory such as
inapplicability of stress analysis of long cylindrical shells and impossibility of satisfying prescribed boundary
conditions on the longitudinal edges of open cylindrical shells.

The theory of toroidal elasticity (TE) has been employed to determine stress and displacement fields in
toroidal rings and vessels utilized in chemical and power plants under different types of loads [11]. Gohner [12]
apparently was the first researcher to report the technical complexity of the analysis of a curved solid circular
ring sector subjected to pure twist and bending moments. Ancker and Goodier [13] investigated helical springs
subjected to tension and torsional loads using the thin-slice method. They assumed that the springs had the
same cross section and same resultant force and moments at each cross section of spring. Kornecki [14] and
McGill [15] developed the TE theory extending Gohner’s research work. Kornecki [14] employed the method
of successive approximation to solve the governing equations, while the finite differencemethodwas applied by
McGill [15]. Major contribution to the TE theory was from Lang [11]. Lang summarized prior research works
[11] and developed a new TE theory in toroidal coordinate system. In the aforementioned Lang’s research,
the stress function approach has been employed; as a result, the deformation fields have not been derived
directly. Redekop [16,17] used the displacement components as basic variables and developed governing
Navier equations in toroidal coordinate system. Eric [18] investigated the linear problem of pure bending of
thin curved tubes. The solution of a circular cylindrical shell under a uniform pressure was employed as the first
approximation for the solution of the bending problem. A solution was obtained for the stress intensity factor of
double-curvature tubes close to the cracked area [19]. A numerical solution was proposed by Fonseca andMelo
[20] to perform a stress analysis of curved tubes under in-plane bending forces. Kolesnikov [21] considered
a short sector of torus as a curved tube and analyzed its large pure bending deformations. Mathematical
equations were presented to study effects of tube thickness on the collapse loads in the curved tubes under in-
plane bending moment. The comparison was made using finite element to verify the proposed equations [22].
Zhu et al. [23] investigated the finite deformation of a thick elastic tube under internal or external pressure and
zero displacement on its ends using aGalerkinmethod combinedwith aNewton iteration solver. Levyakov [24]
studied nonlinear equations of in-plane bending of curved tubes based on Reissner’s formulation in terms of
two unknown functions and parameters. To solve the equations, a numerical method based on finite difference
approximations and Newton–Raphson iteration technique was developed. The buckling of a straight tube
subjected to a pure bending moment was also studied by nonlinear the finite element method (FEM) [25],
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and the effects of imperfections on the buckling of thick curved panels were studied [26]. The deformation
of a circular cylindrical tube of a homogeneous transversely isotropic elastic material subjected to axial load,
internal pressure and end support moments was analyzed. Mathematical formulas were presented for the
resultant axial load and torsional moment at the ends of the tube a based on general strain energy function [27].
Recently, Djamaluddin et al. [28] implemented a finite element analysis to investigate the dynamic response of
tubes for axial progressive and global bending. Finally, Rodríguez and Merodio [29] investigated the torsion
of a tube subjected to radial and circumferential residual stresses. The developed numerical method was able
to capture the elastic instability of tubes under torque.

Considering themesh sensitivity and computational costs of finite element approach, it is desired to develop
an analytical or semi-analytical method for stress analysis of complex curve-like structures. The present paper
studies theoretically stresses developedwithin thick isotropic curved tubes under axial load, torque and bending
moment. The displacement-based toroidal elasticity (DBTE) including a full three-dimensional constitutive
relation is used for the analysis. Numerical results are compared with those developed analytically using
SBTE and numerically using FEM via ANSYS software. The three-dimensional stress distribution within
thick isotropic curved tubes is presented for a series of load case scenarios.

2 Displacement-based toroidal elasticity (governing equations)

A thick isotropic curved tube with a bending radius R and an annular cross section bounded by radii a and b
is subjected to axial load Fz , torque Tz and bending moment My , in the plane of the curved tube as shown in
Fig. 1. A general point P in a constant thickness curved tube can be represented easily by toroidal coordinate
system (r , Φ and θ ) where r and Φ are polar coordinates in the plane of the tube cross section and θ defines
the position of the curved tube cross section as seen in Fig. 2. A non-dimensional radial coordinate (ς = r/c)
is defined in the toroidal coordinate which c is a reference length to be determined later. Non-dimensional
displacements u, v and w are defined as:

x

y z
zT

zF

yM

yMzF

zT

Fig. 1 Mechanical loadings acting on the isotropic curved tube

R

θ

r

φ

a
b

Fig. 2 Geometry and coordinate system of the curved tube
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u = uς

c
, v = uφ

c
, w = uθ

c
(1)

Non-dimensional stress components are defined as [16]:

τςς = 1 + υ

E
σςς , τφφ = 1 + υ

E
σφφ, τθθ = 1 + υ

E
σθθ

τςφ = 1 + υ

E
σςφ, τςθ = 1 + υ

E
σςθ , τφθ = 1 + υ

E
σφθ (2)

The kinematics relations are:

εςς = ∂u
∂ς

, εςφ = 1
2

(
1
ς

∂u
∂φ

+ ∂v
∂ς

− v
ς

)
,

εφφ = u
ς

+ 1
ς

∂v
∂φ

, εςθ = 1
2

(
∂w
∂ς

+ 1
ρ

∂u
∂θ

− w
ρ
cosφ

)
,

εθθ = 1
ρ

(
u cosφ − v sin φ + ∂w

∂θ

)
, εφθ = 1

2

(
1
ς

∂w
∂φ

+ 1
ρ

∂v
∂θ

+ w
ρ
sin φ

) (3)

where ρ = R + rcosΦ is the radial cylindrical coordinate of a general point. The non-dimensional stress
components are presented in terms of three non-dimensional displacement components as:

τςς = ∂u
∂ς

+ ν
1−2ν ϑ, τςφ = 1

2

(
1
ς

∂u
∂φ

+ ∂v
∂ς

− v
ς

)

τφφ =
(
u
ς

+ 1
ς

∂v
∂φ

)
+ ν

1−2ν ϑ, τςθ = 1
2

(
∂w
∂ς

+ c
ρ

∂u
∂θ

− c
ρ
w cosφ

)

τθθ = c
ρ
χ + ν

1−2ν ϑ, τφθ = 1
2

(
1
ς

∂w
∂φ

+ c
ρ

∂v
∂θ

+ c
ρ
w sin φ

) (4)

where

ϑ = ψ + c

ρ
χ, ψ = ∂u

∂ς
+ u

ς
+ 1

ς

∂v

∂φ
, χ = u cosφ − v sin φ + ∂w

∂θ
(5)

Three equilibrium equations in the stress form in the toroidal coordinate are represented as [17]:

∂τςς

∂ς
+ 1

ς

∂τςφ

∂φ
+ 1

ς

(
τςς − τφφ

) + c

ρ

(
∂τςθ

∂θ
+ (

τςς − τφφ

)
cosφ − τςφ sin φ

)
= 0

∂τςφ

∂ς
+ 1

ς

∂τφφ

∂φ
+ 2

ς
τςφ + c

ρ

(
∂τφθ

∂θ
+ τςφ cosφ − (

τφφ − τθθ

)
sin φ

)
= 0

∂τςθ

∂ς
+ 1

ς

∂τφθ

∂φ
+ 1

ς
τςθ + c

ρ

(
∂τθθ

∂θ
+ 2τςθ cosφ − 2τφθ sin φ

)
= 0 (6)

Substituting the stress-displacement relations [Eq. (4)] into the equilibrium equations [Eq. (6)], the governing
Navier equations in the toroidal coordinate system are obtained as:

U +
(
c

ρ

)1

Ū +
(
c

ρ

)2

Û = 0

V +
(
c

ρ

)1

V̄ +
(
c

ρ

)2

V̂ = 0

W +
(
c

ρ

)1

W̄ +
(
c

ρ

)2

Ŵ = 0 (7)

where the coefficients in Eq. (7) are defined in “Appendix 1.” Three Navier equations serve as fundamental
equations for DBTE. These equations are composed of three parts. The first part is independent of c/ρ. The
second and the third parts are the linear and nonlinear parts of c/ρ, respectively. Navier equations in the
toroidal coordinate system are much more complicated than those in the Cartesian coordinate system. As it is
impossible to find an exact solution for the presentedNavier equations, themethod of successive approximation
[16] is used to develop an approximate numerical solution. We should note that tubes are considered thick
when the geometry of a curved tube has the condition of 2(b − a)/(b + a) > 0.1. As a result, the proposed
method could be applied for this geometry condition to calculate stresses accurately; otherwise, shell theories
may be used to obtain stresses in thin and moderately thick curved tubes.
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3 Method of successive approximation

The method of successive approximation is employed to solve Navier equations in the toroidal coordinate
system. The solution for each displacement component is assumed to be in the form of series in terms of a
small parameter ε. The parameter ε is chosen as:

ε = c

R
(8)

Therefore, the non-dimensional displacement components can be written as:

u =
∑

εnun

v =
∑

εnvn

w =
∑

εnwn n = 0, 1, 2, 3, . . . (9)

where n indicates the order of the displacement components in the series. Substituting the series form displace-
ment functions [Eq. (9)] into Eq. (4), the corresponding non-dimensional stress components are obtained:

τςς = ∑
εnτςςn τςφ = ∑

εnτςφn
τφφ = ∑

εnτφφn τςθ = ∑
εnτςθn

τθθ = ∑
εnτθθn τφθ = ∑

εnτφθn n = 0, 1, 2, 3, . . .
(10)

The functions of Navier equations are expanded in the following form:

U = ∑
εnUn V = ∑

εnVn W = ∑
εnWn

Ū = ∑
εnŪn V̄ = ∑

εn V̄n W̄ = ∑
εnW̄n

Û = ∑
εnÛn V̂ = ∑

εn V̂n Ŵ = ∑
εnŴn n = 0, 1, 2, 3, . . .

(11)

The quantities c/ρ and (c/ρ)2 are developed in the form of series of the parameter ε using Taylor Theorem
as:

c

ρ
= ε − ε2ς2 cosφ + ε3ς3 cos2 φ − · · ·

(
c

ρ

)2

= ε2 − 2ε3ς cosφ + 3ε4ς2 cos2 φ − · · · (12)

Substituting the expanded Navier functions and Eq. (12) into Navier equations [Eq. (7)], matching terms with
the same order of ε, and setting each corresponding factors with the same order of ε to zero, the governing
equations for the different orders are derived. The equations are indicated for the zeroth order as:

U0 = 0, V0 = 0, W0 = 0 (13)

For the first order as:

U1 = −Ū0, V1 = −V̄0, W1 = −W̄0 (14)

For the second order as:

U2 = −Ū1 + Ū0ς cosφ − Û0

V2 = −V̄1 + V̄0ς cosφ − V̂0

W2 = −W̄1 + W̄0ς cosφ − Ŵ0 (15)

For the third order as:

U3 = −Ū2 + Ū1ς cosφ − Ū0ς
2 cos2 φ − Û1 + 2Û0ς cosφ

V3 = −V̄2 + V̄1ς cosφ − V̄0ς
2 cos2 φ − V̂1 + 2V̂0ς cosφ

W3 = −W̄2 + W̄1ς cosφ − W̄0ς
2 cos2 φ − Ŵ1 + 2Ŵ0ς cosφ (16)
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And for the fourth order as:

U4 = −Ū3 + Ū2ς cosφ − Ū1ς
2 cos2 φ + Ū0ς

3 cos3 φ − Û2 + 2Û1ς cosφ − 3Û0ς
2 cos2 φ

V4 = −V̄3 + V̄2ς cosφ − V̄1ς
2 cos2 φ + V̄0ς

3 cos3 φ − V̂2 + 2V̂1ς cosφ − 3V̂0ς
2 cos2 φ

W4 = −W̄3 + W̄2ς cosφ − W̄1ς
2 cos2 φ + W̄0ς

3 cos3 φ − Ŵ2 + 2Ŵ1ς cosφ − 3Ŵ0ς
2 cos2 φ (17)

Navier functions of order k(k = 0, 1, 2, . . .) in Eqs. (13)–(17) are defined in “Appendix 1.” Combining Eqs.
(4), (9) and (12), the formulas for calculating the stress components of order k, valid for k = 0, 1, 2, 3 and 4
are determined as:

τςςk = ∂uk
∂ς

+ ν

1 − 2ν

(
ψk + χk−1 − ς cosφχk−2 + ς2 cos2 φχk−3 − ς3 cos3 φχk−4

)
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(
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ς
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ς

∂v

∂φ

)
+ ν

1 − 2ν

(
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)

τθθk = ν
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ψk + 1 − ν
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(
χk−1 − ς cosφχk−2 + ς2 cos2 φχk−3 − ς3 cos3 φχk−4

)

τςφk = 1

2

(
1

ς

∂uk
∂φ

+ ∂vk

∂ς
− vk

ς

)

τςθk = 1

2

⎛
⎝

∂wk
∂ς

+
(

∂uk−1
∂θ

− wk−1 cosφ
)

− ς cosφ
(

∂uk−2
∂θ

− wk−2 cosφ
)

+ς2 cos2 φ
(

∂uk−3
∂θ

− wk−3 cosφ
)

− ς3 cos3 φ
(

∂uk−4
∂θ

− wk−4 cosφ
)

⎞
⎠

τφθk = 1

2

⎛
⎝

1
ς

∂wk
∂φ

+
(

∂vk−1
∂θ

+ wk−1 sin φ
)

− ς cosφ
(

∂vk−2
∂θ

+ wk−2 sin φ
)

+ς2 cos2 φ
(

∂vk−3
∂θ

+ wk−3 sin φ
)

− ς3 cos3 φ
(

∂vk−4
∂θ

+ wk−4 sin φ
)

⎞
⎠ (18)

We should mention that functions with subscripts of negative indices are considered zero in the equations
presented above.

Themethod of successive approximation is a useful and powerful numerical method for obtaining solutions
to governing equations (Eq. 7), but it is difficult to justify precisely. The series solutions are local in ε and
global in r . When ε is small, one obtains a good approximation to the solution by the summation of the first
few terms of the series. When ε is not small, it may still be possible to obtain a good approximation to the
solution with slow convergence rate. Selecting the parameter ε should be done consistently; ε is chosen based
on geometric parameters in the problem, i.e., R, a and b. Since the bending radius R is constant, R could be
one of the parameters used to obtain ε. In addition, radii a and b are also among the choices for obtaining ε.
First, the smaller parameter, which is a, is selected to check the convergence of the displacement series. If
the convergence is not achieved, the other parameter, which is b, will be selected. In general, it is possible to
introduce ε in a way that the zeroth-order solution is obtained as a closed-form expression. In practice, only
the first few terms of the solution series can be conveniently calculated since the iteration procedure becomes
increasingly cumbersome when the order increases. It is necessary to select a suitable parameter ε which leads
to a fast convergence for the final solution. The solution obtained by the method of successive approximation
converges only for the values of ε smaller than the radius of convergence of the displacement series.

It is clear from Eqs. (13)–(17) that the zeroth-order governing equations are homogenous equations. The
right-hand side terms for orders greater than zero include portions from the lower orders. There is only a
complementary solution for the zeroth-order governing equations. For orders greater than zero, the solutions
consist of complementary and particular parts. The complementary part is determined from the homogeneous
part of the same order’s governing equations. The particular part is derived in order to satisfy the right-hand
side terms of the governing equations. The particular part is developed using trial displacement functions with
free constants, similar to the right-hand side terms of the governing equations of the same order.

The procedure for solving a specific problem is given as follows: (a) Solutions are proposed successively
for the different orders, starting from the zeroth order; (b) the zeroth-order solution is selected from the
complementary solution; (c) the particular part is arranged using trial functions. The displacement functions
for the same order are obtained by summing the complementary and particular parts. The constants in the
complementary solution of each order are determined separately from the boundary conditions; (d) the total
solution is found by adding the particular and complementary solutions of all the orders multiplied by the
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corresponding power of ε; and (e) constants remained in the total solution are determined from boundary
conditions.

4 General solution for different series of load case scenarios

The complementary solution for the displacement components is presented in the following form:

u0 = aςm cos (nφ) F (θ)

v0 = bςm sin (nφ) F (θ)

w0 = cς m̄ cos (nφ)G (θ) (19)

where the functions F(θ) and G(θ) are unknown which are obtained by boundary conditions. The quantities
a, b, c, m, m̄ and n are constants determined by the zeroth-order Navier equations, Eq. (13), and stress-free
boundary conditions on the free surfaces leading to:

u0 =
[
a0ς−1 + b0ς + {

a1 + b1 (1 − 4ν) ς2 + c1ς−2 + d1 (3 − 4ν) ln ς
}
cosφ

+ ∑∞
n=2

{
anςn−1 + bn (2 − n − 4ν) ςn+1 + cnς−(n+1) + dn (2 − n + 4ν) ς−(n−1)

}
cos nφ

]
F (θ)

v0 =
[ {−a1 + b1 (5 − 4ν) ς2 + c1ς−2 − d1 (3 − 4ν) ln ς − d1

}
sin φ

+ ∑∞
n=2

{−anςn−1 + bn (4 + n − 4ν) ςn+1 + cnς−(n+1) + dn (4 − n − 4ν) ς−(n−1)
}
sin nφ

]
F (θ)

w0 =
[
e0 + f0 ln ς +

{
e1ς

−1 + f1ς
}
cosφ +

∞∑
n=2

{
enς

−n + fnς
n} cos nφ

]
G (θ) (20)

where constant quantities a0, b0, a1, b1, c1, d1, e0, f0, e1, f1, an , bn , cn , dn , en and fn are obtained by
applying boundary conditions [Eq. (21)]. The abovementioned detailed solution is presented here for a 90◦
thick isotropic curved tube subjected to axial load Fz , torque Tz and bending moment My , in the plane of the
curved tube as shown in Fig. 1. On the free curved surfaces (ς = 1 and ς = a/b), the following boundary
conditions must be satisfied:

τςςk = τςφk = τςθk = 0 (21)

On the end surfaces θ = 0◦ and 90◦

My = M0 + εM1 + ε2M2 + ε3M3 + . . . (22a)

Tz = T0 + εT1 + ε2T2 + ε3T3 + . . . (22b)

Fz = F0 + εF1 + ε2F2 + ε3F3 + . . . (22c)

whereMy, Fz and Tz are the applied pure bendingmoment, axial load and torque, respectively. These boundary
conditions, Eq. (21), on the free curved surfaces are applied by each order separately. In order to consider the
boundary conditions given in Eq. (22), on the both end surfaces, the functions F(θ) and G(θ) are chosen as:

F (θ) = cos θ,G (θ) = sin θ (23)

4.1 The zeroth-order solution

The zeroth-order governing equations are homogeneous equations as follows:

∇2u0 − u0
ς2 − 2

ς2

∂v0

∂φ
+ 1

1 − 2ν

∂ψ0

∂ς
= 0

∇2v0 − v0

ς2 + 2

ς2

∂u0
∂φ

+ 1

1 − 2ν

1

ς

∂ψ0

∂φ
= 0

∇2w0 = 0 (24)

Only the complementary solution is required. Considering Eq. (20), the zeroth-order displacement components
are selected as:
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Complementary solution

u0 = (a1) cosφ cos θ

v0 = (−a1) sin φ cos θ

w0 = 0

Particular solution

u0 = 0

v0 = 0

w0 = 0 (25)

Considering the boundary conditions on the free inner and outer surfaces, the displacement components are
obtained as:

u0 = a1 cosφ cos θ

v0 = −a1 sin φ cos θ

w0 = 0 (26)

These displacement functions [Eq. (26)] express a rigid body rotation. Constant a1 of the associated order is
obtained by applying Eq. (22).

4.2 The first-order solution

For the first-order solution, the right-hand side terms of the governing equations are first obtained which are
selected from Eqs. (14) and (45) and the zeroth-order displacement components. The governing equations of
the first order are derived as:

U1 = −Ū0 U1 = 0
V1 = −V̄0 → V1 = 0
W1 = −W̄0 W1 = 0

(27)

The first-order solution contains a complementary and a particular part. The complementary part is chosen
from Eq. (20). The particular part is obtained using trial functions. Considering together the complementary
and particular parts, the first-order displacement components are derived:

u1 = (
a0ς

−1 + b0ς
)
cos θ

v1 = 0

w1 = (e0 + f0 ln ς) sin θ (28)

The free constants in Eq. (28) are derived by applying the stress components τςς1 = τςθ1 = τςφ1 = 0
corresponding to the boundary conditions. The constants a0, b0, e0 and f0 are zero. Substituting these constants
into Eq. (28), the first-order displacement components are obtained as:

u1 = 0

v1 = 0

w1 = 0 (29)

4.2.1 The second-order solution

The second-order governing equations are determined as:

∇2u2 − u2
ς2 − 2

ς2

∂v2

∂φ
+ 1

1 − 2ν

∂ψ2

∂ς
= 3 − 4υ

1 − 2ν
a1 cosφ cos θ

∇2v2 − v2

ς2 + 2

ς2

∂u2
∂φ

+ 1

1 − 2ν

1

ς

∂ψ2

∂φ
= 4υ − 3

1 − 2ν
a1 sin φ cos θ

∇2w2 = 4υ − 3

1 − 2ν
a1 sin θ (30)
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The second-order displacement components are selected as:
Complementary solution

u2 = [
b1 (1 − 4ν) ς2 + c1ς

−2 + d1 (3 − 4ν) ln ς
]
cosφ cos θ

v2 = [
b1 (5 − 4ν) ς2 + c1ς

−2 − d1 (3 − 4ν) ln ς − d1
]
sin φ cos θ

w2 = [
e1ς

−1 + f1ς
]
cosφ sin θ

Particular solution

u2 = −a1ς
2 cosφ cos θ

v2 = a1ς
2 sin φ cos θ

w2 = 0 (31)

Subsequently, the stress components are presented as:

τςς2 =
[
2b1ς − 2c1ς

−3 + (3 − 2ν) d1ς
−1 + 2 − υ

1 − 2υ
a1ς

]
cosφ cos θ

τςφ2 = [
2b1ς − 2c1ς

−3 − (1 − 2ν) d1ς
−1 + a1ς

]
sin φ cos θ

τςθ2 = 1

2

[−e1ς
−2 + f1

]
cosφ sin θ − 1

2
a1ς cos2 φ sin θ (32)

where b1, c1, d1, e1 and f1 are free constants. By applying the appropriate boundary conditions [Eqs. (21)],
the constants are obtained as:

c1 = d1 = e1 = f1 = 0 and b1 = −1

2

2 − υ

1 − 2υ
a1 (33)

Finally, the second-order displacement components are found as:

u2 = A1ς
2 cosφ cos θ

v2 = B1ς
2 sin φ cos θ

w2 = 0 (34)

where

A1 = 4υ2 − 13υ + 4

4υ − 2
a1, B1 = 4υ2 − 9υ + 8

4υ − 2
a1 (35)

4.2.2 The third-order solution

The third-order governing equations are derived from Eqs. (16) and (45). On the right-hand sides of the first
two of these equations, there are two sets of terms. The governing equations of the third-order are developed
as:

∇2u3 − u3
ς2 − 2

ς2

∂v3

∂φ
+ 1

1 − 2ν

∂ψ3

∂ς
= 1

2
[A11 − B11] ς cos 2φ cos θ

∇2v3 − v3

ς2 + 2

ς2

∂u3
∂φ

+ 1

1 − 2ν

1

ς

∂ψ3

∂φ
= C11ς sin 2φ cos θ

∇2w3 = D11ς cosφ sin θ (36)

As a result, the particular solution for Eq. (36) is obtained as:

u3p = A22ς
3 cos 2φ cos θ

v3p = C22ς
3 sin 2φ cos θ

w3p = D22ς
3 cosφ sin θ (37)
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The coefficients appearing in Eqs. (36) and (37) are defined in “Appendix 2.” Therefore, the third-order solution
is presented in the following form:

u3 = [
a2ς + b2 (1 − 4ν) ς3 + c2ς

−3 + d2 (3 − 4ν) ς−1 + A22ς
3] cos 2φ cos θ

v3 = [−a2ς + b2 (6 − 4ν) ς3 + c2ς
−3 + d2 (2 − 4ν) ς−1 + C22ς

3] sin 2φ cos θ

w3 = [
e2ς

−2 + f2ς
2 + D22ς

3] cosφ sin θ (38)

and

τςς3 = [
a2 − 3c2ς

−4 + 4d2ς
−2] cos 2φ cos θ +

[
3A22 + υ

1 − 2υ

(
4A22 + 2C22 + 1

2
a1

)]
ς2 cos 2φ cos θ

τςφ3 = [−a2 + 6b2ς
2 − 3c2ς

−4 + 2d2ς
−2] sin 2φ cos θ + (C22 − A22) ς2 sin 2φ cos θ

τςθ3 = 1

2

[−2e2ς
−3 + 2 f2ς

]
cosφ sin θ + 1

2

[(
4υ2 − 13υ + 4

2 − 4υ

)
a1 + 3D22

]
ς2 cosφ sin θ (39)

where a2, b2, c2, d2, e2 and f2 are constants presented in “Appendix 3” which are obtained applying the
boundary conditions, Eq. (21), and governing equations, Eq. (36). These constants are obtained in terms of the
material property, Poisson ratio (υ) and the aspect ratio (a/b).

4.2.3 The fourth-order solution

The fourth-order governing equations are derived from Eqs. (17) and (45). The governing equations for the
fourth-order are expressed as:

∇2u4 − u4
ς2 − 2

ς2

∂v4

∂φ
+ 1

1 − 2ν

∂ψ4

∂ς
= [

L1ς
2 + L2ς

−4 + L3ς
−2] cos 3φ cos θ

+ [
L4 + L5ς

2 + L6ς
−2] cosφ cos θ

∇2v4 − v4

ς2 + 2

ς2

∂u4
∂φ

+ 1

1 − 2ν

1

ς

∂ψ4

∂φ
= [

L7ς
2 + L8ς

−4 + L9ς
−2] sin 3φ cos θ

+ [
L10 + L11ς

2 + L12ς
−2 + L13ς

−3 + L14ς
]
sin φ cos θ

∇2w4 = [
L17ς

2 + L18ς
−2 + L15ς

−3 + L16ς
]
cos 2φ sin θ + [L19 + L20] sin θ (40)

where the coefficients appearing in Eq. (40) are defined in “Appendix 4.” For the complementary parts of
u4 and v4, the third harmonic solution is selected, while for w4 the second harmonic solution is chosen.
Subsequently, the fourth-order solution is expressed as:

u4 = [
a3ς

2 − b3 (1 + 4ν) ς4 + c3ς
−4 − d3 (5 − 4ν) ς−2] cos 3φ cos θ

+ 1 − 2υ

20υ − 11

[
L1ς

4 + L2ς
−2 + L3

]
cos 3φ cos θ + 1 − 2υ

4υ − 3

[
L4ς

2 + L5ς
4 + L6

]
cosφ cos θ

v4 = [−a3ς
2 + b3 (7 − 4ν) ς4 + c3ς

−4 + d3 (1 − 4ν) ς−2] sin 3φ cos θ

+ 1 − 2υ

20υ − 19

[
L7ς

4 + L8ς
−2 + L9

]
sin 3φ cos θ + 1 − 2υ

4υ − 3

[
L10ς

2 + L11ς
4 + L12 + L13ς

−1 + L14ς
13] sin φ cos θ

w4 = [
e3ς

−3 + f3ς
3] cos 2φ sin θ − 1

4

[
L15ς

−1 + L16ς
3 + L18 + L17ς

4] cos 2φ sin θ (41)

and

τςς4 =
[
2a3ς − 4b3ς

3 − 4c3ς
−5 + 10d3ς

−3
]
cos 3φ cos θ + H1 (ς) cos 3φ cos θ

τςφ4 =
[
−2a3ς + 12b3ς

3 − 4c3ς
−5 + 6d3ς

−3
]
sin 3φ cos θ + H2 (ς) sin 3φ cos θ

τςθ4 =
[
−3

2
e3ς

−4 + 3

2
f3ς

2
]
cos 2φ sin θ + H3 (ς) cos 2φ sin θ (42)
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x

y z

Fig. 3 Modeling of thick isotropic curved tubes using ANSYS

where the coefficients appearing in Eq. (42) are defined in “Appendix 4.” It should be noted that a3, b3, c3, d3,
e3 and f3 are free constants presented in “Appendix 5.” These constants are obtained by applying the boundary
conditions presented in Eq. (21) and governing equations given Eq. (40). Integrating the stress components of
τθθ and τθφ up to the fourth-order over the both end surfaces leads to:

My = M0 + εM1 + ε2M2 + ε3M3 + ε4M4

Mk =
∫ b/c

a/c

∫ 2π

0
(τθθkς cosφ) ςdφdς at θ = 0◦, 90◦ (43a)

Tz = T0 + εT1 + ε2T2 + ε3T3 + ε4T4

Tk =
∫ b/c

a/c

∫ 2π

0

(
τθφkς

)
ςdφdς at θ = 0◦, 90◦ (43b)

Fz = F0 + εF1 + ε2F2 + ε3F3 + ε4F4

Fk =
∫ b/c

a/c

∫ 2π

0
(τθθk) ςdφdς at θ = 0◦, 90◦ (43c)

The total solution for thick isotropic curved tubes subjected to combined mechanical loads is developed by
considering the solutions of all the orders and substituting them into Eqs. (9) and (10).

5 FEM analysis

The thick isotropic curved tubes aremodeled byANSYSfinite element software using SOLID185 element (See
Fig. 3). TheSOLID185 element,which is a three-dimensional element consisting eight nodeswith three degrees
of freedom at each node, is used for the finite element simulation. Using the finite element analysis, stress
distributions within the tube are calculate to compare with those results obtained by the proposed theoretical
method mentioned in Sects. 2, 3 and 4. The mesh sensitivity study is conducted; mesh refining is performed
two times while the element aspect ratio is kept constant. It is noted that for the initial analysis, 36000 elements
(60 axial×60 circumferential×10 thickness directions) are used to model the structure. During the first mesh
refinement, meshes through the thickness and circumferential directions are refined twice as much as the initial
mesh (144,000 elements). For the second refinement, the axial and circumferential directions are refined twice
as much as the initial mesh and the thickness direction is refined four times as much as the initial mesh to
model the curved tube by 576,000 elements.

6 Results and discussion

In this section, numerical results are presented and discussed for thick isotropic curved tubes under axial
load, torque and bending moment (see Fig. 1) with the following geometric and material parameters (unless
otherwise mentioned):
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θ = 90◦, b/a = 2, R/a = 5, υ = 0.3, c = a and E = 206GPa (44)

We should note that the thick isotropic curved tube investigated here is subjected to all loads simultaneously. In
addition, the radius of convergence of a series is defined as the limit value of uk+1/uk when k tends to infinity.
The value of the radius of convergence of three series of displacement components [i.e., u, v and w in Eq.
(9)] is larger than one. The small parameter ε is selected as the ratio of outside radius of the cross section to
the mean toroidal radius (a/R) which is smaller than the radius of convergence and as a result, the numerical
successive approximation technique converges.

6.1 Comparison of the present method with FEM

The convergence study is performed to determine how many orders of successive approximation are required
to obtain accurate results. Table 1 presents the radial and hoop stresses obtained by the proposed method with
different orders and the finite element analysis. It is worthmentioning that the stresses in Table 1 are normalized
according to Eq. (2) and obtained at φ = 180◦, θ = 0◦ and ς = 0.25 of the isotropic curved tube. It is seen
that by increasing the number of orders in the successive approximation method, the difference between the
obtained results and FEM predictions decreases. Since the differences for the third and fourth orders in are
close, the solutions up to the third-order are chosen in this paper for the presentation of results in the rest of
the paper.

The radial (τςς ) and hoop (τφφ) stresses on the middle surface (ς = 0.5) of the isotropic curved tube
obtained by the present method and FEM (ANSYS) are compared in Fig. 4. Close agreement between the
proposed semi-analytical methodology and FEM results is obtained. It is worthwhile noting that analyzing
the thick isotropic curved tube with the initial mesh takes 880s while it takes 1100 and 2000s when the first
and second refinement are used, respectively. The analysis using the proposed semi-analytical methodology,
however, is much faster and it takes only 120s.

Table 1 Convergence study for the isotropic curved tube

Normalized stress Order of successive approx

Up to the first-order
(difference %)

Up to the second-order
(difference %)

Up to the third-order
(difference %)

Up to the fourth-order
(difference %)

FEM

Radial stress 0.37 (25%) 0.44 (12%) 0.48 (4%) 0.49 (3%) 0.5
Hoop stress 1.63 (27%) 1.94 (13%) 2.10 (6%) 2.12 (5%) 2.23

Fig. 4 Comparison of the radial stresses (τςς ) and hoop stresses (τφφ) on the middle surface (ς = 0.5) of the isotropic curved
tube obtained by the present method and FEM (ANSYS)
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Fig. 5 Comparison of the shear stresses (τφθ ) and hoop stresses (τςθ ) on the middle surface (ς = 0.5) of the isotropic curved
tube obtained by the present method and SBTE

6.2 Comparison of the present method with SBTE

The shear stresses of τφθ and τςθ on the middle surface (ς = 0.5) of the isotropic curved tube obtained by
both the proposed methodology and SBTE are shown in Fig. 5. Close agreement between the semi-analytical
analysis and SBTE results is observed. It is seen that the numerical results obtained by SBTE and FEM are
about 5% higher than those predicted by the proposed method (see Figs. 4, 5).

6.3 Advantages of the proposed methodology

Themost important advantage of the presentmethodology is that required inputs for themodeling and analyzing
of thick isotropic curved structures are simple, while the methodology is easy to use and fast to run. Using the
present method, one just needs to simply define the dimensions the beginning of the program. It is obvious
that the modeling of curved structures using FEM takes much longer compared to the present methodology.
One of the advantages of the proposed methodology is the accuracy of the obtained numerical results. While
using FEM for the parametric study of curved tubes is cumbersome, the proposed methodology can be applied
easily for parametric studies with a low computational cost. For example, to study the effect of thickness on
the stress and strain distributions using FEM, it is necessary to model the geometry for different thicknesses
and obviously it takes much longer for FEM than using the present methodology.

The present methodology has the advantages of obtaining directly the displacements as well as the stresses
as compared with SBTE. The zeroth-order displacement functions required for starting the method of suc-
cessive approximation are formulated based on the general mechanical knowledge. We should remark that
the displacement components are important information for considering special constraints and for fracture
analysis. We should note that the present methodology could be extended to study thick curved tubes with
anisotropicmechanical properties. In order tomodel a composite curved tube, it is needed to use the constitutive
equations for orthotropic materials, and a similar approach can be developed for stress analysis [30–32].

6.4 Stress distributions

Performed discussion here is on thick isotropic curved tubes subjected to axial load, torque and bending
moment. The stress distributions are discussed through several numerical examples based on the present
method.

The distributions of the normalized radial (τςς ) and shear (τςθ ) stresses over cross section on the middle
surface (ς = 0.5) of the thick isotropic curved tube are presented in Fig. 6. The numerical results for the
radial stress (τςς ) show the symmetric behavior while the shear stress distributions are not symmetric. It is
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Fig. 6 Distributions of the normalized radial stresses (τςς ) and shear stresses (τςθ ) over cross section on the middle surface
(ς = 0.5) of the isotropic curved tube

seen that the maximum magnitudes of the radial stress (τςς ) occur at φ = 90◦ and 270◦ while the maximum
magnitudes of the shear stress (τςθ ) occur at φ = 150◦. It is found that the maximum magnitudes of the shear
stress (τςθ ) are greater than those of the radial stress (τςς ).

Figures 7, 8 and 9 show the distributions of the normalized hoop (τφφ), longitudinal (τθθ ) and shear (τφθ )
stresses over the tube cross section in the inside (ς = a/b), middle (ς = 0.5) and outside (ς = 1) surfaces of
the isotropic curved tube, respectively. As depicted in Figs. 7, 8 and 9, the maximum values of the hoop stress
(τφφ) and the shear stress (τφθ ) occur on the inside surface while the maximum value of the longitudinal stress
(τθθ ) occurs on the outside surface. Figure 7 shows that the hoop stress is entirely compressive on the middle
surface, while the sign of hoop stress changes on the inside and outside surfaces. The maximum hoop stress
on the inside and outside surfaces is compressive, and it occurs at φ = 180◦ on the outside surface, while it
occurs at φ = 90◦ and 270◦ on the inside surface. Figure 8 shows that the maximum longitudinal stress (τθθ )
on the outside surface is compressive, and it occurs at φ = 180◦, while on the middle and inside surfaces,
they occur at φ = 0◦ and they are tensile. It is seen that the longitudinal stress is compressive at the 150◦ to
210◦ region of the curved tube cross section. In addition, the symmetric behavior is seen in Fig. 8. However,
the shear stress (τφθ ) has an anti-symmetric behavior as shown in Fig. 9. It is observed from Fig. 9 that the
minimum and maximum values of all surfaces occur at the same locations which are around φ = 135◦ and
φ = 225◦, respectively. In spite of the hoop stress, the behavior of the shear stress on middle surface is the
same as those on the inside and outside surfaces.

Figure 10 presents the distributions of the normalized radial stress (τςς ) and the shear stresses of τςθ and
τςφ along the tube thickness at φ = 0◦ of the thick isotropic curved tube. As it seen from Fig. 10, the radial
stress (τςς ) and shear stresses (τςθ and τςφ) are zero on free curved surfaces ς = 1 and ς = a/b [see Eq. (21)].
The radial stress (τςς ) is entirely positive along the radial direction at φ = 0◦ while the shear stresses (τςφ

and τςθ ) are negative. Observing Fig. 10, at the first, the magnitude of the radial stress (τςς ) along the radial
direction increases from zero and then decreases toward zero. In addition, the maximum magnitudes for these
stresses are placed at the different points along the tube thickness.

The distributions of the normalized longitudinal (τθθ ), hoop (τφφ) and shear stresses (τφθ ) along the tube
thickness at φ = 0◦ of the isotropic curved tube is seen in Fig. 11. As it expected the longitudinal (τθθ ) and
the shear stresses (τφθ ) are positive while the hoop stress (τφφ) starts from being positive on the inside surface
to negative on the outside surface. Note that the shear stress (τφθ ) increases along the tube thickness while
the hoop stress (τφφ) decreases along the tube thickness. Therefore, the maximum value of the shear stress
(τφθ ) occurs on the outside surface while the maximum value of the hoop stress (τφφ) occurs on the inside
surface. The rates are different for these stresses, and the decrease rate of the hoop stress is more than those of
the others. In addition, the maximum value of the longitudinal stress (τθθ ) occurs before the middle surface as
seen in Fig. 11.

Figure 12 shows the distributions of the normalized longitudinal (τθθ ), hoop (τφφ) and radial stresses (τςς )
along the longitudinal direction at φ = 0◦ and ς=0.5 of the isotropic curved tube. It is seen that all stresses
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Fig. 7 Distributions of the normalized hoop stresses (τφφ) over cross section on the inside (ς = a/b), middle (ς = 0.5) and
outside surfaces (ς = 1) of the isotropic curved tube

Fig. 8 Distributions of the normalized longitudinal stresses (τθθ ) over cross section on the inside (ς = a/b), middle (ς = 0.5)
and outside surfaces (ς = 1) of the isotropic curved tube

Fig. 9 Distributions of the normalized shear stresses (τφθ ) over cross section on the inside (ς = a/b), middle (ς = 0.5) and
outside surfaces (ς = 1) of the isotropic curved tube.
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Fig. 10 Variations of the normalized radial stress (τςς ) and shear stresses of τςθ , τςφ along the radial direction at φ = 0◦ of the
isotropic curved tube

a/b 0.5 1
0.6

0.7

0.8

0.9

1

ζ

τ φθ

Fig. 11 Variations of the normalized longitudinal stress (τθθ ), hoop stress (τφφ) and shear stress (τφθ ) along the radial direction
at φ = 0◦ of the isotropic curved tube

have the symmetric behavior. The longitudinal stress (τθθ ) decreases as it is getting closer to the middle of the
curved tube while the hoop stress (τφφ) increases. The longitudinal and radial stresses are maximum at both
sides of the curved tube (i.e., at θ = 0◦ and 90◦) while the hoop stress (τφφ) is maximum at the mid-length of
the curved tube (i.e., at θ = 45◦).

The distributions of the normalized shear stresses of τςθ , τςφ and τφθ along the longitudinal direction at
φ = 0◦ and ς=0.5 of the thick isotropic curved tube are presented in Fig. 13. All shear stresses have the
symmetric behavior. In addition, the shear stress (τφθ ) decreases as it is getting closer to the middle of the
curved tube while the shear stress (τςθ ) increases. Note that the shear stresses (τφθ and τςφ) are maximum at
both sides of the curved tube (i.e., at θ = 0◦ and 90◦)while the shear stress (τςθ ) is maximum at the mid-length
of the curved tube (i.e., at θ = 45◦).

7 Conclusion

Toroidal elasticity is a developing three-dimensional theory which can be applied for stress analysis of thick
curved tubes. A displacement-based toroidal elasticity has been used here for the stress analysis of thick
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Fig. 12 Variations of the normalized longitudinal stress (τθθ ), hoop stress (τφφ) and radial stress (τςς ) along the longitudinal
direction at φ = 0◦ and ς = 0.5 of the isotropic curved tube

Fig. 13 Variations of the normalized shear stresses of τςθ , τςφ and τφθ along the longitudinal direction at φ = 0◦ and ς = 0.5
of the isotropic curved tube

isotropic curved tubes under axial load, torque and bending moment. The successive approximation method
has been employed to simplify governing equations and to reconstruct them into different orders. Moreover,
the accuracy of stresses was examined comparing the present method and FEM for isotropic curved tubes. The
numerical results showed good agreement between the present method with FEM and SBTE. Furthermore,
the proposed method was found to be more cost-effective and accurate; therefore, it was employed to obtain
stresses instead of using FEM. Finally, the conclusions obtained from the discussion are listed as following:

• The radial stress distributions show the symmetric behavior, while the shear stress distributions are not
symmetric along circumferential direction.

• The maximummagnitudes of the radial stress occur at φ = 90◦ and 270◦, while the maximummagnitudes
of the shear stress (τςθ ) occur at φ = 150◦. And the maximum magnitudes of the shear stress are greater
than those of the radial stress.

• The maximum values of the hoop stress and the shear stress (τφθ ) occur on the inside surface, while the
maximum value of the longitudinal stress occurs on the outside surface.

• The longitudinal and radial stresses are maximum at both sides of the curved tube, while the hoop stress
(τφφ) is maximum at the mid-length of the curved tube.
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8 Appendices

8.1 Appendix 1

The coefficients appearing in Eqs. (7) and Navier functions of order k(k = 0, 1, 2, . . .) in Eqs. (13)–(17) are
obtained as follows:

Uk = ∇2uk − uk
ς2 − 2

ς2

∂vk

∂φ
+ 1

1 − 2ν

∂ψk

∂ς
,

Ūk = cosφ
∂uk
∂ς

− sin φ

(
1

ς

∂uk
∂φ

− vk

ς

)
+ 1

1 − 2υ

∂χk

∂ς

Ûk = ∂2uk
∂θ2

− cosφ
∂wk

∂θ
− 2 (1 − υ)

1 − 2υ
cosφχk

Vk = ∇2vk − vk

ς2 + 2

ς2

∂uk
∂φ

+ 1

1 − 2ν

1

ς

∂ψk

∂φ
,

V̄k = cosφ
∂vk

∂ς
− sin φ

(
1

ς

∂vk

∂φ
+ uk

ς

)
+ 1

1 − 2υ

1

ς

∂χk

∂φ

V̂k = ∂2vk

∂θ2
+ sin φ

∂wk

∂θ
+ 2 (1 − υ)

1 − 2υ
sin φχk

Wk = ∇2wk, W̄k = cosφ
∂wk

∂ς
− sin φ

1

ς

∂wk

∂φ
+ 1

1 − 2υ

∂ψk

∂θ

Ŵk = −∂2wk

∂θ2
− wk + 3 − 4ν

1 − 2υ

∂χk

∂θ

ψk = ∂uk
∂ς

+ uk
ς

+ 1

ς

∂vk

∂φ
, χk = uk cosφ − vk sin φ + ∂wk

∂θ

∇2 (. . .) = ∂2 (. . .)

∂ς2 + 1

ς

∂ (. . .)

∂ς
+ 1

ς2

∂2 (. . .)

∂φ2 (45)

8.2 Appendix 2

The coefficients appearing in Eqs. (36) and (37) are obtained as follows:

A11 = −1

1 − 2υ
[A1 (3 − 2υ) + a1 (6 − 8υ)] , D11 = 1

1 − 2υ
[(3A1 + B1) − a1 (6 − 8υ)]

B11 = 2υ − 3

1 − 2υ
B1, C11 = 1

1 − 2υ

[
1

2
A1 (3 − 2υ) + 1

2
A1 (1 + 2υ) + 1

2
a1 (6 − 8υ)

]
(46)

A22 = 1

2

1 − 2υ

6 − 10υ
[B11 − A11] − 1

2

1 − 2υ

2 − 2υ
[A11 + B11 + 4A1]

C22 = −C11
1 − 2υ

9 − 10υ
, D22 = −D11 (47)

8.3 Appendix 3

Evaluation of the constants in Eqs. (38) and (39) leads to:

a2 =
[
3A22 + υ

1 − 2υ

(
4A22 + 2C22 + 1

2
a1

)][
−2

(
λ10 − λ2 + 1

)

λ2
(
λ4 − 1

) (
λ4 − λ2 + 4

)
]

b2 = 1

6

[
3A22 + υ

1 − 2υ

(
4A22 + 2C22 + 1

2
a1

)][
−2λ10 − λ8 + 2λ6 + 2λ4 − 3

λ2
(
λ4 − 1

) (
λ4 − λ2 + 4

)
]

− 1

6
[C22 − A22]
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c2 = 1

3

[
3A22 + υ

1 − 2υ

(
4A22 + 2C22 + 1

2
a1

)][
1 + 2

(
1 − λ2 − λ4

)
(
λ4 − 1

) (
λ4 − λ2 + 4

)
]

d2 = 1

2

[
3A22 + υ

1 − 2υ

(
4A22 + 2C22 + 1

2
a1

)][
λ6 − 1

λ2
(
λ4 − λ2 + 4

)
]

e2 = 1

2

[(
4υ2 − 13υ + 4

2 − 4υ

)
a1 + 3D22

]
1 − λ

1 − λ−4

f2 = 1

2

[(
4υ2 − 13υ + 4

2 − 4υ

)
a1 + 3D22

]
λ

(
λ−5 − 1

)

1 − λ−4 (48)

8.4 Appendix 4

The coefficients appearing in Eq. (40) are given as follows:

L5 = −1

1 − 2υ

[
3b2

(
8υ2 − 6υ + 1

) + 1

2
A22 (1 − 2υ) − C22 (1 + υ) + 3

4
B1 + A1

(
7υ − 23

4

)
− 9

4
a1 (3 − 4υ)

]

L6 = −d2

L7 = 1

1 − 2υ

[−3

4
a1 (3 − 4υ) + B1 (4υ − 1) + A1 (4υ − 5) − 6b2 (υ − 1) + C22 (υ + 1) + A22 (υ − 1)

]

L8 = 1

1 − 2υ
[6c2 (1 − υ)] , L9 = −1

1 − 2υ

[
d2

(−8υ2 + 6υ + 2
)]

, L10 = −1

1 − 2υ
[2a2 (1 − υ)]

L11 = 1

1 − 2υ

[−3

4
a1 (3 − 4υ) + 1

4
B1 (16υ − 5) + 1

4
A1 (4υ − 5) − 2b2

(
10υ2 − 20υ + 9

) − C22 (3 − 5υ) − A22υ + D22

]

L12 = −1

1 − 2υ
[2d2 (1 − υ)] , L13 = 1

1 − 2υ
e2, L14 = 1

1 − 2υ
f2, L15 = 3

2
e2, L16 = −1

2
f2

L17 = 1

1 − 2υ

[
−D22 (1 − 2υ) + 3

2
a1 (3 − 4υ) − 1

2
A1 (3 + 4υ) − 1

2
B1 (5 − 4υ) + 12b2 (1 − 2υ) + 4A22 + 2C22

]

L18 = 1

1 − 2υ
[4d2 (1 − 2υ)] , L19 = −3

2
f2

L20 = 1

1 − 2υ

[
−2D2 (1 − 2υ) + 3

4
a1 (3 − 4υ) − 1

2
A1 (3 + 4υ) + 1

2
B1 (1 − 4υ)

]
(49)

The coefficients appearing in Eq. (42) are given as:

H1 (ς) =
[
4L21 − 3υ (L21 − L24)

1 − 2υ
ς3 + 3υ (L22 + L25) − 2L22

1 − 2υ
ς−3 + υ (L23 + 3L26)

1 − 2υ
ς−1

]

+
[
b2 (3 − 4υ) ς3 + c2ς

−3 − d2ς
−1 + 1

2
A22ς

3 + 1

2
C22ς

3 + 1

4
(B1 − A1) ς3 − a1ς

3
]

H2 (ς) = −1

2

[
3 (L21 − L24) ς3 + 3 (L22 + L25) ς−3 + (3L23 + L26) ς−1]

H3 (ς) = −1

8

[−L18ς
−2 + 3L16ς

2 + 4L17ς
3] − 1

4

[
e2ς

−2 + f2ς
2 + D22ς

3] + 1

4
A1ς

3

−1

2

[
a2ς + b2 (−4υ) ς3 − c2ς

−3 + d2 (4υ − 4) ς−1 + A22ς
3] + 1

4
a1ς

3 (50)

and

L21 = −1

20υ − 11
L1, L24 = 1

20υ − 19
L7, L22 = 1

20υ − 11
L2,

L25 = 1

20υ − 19
L8, L23 = −1

20υ − 11
L3, L26 = −1

20υ − 19
L9 (51)
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8.5 Appendix 5

Evaluation of the constants in Eqs. (41) and (42) leads to:

a3 = 4c3 − 9d3 − 1

4
(H2 (1) + 2H1 (1)) , b3 = c3 − 2d3 − 1

8
(H2 (1) + H1 (1))

c3 = X3X5 − X6X2

X1X5 − X4X2
, e3 =

2
3

[
H3 (λ) − λ2H3 (1)

]

λ2 − λ−4

d3 = X6X1 − X3X4

X1X5 − X4X2
, f3 =

2
3

[
H3 (λ) − λ−4H3 (1)

]

λ2 − λ−4 (52)

where

X1 = 8λ − 4λ−3 − 4λ−5, X4 = −8λ + 12λ3 − 4λ−5

X2 = −18λ + 8λ3, X6 = 18λ − 24λ3 + 6λ−3

X3 = −H1 (λ) + 1

2
[H2 (1) + 2H1 (1)] λ − 1

2
[H2 (1) + H1 (1)] λ3

X6 = −H2 (λ) − 1

2
[H2 (1) + 2H1 (1)] λ + 3

2
[H2 (1) + H1 (1)] λ3 (53)
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