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Abstract The dynamics of unisolated and isolated ballast tracks have been analysed bymulti-beammodels for
the track and by a layered half-space model for the soil. The solution is calculated in frequency–wavenumber
domain and transformed back to space domain by a wavenumber integral. This is a faster method compared
to other detailed track–soil interaction methods and almost as fast as the widely used Winkler soil method,
especially if the compliances of the soil have been stored for repeated use. Frequency-dependent compliances
and force transfer functions have been calculated for a variety of track and soil parameters. The ballast has a
clear influence on the high-frequency behaviour, whereas the soil is dominating the low-frequency behaviour of
the track. A layering of the soil may cause amoderate track–soil resonance, whereasmore pronounced vehicle–
track resonances occur with elastic track elements like rail pads, sleeper pads and ballast mats. Above these
resonant frequencies, a reduction in the excitation forces follows as a consequence. The track deformation along
the track has been analysed for the most interesting track systems. The track deformation is strongly influenced
by the resonances due to layering or elastic elements. The attenuation of amplitudes and the velocity of the
track–soil waves change considerably around the resonant frequencies. The track deformation due to complete
trains have been calculated for different continuous and Winkler soils and compared with the measurement
of a train passage showing a good agreement for the continuous soil and clear deviations for the Winkler soil
model.

Keywords Railway track · Multi-beam model · Layered soil · Wavenumber method · Track deformation ·
Force transfer · Track–soil · Vehicle–track resonances

List of symbols
a Constant amplitude vector
b Width of the track
CT Compliance of the track (rail)
CT0 Static compliance of the track
CTmax Maximum compliance of the rail
d Sleeper distance
D Material damping as k∗ = k (1 + 2Di)
e1, e3 Base vector (first and last track beam)
E IR Bending stiffness of the rail
E I i Bending stiffness of the jth track beam
EI Matrix of the bending stiffnesses of the multi-beam track model

L. Auersch (B)
Federal Institute of Materials Research and Testing, 12200 Berlin, Germany
E-mail: lutz.auersch-saworski@bam.de

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-016-1209-6&domain=pdf


556 L. Auersch

f Frequency
f0 Resonant frequency
fT Frequency of the track resonance
fV S Frequency of the vehicle–track resonance
F Force
F ′ Force per length
Fi Axle load of the train
FT , FT ′ Dynamic force (per length) on the track
FS, FS

′ Dynamic force (per length) on the soil
FV Dynamic force on the vehicle
FT

′ Track load vector
G Shear modulus of the soil
G0 Real part of the shear modulus of the soil
hB Height of the ballast
hL Height of the soil layer
HS Compliance of the soil (in wavenumber domain)
HSS Strip load compliance of the soil
HVT Vehicle–track force transfer function
HT S Track–soil force transfer function
HV S Total force transfer function
i Imaginary unit
kR, kR ′ Rail pad stiffness (per length)
kB ′, ki j ′ Stiffness per length of the ballast
kS, kS ′ Stiffness (per length) of the under-sleeper pad
KB

′ Matrix of the ballast stiffness
KT Dynamic stiffness of the track under a wheelset load
KV Dynamic stiffness of the vehicle
KS

′ Dynamic stiffness (per length) of the soil
KT

′ Dynamic track stiffness of the multi-beam track model
KS

′ Dynamic soil stiffness of the multi-beam track model
KTS

′ Dynamic support stiffness of the multi-beam track model
lA Axle distance
lB Bogie distance
lC Carriage distance
m j

′ Mass (per length) of the jth track beam
mS Mass of the sleeper
mW Mass of the wheelset
m′ Mass matrix of the multi-beam track model
p1 Load distribution across the track (wavenumber transform)
t Thickness of the under-ballast plate
T Transfer matrix of a support element
uR, u1 Displacement of the rail under the wheelset load
uS, u3 Displacement of the soil under the track
uS Displacement vector of the continuous soil
üS Acceleration vector of the continuous soil
uT Displacement vector for all track beams
vS Shear wave velocity of the soil
vS1 Shear wave velocity of the soil layer
vS2 Shear wave velocity of the underlying half-space
vP Compression wave velocity of the soil
vR Rayleigh wave velocity of the soil
vB Longitudinal compression wave velocity of the ballast
x Coordinate vector, position vector
x Coordinate across the track
y Coordinate along the track
z State vector for a transfer matrix
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δ Dirac delta function
λ Wavelength
ν Poisson’s ratio of the soil
ρ Mass density of the soil
ξ = 2π / λ, wavenumber
ξ Wavenumber vector
ξB Longitudinal wavenumber of the ballast
ξS Shear wavenumber of the soil
ξP Compression wavenumber of the soil
ξx Wavenumber across the track
ξy Wavenumber along the track
ω Angular frequency

1 Introduction

The static and dynamic behaviours of railway tracks are of importance for several tasks and topics in railway
engineering. In track design [1], loads and displacements, the force distribution, and the deformation of the
track have to be determined with the help of a suitable track model. An optimum track displacement under the
static load must be achieved by certain track elements. The stress in each track element must be known to avoid
damage. In vehicle–track interaction [2,3], the dynamic loading of the track is determined and resilience is
put to the track (e.g. rail pads) or to the vehicle (wheelset). The vehicle–track–soil interaction [4,5] aims at the
static and dynamic forces that are acting on the ground and excite the ground vibration [6]. Finally, mitigation
measures [7] are developed to reduce the ground vibration for example by elastic track elements [8–10].

These track engineering problems are often solved with the classical track model of the “Zimmermann
beam” [11]. This model is based on the Winkler hypothesis [12] that the track–soil interaction can be easily
described by a bedding modulus locally relating the displacement and the force at the track–soil interface. This
model has an explicit (static) solution and is therefore widely used by practitioners, track designers, consultants
and railway managers. In research work, however, the importance of a more realistic soil behaviour has been
observed [2,13,14] and the soil is now always included as a continuous homogeneous or layered soil. Therefore
in this contribution, a track model is proposed that retains the simple representation of the track characteristics
of the “Zimmermann track” and combines it with a correct representation of the soil. The solutions for the
track and the continuous soil are found and coupled in the frequency–wavenumber domain. The solution in
space domain is then calculated by a wavenumber integral.

The present method of the integration in the wavenumber domain has already been used by the author for
infinitely extended plates on the soil [15] and for infinite beams on the soil [16] to realize intense parametric
studies on soil–structure interaction. The wavenumber domain method has been applied on railway tracks
by Jones [17] and others [18,19]. Slab tracks have a simpler geometry and therefore are even better suited
for this wavenumber domain method [5,20,21]. More complicated track models and methods have been
proposed. The 2.5D method combines a wavenumber approach along the track with a FEM or FEBEMmodel
across the track [22–24]. The track–soil modelling can be more detailed by a three-dimensional finite-element
boundary-element method (FEBEM) [25], or a time-domain FEBEM [26]. Other research models use large
three-dimensional finite-element models of the soil to represent the infinite half-space [27–29].

The present method (given with all necessary formulae) is a compromise for practitioners to correctly
include the track–soil interaction with a minimum of discretization effort and computation time. It is well
suited to investigate the track behaviour around resonances where wider distributions of amplitudes can be
observed along the track. Therefore, the focus of this contribution has been put on track–soil resonances due
to soil layering and on vehicle–track resonances due to elastic track elements. Frequency-dependent transfer
function as well as deformations for relevant track systems and frequencies have been analysed.

The contribution consists of the following sections. Section 2gives the dynamic soil stiffness inwavenumber
domain, whereas Sect. 3 presents the same for the multi-beam track model. Section 4 describes the track–soil
coupling and the solution by wavenumber integrals, and Sect. 5 the vehicle–track interaction. At the end of the
method sections, Sect. 6 offers some numerical details. The following results sections start with the vehicle,
track and soil parameters in Sect. 7. In Sect. 8, frequency-dependent compliance and force transfer functions
are presented where the stiffness of the ballast, the stiffness and layering of the soil, and an under-ballast plate
will be analysed. The last subsection is devoted to the mitigation effects of elastic track elements. Section 9
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considers the force and displacement distribution along the track where strong differences can be observed
between different frequencies and track–soil systems. Finally, passages of complete trains are calculated and
compared with measurements in Sect. 10. This leads to clear conclusions about the correct track–soil model
in Sect. 11.

2 Dynamic stiffness of a layered soil in wavenumber–frequency domain

The soil consists of a number of horizontal layers with thicknesses hi . Each layer is an elastic continuum,
which is described by the field equation for the displacement uS

G

(
div graduS + 1

1 − 2ν
grad divuS

)
= ρüS (1)

and by the material constants G shear modulus, ν Poisson’s ratio, ρ mass density, D hysteretic damping
(G = G0(1 + i2D)). For the time- and space-harmonic function

uS(x, t)=a exp(iξ · x + iωt) (2)

with the angular frequency ω = 2π f and the wavenumber vector ξ, equation (1) reads as

G

(
ξ · ξa + 1

1 − 2ν
a · ξξ

)
= ρω2a. (3)

The solutions of this equation are defined by

a · ξ = 0 and ω
ξS

=
√

G
ρ

= vS

a ‖ξ and ω
ξP

= 2−2ν
1−2ν

√
G
ρ

= vP
(4)

as a shear and a compressional wave.
The stiffness of the soil for a plane stress wave on the surface is obtained by combining a shear and

a compressional wave for each layer. For the homogeneous half-space, the boundary conditions yield the
explicit solution

HS(ξ, ω) = uS
F ′′ =

ξ2S

√
ξ2P − ξ2

iG

[
(ξ2S − 2ξ2)2 + 4ξ2

√
ξ2S − ξ2

√
ξ2P − ξ2

] (5)

for the vertical compliance. The corresponding compliance of a layered soil is given in Appendix 1.
For the track–soil interaction, the displacements across the track–soil interface (x-direction)

uS(x, ξy, ω) = 1

2π

+∞∫
−∞

HS(ξx , ξy, ω)p1(ξx ) exp(iξx x)dξx (6)

due to a harmonic strip load along the track (y-direction) are calculated where the wavenumber transform

p1(ξx ) = sin ξxb/2

ξxb/2
(7)

of the uniform load distribution across the track width b has been used. Moreover, the average displacement

uS(ξy, ω) = 1

b

+b/2∫
−b/2

uS(x, ξy, ω) exp(iξx x)dx (8)
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rail
rail pad
sleeper
sleeper pad

ballast

ballast mat
plate
soil

Fig. 1 Track model consisting of rail, rail pad, sleeper, sleeper pad, ballast, ballast mat, ballast plate and continuous soil

across the track is calculated. Finally, the soil compliance for a strip load

HSS(ξy, ω) = 1

2πb

+b/2∫
−b/2

+∞∫
−∞

HS(ξx , ξy, ω)p1(ξx ) exp(iξx x)dξxdx

= 1

2π

+∞∫
−∞

H(ξx , ξy, ω)p21(ξx )dξx (9)

is established, see [16] for further details.
The inverse

KS
′(ξy, ω) = 1

HSS(ξy, ω)
(10)

will be used for coupling the soil with the track.

3 The multi-beam model of the track

The ballasted track is modelled as a multiple beam system. The first beam represents the two rails, the second
beam represents the sleepers and the third beam is used as the base of the track system (Fig. 1). Each beam is
described by

EI j—the bending stiffness and
m j

′—the mass per length,

which are assembled in a diagonal stiffness matrix EI and a diagonal mass matrix m′.
The multi-beam system fulfils the set of differential equations

EIuT ′′′′ + m′üT + K′uT = F ′
T e1 (11)

for the track displacements uT under the track load F ′
T . In the frequency–wavenumber domain, this reads as

(ξ4yEI − ω2m′ + KT
′)uT = FT e1 (12)

where ξy is the wavenumber along the track axis. Note that the wavenumber transform of the vertical point
load FT ′(y) = FT δ(y) is the constant force FT .

The track beams are connected by elastic track elements, the rail pads between rail and sleeper, the sleeper
pads between sleeper and ballast, the ballast, and the ballast mat under the ballast (Fig. 1). The elastic elements
are characterized by complex stiffnesses which are assembled in the global stiffness matrix
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KT
′ =

⎡
⎣−

kR ′ −kR ′ 0
kR ′ kR ′ + k11′ −k12′
0 −k21′ k22′

⎤
⎦ (13)

where kR ′ is the rail pad stiffness per length and the ki j ′ represent the dynamic stiffness matrix KB
′ of the

ballast

KB
′ = kB ′ξBhB

sin(ξBhB)

[
cos(ξBhB) −1

−1 cos(ξBhB)

]
(14)

The ballast is described by the static stiffness kB ′, the height hB , and the wavenumber ξB = ω/vB of the
longitudinal wave velocity vB . For low frequencies, the ballast stiffness approaches the static stiffness kB ′

KB
′ =

[
kB ′ −kB ′

−kB ′ kB ′
]

, (15)

but in general, it includes the mass effects of a continuous ballast at higher frequencies. If the ballast is between
other elastic elements (sleeper pads or ballast mat), transfer matrices are used to derive the dynamic stiffness
matrix of the pad–ballast–mat support section, see Appendix 2.

4 Track–soil coupling and the solution as wavenumber integrals

In order to couple the track and the soil, the dynamic soil stiffness (10) is added to the dynamic track stiffness
(12) at the last diagonal element K33 and the dynamic stiffness matrix of the track–soil system is established

KT S
′(ξy, ω) = KT

′(ξy, ω) + KS
′(ξy, ω) (16)

The displacements in the frequency–wavenumber domain are calculated by the inversion of this matrix

uT (ξy, ω) = KT S
′−1

(ξy, ω)F′(ω) = KT S
′−1

(ξy, ω)FT (ω)e1 (17)

The displacements in space domain (along the track) can be calculated by the inverse Fourier transformation as

uT (y, ω) = FT (ω)

2π

+∞∫
−∞

KT S
′−1

(ξy, ω)e1 exp(iξy y)dξy (18)

The force distribution on the track–soil interface can then be calculated by a similar Fourier integral

FS
′(y, ω) = 1

2π

+∞∫
−∞

KS
′(ξy, ω)uS(ξy, ω) exp(iξy y)dξy

= FT (ω)

2π

+∞∫
−∞

KS
′(ξy, ω)e3KT S

′−1
(ξy, ω)e1 exp(iξy y)dξy (19)

using the displacements of the track–soil interface uS(ξy, ω) = u3(ξy, ω) and the soil stiffness (10). Finally,
the total force that acts on the track–soil interface is calculated as the integral over the infinite track length
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FS(ω) =
+∞∫
−∞

FS
′(y, ω)dy = FS

′(ξy = 0, ω)

= FT (ω)KS
′(ξy = 0, ω)e3KT S

′−1
(ξy = 0, ω)e1 (20)

This soil force can easily be obtained as the transformed integrand at ξy = 0 without any integration.

5 Vehicle–track interaction

The track–soil model yields the dynamic stiffness of the track at the excitation point

KT (ω) = FT (ω)

u1(y = 0, ω)
(21)

from Eq. (18) and the track–soil force transfer function

HT S(ω) = FS(ω)

FT (ω)
(22)

from Eq. (20).
The track model is combined with a vehicle model. A single rigid wheel mass mW is used throughout this

paper. The dynamic stiffness KV (ω) = −mWω2 of the vehicle is introduced into the vehicle–track interaction
analysis. A force FV acting on the vehicle yields a force FT acting on the track according to

HVT (ω) = FT
FV

(ω) = KT (ω)

KT (ω) + KV (ω)
(23)

and a force FS on the soil [2,4]

HV S(ω) = FS

FV
(ω) = FT

FV
(ω)

FS

FT
(ω) = KT (ω)

KT (ω) + KV (ω)

FS

FT
(ω) = HVT (ω)HT S(ω). (24)

6 Numerical integration

The wavenumber integrals (18, 19) are evaluated numerically. The soil has a hysteretic material damping so
that the integrands have no infinite poles. The numerical integration is done by the rectangle rule with a constant
step which is chosen so that the slowest shear wave (Rayleigh wave) and the fastest compression wave of the
soil layers are well represented. The infinite integral is truncated at a sufficiently large wavenumber. Typical
values for the integration are

– n(kx ) = 300, n(ky) = 1000 integration steps, and up to n(ky) = 3000 for the solution along the track,
– integration up to the tenfold of the shear wave number, (or for the static case, up to 10/h1 or 10/m),
– another criterion reflects the oscillations of the complex exponential function; at least five integration steps
must be calculated for each oscillation.

The integrals (9) of the strip wave compliances of the soil are calculated once and stored for the repeated use,
thus reducing the computer time. If the stored soil compliances are used, the method is almost as fast as the
Winkler soil calculation.

7 Standard track parameter and their variation

The unisolated and isolated ballast tracks (Fig. 1) have the following parameters (standard parameters are
underlined):
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Mass of the wheelset mW = 1500 kg
Bending stiffness of the UIC60 rails E I R = 2 × 2.1 1011 × 3.0 10−5Nm2 = 12.6 106Nm2

Mass per length of the rails m′
R = 2 × 60 kg/m

Stiffness of the rail pads kR = 300 106 N/m
Hysteretic damping of the rail pads DR = 10%
Mass of the sleeper mS = 340 kg
Length of the sleepers b = 2.6 m
Distance of the sleepers d = 0.6 m
Stiffness of the sleeper pads kS = 25, 50, 100, 200 106 N/m
Height of the ballast hB = 0.3 m
Stiffness of the ballast kB = 300, 650, 1300, 2600 106 N/m
Longitudinal wave velocity of the ballast vB = 200, 300, 400, 600 m/s
Young’s modulus of concrete EP = 31010 N/m2

Mass density of concrete ρP = 2.5103 kg/m3

Thickness of the ballast plate t = 0, 0.5, 0.7, 1.0, 1.5 m
Shear modulus of the soil (layer) G = 2, 4.5, 8, 18 107 N/m2

Shear wave velocity of the soil (layer) vS = 100, 150, 200, and 300 m/s
Mass density of the soil ρ = 2103 kg/m3

Poisson’s ratio of the soil ν = 0.33
Hysteretic damping of the soil D = 2.5%
Height of the soil layer hL = 1 m
Velocity contrast half-space to layer vS2/vS1 = 1, 1.25, 1.5, 2, 4

8 Compliance and force transfer functions of ballast tracks

This section presents the frequency-dependent compliances of the track–soil systems under the dynamic axle
load (inverse of 21) and the frequency-dependent force transfer functions of the complete vehicle–track–soil
system (24).

8.1 Stiffness of the ballast

Figure 2a shows the frequency-dependent compliances of the track for different stiffnesses of the ballast. A
clear influence of the softest ballast can be found. The stiffer ballast materials have only an influence on the
high-frequency compliance. The compliances of the ballast tracks without any isolation measure are almost
constant, only weakly decreasing with frequency. The force transfer functions of the complete vehicle–track
system presented in Fig. 2b start at zero frequency with the value 1 and show a weak maximum at higher
frequencies with a value of FS/FV = 2–3. The vehicle–track resonant frequency clearly depends on the
stiffness of the ballast. It is at 60 Hz for the softest and at 110 Hz for the stiffest ballast.

The stiffness of the ballast can be understood as the stiffness of a ballast layer or as the stiffness of a ballast
block under the rail seats. A soft ballast can be a ballast layer of a soft ballast material or a ballast block of a
stiffer material. By that, the local stiffness of ballast tracks due to tamping could be considered in the ballast
model.

8.2 Stiffness and layering of the soil

The compliances and force transfer functions for homogeneous soils are given in Fig. 3. The soil has a strong
influence on the static and low-frequency track compliances which is in the range of uR/FT = 2 to 9 ×
10−9 m/N. At higher frequencies, the compliances of the different soils are close together and that means that
the soft soils have a strong decrease in the compliances while the stiff soils have almost constant compliances.
At low frequencies, the phase of the compliance has an almost linear decrease where the softest soil has
the strongest decrease. This is caused by the radiation damping of the soil which is linearly increasing with
frequency. At mid-frequencies, the damping of the soil is higher than the stiffness, and the soil becomes
dynamically stiff. Other track components such as the ballast or the rail pads get a stronger influence on the
dynamic compliance of the track. The force transfer functions (Fig. 3b) show little variation and almost no
resonance maximum. Only the stiffest soil shows a weak maximum at 110 Hz. The softer soils have a stronger
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Fig. 2 Amplitude (top) and phase (bottom) of the compliance (left) and the vehicle–track–soil force transfer (right) functions of
tracks with different ballast materials, vB = square 200, circle 300, tr iangle 400, plus 600 m/s

damping due to the radiation of the soil, and the force transfer functions are close to the value FS/FV = 1. In
general, the soil has a strong influence on the low-frequency behaviour, whereas the ballast is more important
at higher frequencies.

The characteristics of both, the compliances and the force transfer functions, are stronger if a layered soil
is considered. At first, a layer of the wave velocity vS1 = 100, 150, 200, and 300 m/s is analysed which
lies on a stiffer half-space of vS2 = 2 vS1. A layered soil has less radiation damping than the homogeneous
half-space. Therefore, resonances of the track compliances become visible for the layered soil. This track–soil
resonance can be very low at 25 Hz for the softest layer. The resonant frequency increases with the layer
stiffness up to 80 Hz. The theoretical layer resonances are higher between fL = vS1/2hL = 50 and 150 Hz
what clearly demonstrates the strong influence of the track mass. The complete vehicle–track–soil system
has similar resonances between 25 and 75 Hz (Fig. 4b). The resonance amplification of the force transfer are
stronger and increase with frequency up to FS/FV = 3, whereas the maximum amplitudes of the compliances
in Fig. 4a decrease with increasing frequency and stiffness. The force transfer functions display a secondminor
resonance above 100 Hz which can be attributed to the vehicle–track interaction.

In Fig. 5, the influence of the stiffness or velocity contrast between the layer and the underlying half-space
is demonstrated. The wave velocity of the layer is kept constant at vS1 = 100 m/s and the half-space is varied
as vS2 = 4, 2, 1.5, 1.2, 1.0 vS1. That means that the changes from a strong contrast to a weak contrast and
to a homogeneous soil can be studied. The track–soil resonance at 65 Hz is shifted to less than 40 Hz, and
at the same time, the resonance amplitude reduces from uR/FT = 5 to 3 × 10−9 m/N and even vanishes for
the velocity contrast of vS2/vS1 = 1.2 and 1.0. The phase curves vary strongly for the high stiffness contrast,
whereas it smoothly changes from 0◦ to 45◦ for the homogeneous soil. Similar track–soil resonances between
40 and 60 Hz are found for the force transfer functions (Fig. 5b). Small vehicle track resonances exist above
100 Hz, but are only visible for the strong layering with reduced radiation damping.

All these results can be understood in the way that the ballast track has a resonance in the lower frequency
range which is hidden by the strong radiation damping of the homogeneous soil and which is visible for the
reduced damping of a layered situation.
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Fig. 3 Amplitude (top) and phase (bottom) of the compliance (left) and the vehicle–track–soil force transfer (right) functions of
tracks on different homogeneous soils, vS = square 100, circle 150, tr iangle 200, plus 300 m/s

Fig. 4 Amplitude (top) and phase (bottom) of the compliance (left) and the vehicle–track–soil force transfer (right) functions of
tracks on different layered soils, hL = 1 m, vS2 = 2vS1, vS1 = square 100, circle 150, tr iangle 200, plus 300 m/s
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Fig. 5 Amplitude (top) and phase (bottom) of the compliance (left) and the vehicle–track–soil force transfer (right) functions of
tracks on different layered soils, hL = 1 m, vS1 = 200 m/s, velocity contrast vS2/vS1 = square 4, circle 2, tr iangle 1.5, plus
1.25, times 1.0 (homogeneous soil)

8.3 Under-ballast plates of different heights

If a concrete plate lies between the ballast and the soil, the mass and the bending stiffness of the track are
increased. The effects on the compliance and force transfer functions are shown in Fig. 6. The additional bend-
ing stiffness of the under-ballast plate distributes the load on a longer track section and yields a reduced track
compliance of 2× 10−9 m/N for the thickest plate. At 100 Hz, the differences in stiffness have been equalized
and the vehicle–track resonant frequency is uniformat 115Hz (Fig. 6b). The effect of the additional trackmass is
stronger. It yields a low-frequency track–soil resonance at 15–25 Hz depending on the height of the plate. After
the small resonance amplification, a reduction in the force amplitudes can be observed which reaches a value
of FS/FV = 0.5 for the thickest plate. The under-ballast plate reduces the damping of the ballast track consid-
erably, and the amplifications at the vehicle–track resonances are higher. The behaviour of a track with under-
ballast plate shows some similarities with a track on a layered soil, namely the two resonances at low and high
frequencies.

8.4 Mitigation effects of elastic track elements

As mitigation measures for railway induced ground vibrations, the following elastic track elements are used,
elastic rail pads between rail and sleeper, elastic sleeper pads between sleeper and ballast, elastic ballast
mats under the ballast, and springs under an additional under-ballast plate. Figure 7 shows the results of four
different sleeper pads as an example. In case of elastic track elements, clear resonances of the track system
exist (Fig. 7a). The resonant frequencies with sleeper pads are in the wide range of 40–105 Hz, the lowest
for the softest sleeper pads. The maximum amplitudes at this track resonance are clearly increasing for the
softer sleeper pads. The force transfer functions in Fig. 7b show also clear resonances at somewhat lower
frequencies between 30 and 60 Hz where the corresponding resonance amplitudes are between FS/FV = 4.5
and 3. For frequencies above the resonant frequency, the force amplitudes are clearly decreasing. They are
between FS/FV = 0.08 and 1.0 at 100 Hz and between FS/FV = 0.04 and 0.3 at 150 Hz. It is worth to mention
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Fig. 6 Amplitude (top) and phase (bottom) of the compliance (left) and the vehicle–track–soil force transfer (right) functions of
ballast tracks on concrete plates of different thicknesses t = square 1.5, circle 1.0, tr iangle 0.7, plus 0.5 m, times no plate,
homogeneous soil with vS = 200 m/s

that the soft sleeper pads reduce the influence of the soil and its radiation damping and therefore cause the
higher resonance amplitudes, but on the other end, yield also a stronger reduction at high frequencies.

Similar calculations have been performed for rail pads and ballast mats. The results have been evaluated in
Table 1 for stiffness values which are comparable for all three types of elastic elements. For a similar stiffness
per sleeper, many results are close together for rail pads, sleeper pads and ballast mats. The static compliance,
the maximum compliance and the resonance amplification of the track and the vehicle–track system are very
similar. Even the final vehicle–track resonant frequency does not vary considerably between 40–90 Hz (rail
pads), 30–60 Hz (sleeper pads) and 20–50 Hz (ballast mats). The strongest differences can be found for the
track resonant frequencies (without wheelset mass). They are almost outside the frequency range of 150 Hz
for the rail pads, and on the other hand they are much lower at 25–60 Hz for the ballast mats. This is due to the
high mass on the ballast mats (the whole track) and the low rail mass on the rail pads. The unsprung vehicle
mass yields considerably lower vehicle–track resonant frequencies in case of the elastic rail pads, whereas the
effect of the vehicle is small for the under-ballast mats.

According to the differences in the vehicle–track resonant frequencies, the force reduction is stronger for
the mitigation systems with higher isolated track mass. The maximum reduction is obtained by the ballast mats
which is FS/FV = 0.05 to 0.5 at 100Hz and FS/FV = 0.02 to 0.18 at 150Hz. Sleeper pads yield also acceptable
reductions down to FS/FV = 0.08 and 0.04 at 100 and 150 Hz, respectively. Rail pads are consequentially
less effective; only soft rail pads can yield a reduction below 100 Hz. The prediction of the mitigation effect
follows these simple rules as far as only a single resonant frequency is included. If the vehicle–track resonant
frequency for an elastic element coincides with the track–soil resonance of a layered soil, amplifications of the
force can occur at frequencies where a reduction would be expected for a simple mitigation system, see also
[10] for the problematic combination of rail and sleeper pads.

The static compliances are rather high, at about uR/FT = 10 × 10−9 m/N for the softest material of each
elastic element. Softer elements with higher static compliances are not used as mitigation measures because
of safety reasons.
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Fig. 7 Amplitude (top) and phase (bottom) of the compliance (left) and the vehicle–track–soil force transfer (right) functions of
tracks with sleeper pads of stiffness kS = square 25, circle 50, tr iangle 100, plus 200 kN/mm, times no sleeper pads

Table 1 Characteristics of isolated tracks, stiffness of elastic track elements, static compliance, track resonant and vehicle–track
resonant frequency, maximum compliance and amplification, total force transfer at resonance, at 100 and 150 Hz

Rail pad Sleeper pad Ballast mat

k per sleeper (kN/mm) 40, 80, 160, 320 25, 50, 100, 200 30, 60, 125, 250
C0 (10−9 m/N) 8.7–2.7 12.3–3.8 11.1-4.1
fT (Hz) 120–> 150 40–105 25–60
fV S (Hz) 40–90 30–60 20–50
Cmax (10−9 m/N) 24–2.7 32–6 25–4
Cmax/C0 2.8–1.0 2.6–1.6 2.3–1.1
HV S( fV S) 4.6–2.5 4.5–3.1 3.4–1.9
HV S(100 Hz) 0.3–(2.3) 0.08–1 0.05–0.5
HV S(150 Hz) 0.1–0.75 0.04–0.3 0.02–0.18

9 Static and dynamic deformations of the track and force distribution

The deformation u(y) of the track is presented as amplitude and phase for four different track situations and
for five frequencies. At first, a standard ballast track on a stiff soil (vS = 300 m/s) yields quite regular results
(Fig. 8 left). The force on the soil is distributed along a length of y = ±1 m, and the force outside this region
is almost zero. The displacements of the rail are also concentrated around the exciting force (y = 0), but they
attenuate much weaker than the forces. No zero is observed, and the amplitudes at y = ±8 m are still 10%
of the maximum at the excitation point. The amplitudes are very similar for all frequencies of f = 0, 25, 50,
75 and 100 Hz. The phase functions ϕ (y) are nearly linear and regularly decreasing. The slope of the phase
function represents a wave velocity v = ω/| d ϕ/dy| which in this standard situation equals the Rayleigh wave
of the soil vR = 270 m/s.

The soft soil of vS = 150 m/s (Fig. 8 right) yields results similar to those of the stiff soil for frequencies
up to 50 Hz. According to the lower stiffness and wave velocity, the amplitudes are higher and the phase delay
is stronger. A soft soil also yields a wider distribution of forces and displacements. The forces are distributed
up to y = ±1.5 m, and the displacements have considerable amplitudes at y = ±8 m. This low-frequency
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Fig. 8 Amplitudes of the soil force densities (top) and rail displacements (middle), phase of the soil displacements (bottom) along
the track on a homogeneous soil of vS = 300 m/s (left) and vS = 150 m/s (right), for different frequencies f = square 0,
circle 25, tr iangle 50, plus 75, times 100 Hz

behaviour changes remarkably at higher frequencies. The displacements are much lower and, in addition,
are restricted to the track length y = ±1.5 m around the excitation. The phase functions do not continue
their regular decrease. They are irregular due to the low amplitudes and indicate higher wave velocities. The
characteristic change could be attributed to the coincidence of the dispersive bending wave of the track and the
constant Rayleigh wave of the soil [20], but according to [15], a static stiffness ratio or elastic length should
be essential for this characteristic frequency where the wave velocity deviates from the Rayleigh wave and a
strong attenuation occurs.

The layered soil in Fig. 9 left has a small resonance at about 50 Hz (triangle), visible in the force and the
deformation amplitude. The slope of the phase functions is considerably higher for 75 and 100 Hz indicating
a change of the wave velocity from the Rayleigh wave velocity vR = 360 m/s of the half-space to vR = 180
m/s for the softer layer. In addition, higher displacement and force amplitudes can be found for 75 Hz which
attenuate very weakly with distance. On the contrary, the displacements for 0, 25, and 100 Hz attenuate very
rapidly and are almost zero at distances further than y = ±2 m. In that case, the displacement amplitudes are
similar to the force distribution.
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Fig. 9 Amplitudes of the soil force densities (top) and rail displacements (middle), phase of the soil displacements (bottom) along
the track on a layered soil of vS1,2 = 200,400 m/s, hL = 1 m (left) and along the track on sleeper pads of kS = 50 kN/mm
(right), for different frequencies f = square 0, circle25, tr iangle50, + 75, times100 Hz

The last example is a track with under-sleeper pads (Fig. 9 right). The distribution of the forces and the
displacements look very similar. They are somewhat wider than the force distribution of the other cases. The
maximum force and displacement amplitudes, which can be found at the resonant frequency of 50 Hz, are
much higher than for the other tracks, uR/FT = 18 compared to 4.5 10−9 m/N. The force and displacements at
lower frequencies attenuate rapidly and are almost zero at y = ±2 m. The forces and displacements at higher
frequencies attenuate weakly and still have considerable amplitudes at y = ±8 m.

To conclude, the distributions of the soil forces and especially of the track displacements change consid-
erably with the frequency and are different for different track systems. In particular, at resonant frequencies
due to soil layering or elastic track elements, the attenuation with distance can be modified remarkably.

10 Track response to train passages, calculation and measurement

The track deformation for a single axle load can be used to establish the time history of a complete train
passage. Typical patterns of track displacement and track particle velocities can be found. Figure 10 shows the
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Fig. 10 Sleeper displacement (top) and velocity (bottom) time histories for the passage of an eight-unit ICE3 train, track on stiff
soil (vS = 300 m/s) (a), track on soft soil (vS = 150 m/s) (b), track on soft Winkler soil (c) and measurements on a soft soil (d)
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result for an eight-carriage ICE3 train with the axle loads defined by Fi = 160 kN, axle distance lA = 2.5 m,
bogie distance lB = 17.375 m and carriage length lC = 24.775 m.

The ballast track on a stiff soil (vS = 300 m/s, Fig. 10a) has small displacements of 0.2 mm and particle
velocities of 10 mm/s. The soft soil (vS = 150 m/s, Fig. 10b) yields much deeper displacements of 0.7 mm
and particle velocities of 28 mm/s. The patterns of the displacement and velocity time histories are somewhat
different for both soil conditions. The soft soil yields stronger displacements between the two axle loads of a
bogie (0.5 mm, 70% of the maximum) and between the two bogies of two neighboured carriages (0.27 mm,
38% of the maximum). The velocity histories consist of a minimum and maximum for each axle load, which
are almost the same for all axles in case of the stiff soil and are clearly different in case of the soft soil where the
second maximum of a bogie is stronger than the first maximum. The displacement and velocity time histories
come almost back to zero between the two bogies of a carriage.

Figure 10c shows the results of a soft Winkler soil which has almost the same maximum displacements
of 0.67 mm as the soft continuous soil. It can be clearly seen that the displacements between two axles (0.3
mm, 45% of the maximum) and between two bogies (0 mm) are much smaller than for the continuous soil.
Moreover, for the Winkler soil, a small upward displacement can be observed between the two bogies of a
carriage.

Finally, experimental results from [30] are presented in Fig. 10d which compare well with the continuous
soft soil, but are quite different from the Winkler soil results. The experimental results represent well the deep
displacements between the axles and the smooth behaviour between the bogies, as well as the different maxima
for the axles in the velocity timehistory. These are the characteristics found for the continuous soil (Fig. 10b) and
not present in the Winkler results (Fig. 10c). Moreover, the results for the stiff continuous soil (Fig. 10a) agree
well with the measurements in [31] so that it can be concluded that the track displacements under train loads
are strongly influenced by the underlying continuous soil which is well represented by the proposed method.

11 Conclusion

The calculation in wavenumber domain provides a fast dynamic calculation of railway tracks on a continuous
soil. The frequency-dependent transfer functions of the track compliance and the vehicle–track force transfer
have been shown for some ballasted tracks. The effect of the ballast on the high-frequency behaviour and the
soil material on the low-frequency behaviour has been discussed. Layered soils display track–soil resonances
because of their reduced radiation damping, whereas the same resonances are hidden by the damping in homo-
geneous soils. Track–soil resonances become also visible in case of a higher track mass, for example due to
an under-ballast plate. Elastic track elements show clear vehicle–track resonances and considerably reduced
amplitudes at higher frequencies. For a typical elastic sleeper pad (kS = 50 kN/mm), the vehicle–track res-
onant frequency is at about 35 Hz and the reduction at 100 Hz is at about 0.1. The resonances due to the
elastic elements as well as the soil layering cause strong changes from the quasi-static to the dynamic track
deformation which may include a weaker or stronger attenuation along the track and changes in the soil–track
wave velocity. A specific advantage of the wavenumber method is the possible modelling of infinite tracks
so that the track deformation (or displacement time history) under a complete train could be calculated for
different continuous andWinkler soils. The measurements of an ICE3 train clearly demonstrate big differences
for the Winkler soil model and a good agreement for the continuous soil method which has been proposed
here.

Appendix 1: Compliance of a layer-on-half-space system

For harmonic waves, the field equation and the interface condition between the layer and the half-space can
be used to establish the stiffness matrix of the layer-on-half-space system which relates the horizontal (x) and
vertical (z) displacements and stresses of the surface (1) and the interface between layer and half-space (2)

⎡
⎢⎣

σx1
iσz1
σx2
iσz2

⎤
⎥⎦ =

⎡
⎢⎣
K11 K12 K13 K14
K12 K22 −K14 K24

K13 −K14 K11 + K H
11 −K12 + K H

12
K14 K24 −K12 + K H

12 K22 + K H
22

⎤
⎥⎦

⎡
⎢⎣
ux1
iuz1
ux2
iuz2

⎤
⎥⎦ (25)
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The stiffness matrix of the layer is calculated according to

K11/A = K33/A = 1
t Cs St + sSsCt

K22/A = K44/A = tCs St + 1
s SsCt

K12/A = −K34/A = 3−t2

1+t2
(1 − CsCt ) + 1+2s2t2−t2

st (1+t2)
Ss St

K13/A = −sSs − 1
t St

K14/A = −K23/A = Cs − Ct

K24/A = − 1
s Ss − t St

(26)

where the following abbreviations are used

s = −i

√
1 −

(
ξP
ξ

)2
t = −i

√
1 −

(
ξS
ξ

)2
Cs = cos ξsd Ct = cos ξ td
Ss = sin ξsd St = sin ξ td

N = 2(1 − CsCt ) + (
st + 1

st

)
Ss St A = (1+t2)ξG

N

. (27)

The corresponding stiffness matrix of the underlying half-space is calculated as

K H
11 = ξG is(1+t2)

1+st

K H
22 = ξG it (1+t2)

1+st

K H
12 = ξG

(
2 − (1+t2)

1+st

) . (28)

The dynamic stiffness matrix K (25) is inverted

K−1 = F (29)

to obtain the flexibility matrix F of which the vertical element of the surface is chosen as the transfer function
of the soil in the frequency–wavenumber domain

Fzz = HS(ξ, ω). (30)

Appendix 2: Transfer matrices for the stiffness of the track support

The stiffness matrix of a support section of the track is calculated by transfer matrices T which relate the state
z = (F, u)T (F force, u displacement) of the bottom and the top of each support element as

z1 = Tz2 (31)

or [
F1
u1

]
=

[
T11 T12
T21 T22

] [
F2
u2

]
. (32)

The forces point to the element and F1 and u1 have the same direction. A spring element (stiffness k, for
example a sleeper pad) yields

TF =
[
1 0
1/k 1

]
(33)

as

F1 = F2 and

u1 − u2 = F2/k. (34)

A mass element (mass m) would yield

TM =
[
1 −mω2

0 1

]
(35)
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as

F1 − F2 = −mω2u2
u1 = u2. (36)

The transfer matrix of a column, which is used for the ballast, reads

TC =
[

cos(ξBhB) − sin(ξBhB)kBξBhB
sin(ξBhB)/kBξBhB cos(ξBhB)

]
(37)

with the static stiffness kB , the height hB , and the wavenumber ξB = ω/vB of the longitudinal wave velocity
vB of the column (the ballast).

The transfer function of a support section is achieved by multiplying the transfer functions of all support
elements (for example sleeper pad, ballast and ballast mat, see Fig. 1) as

z1 = T1T2T3 z3 = Tz3. (38)

The transfer matrix T is transformed to the stiffness matrix K as[
F1
−F2

]
= 1

T21

[
T11 − detT
−1 T22

] [
u1
u2

]
= 1

T21

[
T11 −1
−1 T22

] [
u1
u2

]
= Ku (39)

(note that det T = 1 for passive systems, and that the sign definition is different for F2, namely F2 is in the
same direction as u2 for the stiffness matrix).
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