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Abstract The maximum strength ratio and more uniform strength for all layers can be achieved by variation
of winding angle of filament-wound (FW) vessel. The deformation and stresses of a thick-walled cylinder with
multi-angle winding filament under uniform internal pressure are proposed. The stresses of each orthotropic
unit of fiber layers, as well as longitudinal stress along the fiber direction, transverse stresses perpendicular to the
fiber direction and shear stress in the fiber layer are derived analytically. An optimization model of FW closed
ends vessel under uniform internal pressure subjected to Tsai–Wu failure criterion to maximize the lowest
strength ratio through thickness with optimal variation of winding angle is built. Two optimization methods
are adopted to find the optimized winding angle sequence through different ways, and their combination led
to more efficient algorithm is suggested. The research shows that the material utilization and working pressure
can be increased by proper winding angle variation, and several optimization winding angle sequence schemes
are found for different thickness ratios cylindrical vessels with two typical composite materials E-glass/epoxy
and T300/934, which are useful for many applications of FW vessel design and manufacture.

Keywords Multi-layered · Complex method · Steepest descent · Glass fibers · Carbon fibers · Fiber stress

1 Introduction

With the development of science and technology, high-performance fiber-wound pressure vessel has been
widely used in many fields, such as rocket, missile, deep diving, satellite [1]. And the mechanical performances
of winding filaments differ in thousands ways. Filament-wound (FW) structure can remedy the shortcomings
and take the advantages. Modern computerized equipment allows for the production of multi-angle winding
structures [2]. However, how to design a FW structure with proper winding angle to maximize the material
utilization is still a challenged task today.

Using internal pressure and axial force, experiments under biaxial tensile stress ratios were carried out
to investigate the performance of multi-angle FW structures [3]. Multi-angle wound structures exhibit better
performance in resisting damage and greater advantages over pure angle-ply lay-ups [4]. Many experimental
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failure analyses [5–9] have been conducted for pipes with different winding angles, and an optimum winding
angle of 55◦ has been noted for thin pipes subjected to internal pressure or biaxial loads with a hoop-to-axial
stress ratio of 2:1. Researches show that stacking sequence has great influence on pressure capability [10,11],
where stacking sequence can only be computed by 3-D analysis [12]. Using 3-D orthotropic elasticity and
axisymmetric thick-walled cylinder theory, deformation and stresses of a thick cylinder using multi-angle
winding with different kinds of filaments with any number of layers under internal, external pressure and axial
force are investigated analytically [13].

Base on 3-D anisotropic elasticity, many optimization researches of composite structure have been pro-
posed. However, part of the optimization researches focused on minimizing the weight and thickness of
composite laminates with different methods [14–17]. After that, an integrated optimization methodology is
proposed to optimize the manufacturing cost as well as the structural performance of composite laminated
plates manufactured by the resin transfer molding (RTM) process [18]. A new initialization strategy is pro-
posed by Irisarri et al. following mechanical considerations. The method is applied to the optimal design of a
composite plate for weight minimization and maximization of the buckling margins under three hundred load
cases that make also the originality of this work [19]. A technique for the optimization design of composite
laminated structures is presented, and the optimization process is performed using a genetic algorithm (GA),
associated with the finite element method for the structural analysis [20]. The layer optimization was carried out
for maximum fundamental frequency of laminated composite plates under any combination of three classical
edge conditions [21]. A new iteration fractal branch and bound method is proposed, which does not require
empirical knowledge of the target structure [22]. Gre’diac dealt with the stiffness design of laminated plates
made of woven plies [23]. All the above researches are concerned about composite laminates. The optimiza-
tion of FW thick-walled cylindrical vessel with variation of winding angle has been investigated early in 1988
[1]. Until 2006, an optimization of multilayered composite pressure vessels is accomplished using GA and
subject to the Tsai–Wu failure criterion [24], but the optimal variation of winding angle is still undetermined
for commonly used composite material.

Here, the deformation and stresses of a thick-walled cylinder using multi-angle winding with different
kinds of filament with any number of layers under uniform internal pressure are investigated analytically. To be
convenient for strength assessment, longitudinal stress along fiber direction, transverse stresses perpendicular
to the fiber direction and shear stress are present analytically. An optimization model of multiple winding
angle FW cylindrical vessel under uniform pressure is built, to maximize the lowest strength ratio in all layers
by adjusting the winding angle of each layer. Two traditional optimization methods are adopted to find the
optimization results, and their calculation efficiency is compared. Numeric results show that their combination
has better efficiency to achieve the optimization solution.

2 Stresses in fiber layer

Consider a thick-walled cylinder with an inner radius of r0, and outer radius after alternate-ply FW of rn . Each
alternate-ply layer can be regarded as an orthotropic layer. Winding filaments are divided into n orthotropic
layers with outer radius of ri , (i = 1, 2, . . ., n), with different kinds of filament and winding angles in each
layer.

The cylinder is subjected to uniform internal pressure qa . Only displacement in radial r direction and axial
z direction occurs, and axisymmetric stresses are developed for all orthotropic layers (Fig. 1).

2.1 On-axis stress–strain relation

The ply-oriented constitutive relationship can be expressed in matrix form as

{σ } =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ1
σ2
σ3
τ23
τ31
τ12

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0

0 0 0 G23 0 0
0 0 0 0 G31 0
0 0 0 0 0 G12

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε1
ε2
ε3
γ23
γ31
γ12

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= [C]{ε} (1)
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Fig. 1 Axisymmetric filament-wound cylinder

In which

[C] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1/E1 −ν12/E2 −ν13/E3 0 0 0
−ν21/E1 1/E2 −ν23/E3 0 0 0
−ν31/E1 −ν32/E2 1/E3 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G31 0
0 0 0 0 0 1/G12

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−1

(2)

For unidirectional orientation fiber composites, the fiber distributions are very similar in the 2 and 3 directions.
Therefore, assuming transverse isotropy, and based on equivalent properties in the 2–3 plane for unidirectional
material, we have

E2 = E3, G31 = G12, ν12 = ν13,

ν21 = ν31, G23 = E2/2/(1 + ν23) (3)

Then, the stiffness matrix in Eq. (2) can be simplified as

[C]3×3 = 1

1 − 2ν2
21

1−ν23

E2
E1

⎡

⎢
⎢
⎢
⎢
⎣

E1
ν21E2
1−ν23

ν21E2
1−ν23

1−ν2
21E2/E1

1−ν2
23

E2
ν23+ν2

21E2/E1

1−ν2
23

E2

sym.
1−ν2

21E2/E1

1−ν2
23

E2

⎤

⎥
⎥
⎥
⎥
⎦

C44 = E2

2(1 + ν23)
, C55 = C66 = G12 (4)

2.2 Off-axis stress–strain relation

The strain energy can be calculated with on-axis stiffness constants or off-axis stiffness constants. With
coordinate transformation of the strain vector, we can get the relationship between the stiffness coefficients of
on-axis and that of off-axis, which is

[C̄] = [Tε]T [C][Tε] (5)

The nonzero elements of C̄i j , (i, j = 1, 2, 3) can be expressed in matrix form as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C̄11

C̄22

C̄33

C̄23

C̄13

C̄12

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m4 n4 0 2m2n2 0 0 4m2n2

n4 m4 0 2m2n2 0 0 4m2n2

0 0 1 0 0 0 0
0 0 0 0 n2 m2 0
0 0 0 0 m2 n2 0

m2n2 m2n2 0 m4 + n4 0 0 −4m2n2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C11
C22
C33
C12
C13
C23
G12

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(6)
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For a group of plies within an alternate-ply layer, the effective average properties of the layers are C̄i j , (i, j =
1, 2, 3). For layer (i), the orthotropic stress–strain relationship can be written as

⎧
⎪⎨

⎪⎩

σ
(i)
z

σ
(i)
θ

σ
(i)
r

⎫
⎪⎬

⎪⎭
=
⎡

⎢
⎣

C̄ (i)
11 C̄ (i)

12 C̄ (i)
13

C̄ (i)
12 C̄ (i)

22 C̄ (i)
23

C̄ (i)
13 C̄ (i)

23 C̄ (i)
33

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

ε
(i)
z

ε
(i)
θ

ε
(i)
r

⎫
⎪⎬

⎪⎭
=
⎡

⎢
⎣

C̄ (i)
zz C̄ (i)

zθ C̄ (i)
zr

C̄ (i)
zθ C̄ (i)

θθ C̄ (i)
θr

C̄ (i)
zr C̄ (i)

θr C̄ (i)
rr

⎤

⎥
⎦

⎧
⎪⎨

⎪⎩

ε
(i)
z

ε
(i)
θ

ε
(i)
r

⎫
⎪⎬

⎪⎭
(7)

2.3 Deformation and stresses

Considering the equilibrium equation in radial displacement, whose solution can be expressed as

u(i)
r (r) = D(i)

1 rsi + D(i)
2 r−si + t (i)1 ε0r (8a)

where

si =
√

C̄ (i)
θθ /C̄ (i)

rr , t (i)1 = C̄ (i)
zθ − C̄ (i)

zr

C̄ (i)
rr − C̄ (i)

θθ

(9a)

The integral constants D(i)
1 and D(i)

2 can be determined by boundary conditions, radial displacement and stress
continuity conditions. Then the stresses are

σ (i)
r = d(i)

1 D(i)
1 rsi−1 + d(i)

2 D(i)
2 r−si−1 + d(i)

3 ε0

σ
(i)
θ = d(i)

4 D(i)
1 rsi−1 + d(i)

5 D(i)
2 r−si−1 + d(i)

6 ε0

σ (i)
z = d(i)

7 D(i)
1 rsi−1 + d(i)

8 D(i)
2 r−si−1 + d(i)

9 ε0 (10a)

where

d(i)
1 = C̄ (i)

θr + C̄ (i)
rr si , d(i)

2 = C̄ (i)
θr − C̄ (i)

rr si ,

d(i)
3 = C̄ (i)

zr +
(
C̄ (i)

θr + C̄ (i)
rr

)
t (i)1 , d(i)

4 = C̄ (i)
θθ + C̄ (i)

θr si ,

d(i)
5 = C̄ (i)

θθ − C̄ (i)
θr si , d(i)

6 = C̄ (i)
zθ +

(
C̄ (i)

θθ + C̄ (i)
θr

)
t (i)1 ,

d(i)
7 = C̄ (i)

zθ + C̄ (i)
zr si , d(i)

8 = C̄ (i)
zθ − C̄ (i)

zr si ,

d(i)
9 = C̄ (i)

zz +
(
C̄ (i)
zθ + C̄ (i)

zr

)
t (i)1 ,

When si = 1, it corresponds to isotropic material in r - θ plane; then, the solution of Eq. (9a) becomes

u(i)
r (r) = D(i)

1 r + D(i)
2 /r + t (i)2 ε0r ln(r) (8b)

where

t (i)2 = C̄ (i)
zθ − C̄ (i)

zr

2C̄ (i)
rr

(9b)

Then, the stresses in Eq. (10a) become

σ (i)
r = d(i)

1 D(i)
1 + d(i)

2 D(i)
2 r−2 +

(
d(i)

31 + d(i)
32 ln(r)

)
ε0 (10b)

σ
(i)
θ = d(i)

4 D(i)
1 + d(i)

5 D(i)
2 r−2 +

(
d(i)

61 + d(i)
62 ln(r)

)
ε0

σ (i)
z = d(i)

7 D(i)
1 + d(i)

8 D(i)
2 r−2 +

(
d(i)

91 + d(i)
92 ln(r)

)
ε0
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where

d(i)
1 = C̄ (i)

θr + C̄ (i)
rr , d(i)

2 = C̄ (i)
θr − C̄ (i)

rr ,

d(i)
4 = C̄ (i)

θθ + C̄ (i)
θr , d(i)

5 = C̄ (i)
θθ − C̄ (i)

θr ,

d(i)
7 = C̄ (i)

zθ + C̄ (i)
zr , d(i)

8 = C̄ (i)
zθ − C̄ (i)

zr ,

d(i)
31 = C̄ (i)

zr + C̄ (i)
rr t

(i)
2 , d(i)

32 =
(
C̄ (i)

θr + C̄ (i)
rr

)
t (i)2 ,

d(i)
61 = C̄ (i)

zθ + C̄ (i)
θr t

(i)
2 , d(i)

62 =
(
C̄ (i)

θθ + C̄ (i)
θr

)
t (i)2 ,

d(i)
91 = C̄ (i)

zz + C̄ (i)
zr t

(i)
2 , d(i)

92 =
(
C̄ (i)
zθ + C̄ (i)

zr

)
t (i)2

2.4 Boundary and continuity conditions

The boundary conditions on the internal (r = r0) and external (r = rn) surfaces are given by

σ (1)
r |r=r0 = −qa, σ (n)

r |r=rn = 0 (11a)

At a given layer interface (r = ri ), the radial stress and displacement satisfy continuity conditions as

σ
(i)
r |r=ri = σ

(i+1)
r |r=ri ,

u(i)
r (ri ) = u(i+1)

r (ri ),
(i = 1, 2, . . . , n − 1) (11b)

The equilibrium in z direction gives

2π

n∑

i=1

∫ ri

ri−1

σ (i)
z rdr = qaπr

2
0 (11c)

Above conditions in Eq. (11) lead to a set of equations, where the integral constants and axial strain are
determined by

[K ]{δ} = {qi }

[K ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 · · · 0 0 0 0 · · · 0 0 a1,2n+1

0 0 · · · 0 0 0 0 · · · a2,2n−1 a2,2n a2,2n+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · a2i+1,2i−1 a2i+1,2i a2i+1,2i+1 a2i+1,2i+2 · · · 0 0 a2i+1,2n+1

0 0 · · · a2i+2,2i−1 a2i+2,2i a2i+2,2i+1 a2i+2,2i+2 · · · 0 0 a2i+2,2n+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a2n+1,1 a2n+1,2 · · · a2n+1,2i−1 a2n+1,2i a2n+1,2i+1 a2n+1,2i+2 · · · a2n+1,2n−1 a2n+1,2n a2n+1,2n+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

In which nonzero elements in the stiffness matrix [K] are given as follows,
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(1) Elements in the first two rows:

a1,1 =
(
C̄ (1)

θr + C̄ (1)
rr s1

)
rs1−1

0

a1,2 =
(
C̄ (1)

θr − C̄ (1)
rr s1

)
r−s1−1

0

a1,2n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

C̄ (1)
zr +

(
C̄ (1)

θr + C̄ (1)
rr

)
C̄(1)
zθ −C̄(1)

zr

C̄(1)
rr −C̄(1)

θθ

, s1 �= 1

C̄(1)
zθ +C̄(1)

zr

2 +
(
C̄ (1)

θr + C̄ (1)
rr

)
C̄(1)
zθ −C̄(1)

zr

2C̄(1)
rr

ln(r0), s1 = 1

a2,2n−1 =
(
C̄ (n)

θr + C̄ (n)
rr sn

)
rsn−1
n

a2,2n =
(
C̄ (n)

θr − C̄ (n)
rr sn

)
r−sn−1
n

a2,2n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

C̄ (n)
zr +

(
C̄ (n)

θr + C̄ (n)
rr

)
C̄(n)
zθ −C̄(n)

zr

C̄(n)
rr −C̄(n)

θθ

, sn �= 1

C̄(n)
zθ +C̄(n)

zr

2 +
(
C̄ (n)

θr + C̄ (n)
rr

)
C̄(n)
zθ −C̄(n)

zr

2C̄(n)
rr

ln rn−1, sn = 1

(2) Elements from the third row to the second row from bottom, in which loop index i = 1, 2, . . ., n − 1.

a2i+1,2i−1 =
(
C̄ (i)

θr + C̄ (i)
rr si

)
rsi−1
i ,

a2i+1,2i =
(
C̄ (i)

θr − C̄ (i)
rr si

)
r−si−1
i ,

a2i+1,2i+1 = −
(
C̄ (i+1)

θr + C̄ (i+1)
rr si+1

)
rsi+1−1
i ,

a2i+1,2i+2 = −
(
C̄ (i+1)

θr − C̄ (i+1)
rr si+1

)
r−si+1−1
i

(i = 1, 2, . . . , n − 1)

a2i+1,2n+1 = e(i)
3 − e(i)

4 , (i = 1, 2, . . . , n − 1)

e(i)
3 =

⎧
⎪⎪⎨

⎪⎪⎩

C̄ (i)
zr +

(
C̄ (i)

θr + C̄ (i)
rr

)
C̄(i)
zθ −C̄(i)

zr

C̄(i)
rr −C̄(i)

θθ

, si �= 1

C̄(i)
zθ +C̄(i)

zr

2 +
(
C̄ (i)

θr + C̄ (i)
rr

)
C̄(i)
zθ −C̄(i)

zr

2C̄(i)
rr

ln ri , si = 1

e(i)
4 =

⎧
⎪⎪⎨

⎪⎪⎩

C̄ (i+1)
zr +

(
C̄ (i+1)

θr + C̄ (i+1)
rr

)
C̄(i+1)
zθ −C̄(i+1)

zr

C̄(i+1)
rr −C̄(i+1)

θθ

, si+1 �= 1

C̄(i+1)
zθ +C̄(i+1)

zr

2 +
(
C̄ (i+1)

θr + C̄ (i+1)
rr

)
C̄(i+1)
zθ −C̄(i+1)

zr

2C̄(i+1)
rr

ln ri , si+1 = 1

a2i+2,2i−1 = rsi−1
i ,

a2i+2,2i = r−si−1
i

a2i+2,2i+1 = −rsi+1−1
i

a2i+2,2i+2 = −r−si+1−1
i

a2i+2,2n+1 = e(i)
5 − e(i)

6 , (i = 1, 2, . . . , n − 1)

e(i)
5 =

⎧
⎪⎨

⎪⎩

C̄(i)
zθ −C̄(i)

zr

C̄(i)
rr −C̄(i)

θθ

, si �= 1

C̄(i)
zθ −C̄(i)

zr

2C̄(i)
rr

ln ri , si = 1

e(i)
6 =

⎧
⎪⎨

⎪⎩

C̄(i+1)
zθ −C̄(i+1)

zr

C̄(i+1)
rr −C̄(i+1)

θθ

, si+1 �= 1

C̄(i+1)
zθ −C̄(i+1)

zr

2C̄(i+1)
rr

ln ri , si+1 = 1
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(3) Elements in the last row:

a2n+1,2i−1 = 2
(
C̄(i)
zθ +C̄(i)

zr si
)(

r
si+1
i −r

si+1
i−1

)

1+si
,

a2n+1,2i =

⎧
⎪⎨

⎪⎩

2
(
C̄(i)
zθ −C̄(i)

zr si
)(

r
1−si
i −r

1−si
i−1

)

1−si
, si �= 1

2
(
C̄ (i)
zθ − C̄ (i)

zr

)
ln(ri/ri−1), si = 1

,

(i = 1, 2, . . . , n)

a2n+1,2n+1 =
n∑

i=1

e(i)
7

e(i)
7 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[

C̄ (i)
zz +

(
C̄ (i)
zθ + C̄ (i)

zr

)
C̄(i)
zθ −C̄(i)

zr

C̄(i)
rr −C̄(i)

θθ

]
(
r2
i − r2

i−1

)
, si �= 1

[

C̄ (i)
zz −

(
C̄(i)
zθ−C̄(i)

zr

)2

4C̄(i)
rr

]
(
r2
i −r2

i−1

)+ C̄(i)
zθ 2−C̄(i)

zr 2

2C̄(i)
rr

(
r2
i ln ri −r2

i−1 ln ri−1
)
, si = 1

(i = 1, 2, . . . , n)

(4) Vector of unknown integral constants and loading parameters:

{δ} =
{
D(1)

1 , D(1)
2 , . . . , D(i)

1 , D(i)
2 , . . . , D(n)

1 , D(n)
2 , ε0

}T

{qi } = {−qa, 0, 0, . . . , 0, qar
2
0

}T

Solving Eq. (12), the displacements, strains and the stresses of each layer can be determined.

2.5 3-D stresses in fiber directions

The stresses in Eq. (10) are average values in each orthotropic layer in global coordinate system. Stresses in
fiber directions such as longitudinal stress σ

(i)
1 , transverse stresses σ

(i)
2 , σ

(i)
3 and shear stress τ

(i)
12 in fiber layer

can be determined by on-axis stress–strain relation. First, we need on-axis strains by coordinate transformation
of off-axis. From deformations in Eq. (8) and strain definition, we can get strains in cylindrical coordinate
system. Then the on-axis strains can be obtained with coordinate transformation of strains. Finally, the stresses
in fiber directions are derived as

σ
(i)
1 =

(
n2
i C

(i)
11 + m2

i C
(i)
12 + siC

(i)
13

)
D(i)

1 rsi−1

+
(
n2
i C

(i)
11 + m2

i C
(i)
12 − siC

(i)
13

)
D(i)

2 r−si−1

+
[
C (i)

11

(
m2

i + n2
i t

(i)
1

)
+ C (i)

12

(
n2
i + m2

i t
(i)
1

)
+ C (i)

13 t
(i)
1

]
ε0

σ
(i)
2 =

(
n2
i C

(i)
12 + m2

i C
(i)
22 + siC

(i)
23

)
D(i)

1 rsi−1

+
(
n2
i C

(i)
12 + m2

i C
(i)
22 − siC

(i)
23

)
D(i)

2 r−si−1

+
[
C (i)

12

(
m2

i + n2
i t

(i)
1

)
+ C (i)

22

(
n2
i + m2

i t
(i)
1

)
+ C (i)

23 t
(i)
1

]
ε0

σ
(i)
3 =

(
n2
i C

(i)
13 + m2

i C
(i)
23 + siC

(i)
33

)
D(i)

1 rsi−1

+
(
n2
i C

(i)
13 + m2

i C
(i)
23 − siC

(i)
33

)
D(i)

2 r−si−1

+
[
C (i)

13

(
m2

i + n2
i t

(i)
1

)
+ C (i)

23

(
n2
i + m2

i t
(i)
1

)
+ C (i)

33 t
(i)
1

]
ε0

τ
(i)
12 = 2miniG12

[
D(i)

1 rsi−1 + D(i)
2 r−si−1 + (t (i)1 − 1)ε0

]
(13a)
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when si = 1, stresses in fiber directions become
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3 Optimization model and method

3.1 Failure criteria

Composite material failure criterions are the maximum stress criterion, the maximum strain criterion, Tsai–Hill
criteria, Hoffman criteria, and Tsai–Wu criterion. Here three-dimensional Tsai–Wu failure criterion is adopted
in strength ratio calculation. The failure surface of Tsai–Wu criterion is [25]:

− Fzzσ
2
1 − Frr

(
σ 2

2 + σ 2
3

)+ Fssτ
2
12 + 2Frz (σ2 + σ3) σ1 + 2Frθσ2σ3 + Fr (σ2 + σ3) + Fzσ1 = 1 (14)

where

Fzz = 1/(X tXc), Frr = 1/(YtYc), Fss = 1/S2,

Frz = −0.5/
√
X tXcYtYc, Frθ = 1/(2YtYc),

Fr = 1/Yt + 1/Yc, Fz = 1/X t + 1/Xc

In which X t, Xc represent the longitudinal tensile strength and compression strength in fiber directions, respec-
tively. Yt, Yc are the fiber transverse tensile strength and compression strength, respectively. S is the shear
strength. σ1 is the longitudinal stress in fiber direction. σ2 and σ3 are the transversed stresses. τ12 is the shear
stress.

3.2 Strength ratio calculation

From Eq. (14), we calculate the strength ratio by

R = −ξ/(2ρ) +
√

ξ2/(2ρ)2 + 1/ρ (15)

In which

ρ = −Fzzσ
2
1 − Frr

(
σ 2

2 + σ 2
3

)+ Fssτ
2
12 (Tsai-Wu criterion)

+ 2Frz(σ2 + σ3)σ1 + 2Frθσ2σ3,

ξ = Fr (σ2 + σ3) + Fzσ1
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3.3 Optimization method

We used two methods, complex method (CM) and steepest descent (SD) to find the optimization solution [26].

3.3.1 Complex method

Actually, CM is a development of simplex method in constrained problems. In 1965, Box extended the simplex
method of unconstrained minimization to solve constrained minimization problems of nonlinear programming:

Minimize f (X) (16a)

subject to

g j (X) ≤ 0, ( j = 1, 2, . . . ,m) (16b)

x (l)
i ≤ xi ≤ x (u)

i , (i = 1, 2, . . . , n) (16c)

In general, the satisfaction of the side constraints (lower and upper bounds on the variables xi ) may not
correspond to the satisfaction of the constraints g j (X) ≤ 0. The formation of a sequence of geometric figures
each having k = n + 1 vertices in an n-dimensional space (called the simplex) is the basic idea, where a
sequence of geometric figures each having k ≥ n + 1 vertices is formed to find the constrained minimum
point. The method assumes that an initial feasible point X1 (which satisfies all the m constraints) is available.
Iterative steps in the procedure:

(1) Find k ≥ n + 1 points, satisfied all m constraints.
(2) The objective function is evaluated at each of the k points (vertices). If the vertex Xh corresponds to the

largest function value, the reflection is used to find a new point Xr as

Xr = X0 + α(X0 − Xh) (17)

where α = 1.3 and X0 is the centroid of all vertices except Xh :

X0 = 1

k − 1

k∑

l=1
l �=k

Xl (18)

(3) If the point Xr is feasible and f (Xr ) < f (Xh), then point Xh is replaced by Xr , and turn to step 2. If
f (Xr ) ≥ f (Xh), a new trial point Xr is found by reducing the value of α in Eq. (16) by a factor of 2 and is
tested for the satisfaction of the relation f (Xr ) < f (Xh). The procedure of finding a new point Xr with a
reduced value of α is repeated again. This procedure is repeated, until the value of α becomes very small.
If an improved point Xr , with f (Xr ) < f (Xh), cannot be obtained even with that small value of α, the
point Xr is discarded and the entire procedure of the reflection is restarted by using the point X p (which
has the second-highest function value) instead of Xh .

(4) If at any stage, the reflected point Xr (found in step 3) violates any of the constraints, it is moved halfway
in toward the centroid until it becomes feasible. This method will progress toward the optimum point as
long as the complex has not collapsed into its centroid.

(5) Each time the worst point Xh of the current complex is replaced by a new point, the complex gets modified,
and we have to test for the convergence of the process. We assume convergence of the process whenever
the following two conditions are satisfied:
(a) The complex shrinks to a specified small size.
(b) The standard deviation of the function value becomes sufficiently small.
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Fig. 2 Combined method diagram

Table 1 Material property of winding filaments [24,25,27]

Material E-glass/epoxy T300/934 T300/5208

E1 (GPa) 43.4 141.6 181
E2 (GPa) 15.2 10.7 10.3
ν21 0.29 0.268 7.17
ν32 0.38 0.495 0.30
G12 (GPa) 6.14 3.88 0.28
Xt (MPa) 1062 1314 1500
Xc (MPa) 610 1220 1500
Yt (MPa) 31 43 40
Yc (MPa) 118 168 246
S (MPa) 72 48 68

3.3.2 Steepest descent method

SD is one of the simplest and the most fundamental minimization methods for unconstrained optimization.
Since it uses the negative gradient as its descent direction, it is also called the gradient method. It can be
summarized by the following steps:

(1) Start with an arbitrary initial point X1. Set the iteration number as i = 1.
(2) Find the search direction � f ( Xi ).
(3) Determine the optimal step length hi in the direction � f ( Xi ), and set

Xi + 1 = Xi − hi� f (Xi ) (19)

(4) Test the new point, Xi+1, for optimality. If Xi+1 is optimum, stop the process. Otherwise, go to next step.
(5) Set the new iteration number i = i + 1, and return to step 2.
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Table 2 Optimized winding angle of T300/934 (◦)

r0/rn 0.95 0.90 0.85 0.80 0.75 0.70 0.65
n

1 52.758 57.531 64.373 73.422 81.301 80.557 81.803
2 45.761 49.312 55.391 89.270 89.838 89.579 88.555
3 51.568 43.095 52.159 85.899 89.948 89.349 88.300
4 50.134 58.671 56.848 57.292 86.413 87.844 84.567
5 61.725 56.062 46.404 57.222 59.014 58.957 63.583
6 52.202 48.825 43.293 34.623 0.0338 0.0460 24.685
7 54.015 51.218 53.971 31.640 44.242 36.323 0.0058
8 56.142 54.655 52.146 52.724 41.705 89.070 49.339
9 58.664 59.654 63.949 36.562 45.198 24.226 89.881
10 61.709 67.504 64.373 49.647 35.316 34.279 13.092

Table 3 Optimized winding angle of E-glass/epoxy(◦)

r0/rn 0.95 0.90 0.85 0.80 0.75 0.70 0.65
n

1 54.895 54.459 56.895 61.863 58.310 62.952 66.241
2 56.584 54.860 54.402 56.552 56.453 59.970 61.200
3 57.448 55.365 54.466 55.233 66.462 66.587 74.538
4 56.026 58.566 58.989 59.876 55.058 56.263 69.249
5 56.438 60.731 55.553 55.655 54.098 55.090 53.227
6 56.885 57.873 57.546 56.396 56.606 54.510 57.324
7 57.365 60.937 62.669 57.564 55.205 55.351 51.614
8 57.880 60.273 59.244 59.225 56.506 57.253 52.969
9 62.518 63.832 65.852 62.296 66.329 62.932 56.100
10 72.083 73.627 63.224 64.873 62.583 71.389 62.157

Table 4 Optimized winding angle of (a) T300/934 (◦), (b) E-glass/epoxy (◦)

r0/rn 0.95 0.90 0.85 0.80 0.75 0.70 0.65
n

(a) T300/934 (◦)
1 54.575 54.681 54.791 55.900 56.208 56.539 56.903
1 48.738 48.867 60.176 70.348 89.999 89.997 89.998
2 53.253 48.070 40.589 51.313 89.995 89.996 89.992
3 62.701 65.195 61.611 45.069 0.005 0.005 0.005
1 48.738 50.813 67.756 70.185 89.999 89.999 89.999
2 50.716 49.177 52.064 71.055 89.999 89.995 89.995
3 53.253 50.014 43.773 52.124 89.999 89.996 89.995
4 57.023 55.095 45.746 36.836 29.075 30.096 29.530
5 62.701 66.845 62.451 47.653 0.005 0.0007 0.009
1 48.738 51.876 70.127 70.772 89.999 89.995 89.995
2 49.591 50.783 62.555 75.141 89.999 89.998 89.999
3 50.481 50.125 56.118 72.987 89.999 89.995 89.995
4 51.466 49.999 51.030 66.438 89.999 89.995 89.995
5 52.606 50.518 47.528 57.573 89.999 89.995 89.995
6 53.960 51.792 45.878 48.426 89.921 89.999 89.995
7 55.587 53.937 46.377 40.946 46.124 49.278 49.468
8 57.547 57.075 49.354 37.066 0.305 0.0173 0.0063
9 59.899 61.340 55.191 38.745 0.0003 0.0044 0.0051
10 62.701 67.661 64.730 48.413 0.0001 0.0059 0.00001
1 48.799 52.265 81.073 73.361 25.379 32.042 33.739
2 49.086 51.695 75.460 82.268 89.999 87.820 87.152
3 49.572 51.210 64.096 82.163 89.942 88.704 86.384
4 49.969 50.820 58.908 81.352 89.999 89.999 85.830
5 50.290 50.538 53.967 73.679 89.999 89.999 84.952
6 50.845 50.375 51.302 64.094 89.999 89.999 83.200
7 51.346 50.343 48.948 58.781 89.999 89.999 80.240
8 51.806 50.454 47.935 54.193 89.999 88.702 75.952
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Table 4 continued

r0/rn 0.95 0.90 0.85 0.80 0.75 0.70 0.65
n

9 52.434 50.721 47.294 54.682 89.999 83.727 70.460
10 52.944 51.153 48.057 53.482 87.917 76.767 64.063
11 53.646 51.765 47.257 53.140 78.461 68.218 57.158
12 54.253 52.568 46.926 51.436 65.984 58.701 50.175
13 55.063 53.573 47.097 47.173 52.550 48.898 43.505
14 55.831 54.794 47.802 43.633 39.688 39.435 37.509
15 56.826 56.242 49.075 40.886 28.204 30.819 32.487
16 57.785 57.931 50.953 39.250 18.767 23.515 28.706
17 58.886 59.873 53.470 38.903 11.922 17.911 26.397
18 59.994 62.081 56.667 39.988 7.786 14.275 25.750
19 61.277 64.569 60.586 42.711 5.837 12.818 27.002
20 62.667 67.919 66.843 47.863 5.922 13.644 30.489
(b) E-glass/epoxy (◦)
1 58.864 58.722 58.574 58.420 58.259 59.921 63.270
1 57.111 55.989 55.118 57.047 58.280 61.473 67.083
2 58.853 59.594 58.945 56.602 54.738 52.611 53.046
3 61.460 67.583 69.668 66.742 74.392 78.684 65.808
1 56.935 55.989 55.662 57.319 59.445 63.400 68.203
2 57.838 57.461 56.486 56.275 57.042 58.123 59.398
3 58.887 59.594 59.060 56.860 56.245 54.485 54.252
4 60.117 62.825 62.727 60.111 60.790 59.113 55.451
5 61.505 67.583 70.174 66.744 74.948 79.354 66.454
1 56.877 56.030 56.005 57.517 60.123 64.932 68.835
2 57.071 56.578 56.305 56.900 58.954 61.332 64.622
3 57.501 57.249 56.709 56.514 57.862 58.968 60.842
4 57.965 58.071 57.313 56.435 57.018 57.263 57.720
5 58.464 59.049 58.232 56.739 56.731 56.145 55.618
6 59.072 60.202 59.550 57.528 57.348 56.075 54.519
7 59.739 61.612 61.277 58.831 59.087 57.606 54.799
8 60.401 63.299 63.611 60.707 62.356 60.677 56.695
9 61.024 65.288 66.627 63.299 67.452 67.100 60.453
10 61.594 67.612 70.437 66.741 75.086 80.460 66.500
1 56.899 56.126 56.240 57.674 60.270 64.447 69.038
2 57.057 56.290 56.229 57.188 59.568 63.052 66.503
3 57.113 56.524 56.327 56.867 58.684 61.814 64.238
4 57.158 56.822 56.470 56.808 58.463 60.638 62.402
5 57.280 57.203 56.612 56.690 58.297 59.211 61.104
6 57.497 57.584 56.896 56.560 58.036 58.338 59.511
7 57.728 57.937 57.269 56.435 57.721 57.554 58.205
8 57.992 58.335 57.776 56.547 57.888 57.126 57.167
9 58.308 58.828 58.060 56.663 58.082 56.717 56.382
10 58.644 59.396 58.768 56.971 57.843 56.795 55.833
11 58.990 59.907 59.241 57.297 57.709 56.624 55.507
12 59.334 60.529 60.032 57.752 57.722 57.169 55.392
13 59.665 61.180 60.889 58.374 58.403 57.896 55.475
14 59.972 61.919 61.743 59.346 60.070 58.771 55.748
15 60.243 62.695 62.769 60.085 61.169 59.758 56.198
16 60.468 63.683 63.887 60.896 62.186 61.825 56.819
17 60.635 64.569 65.155 62.078 64.320 63.944 57.601
18 61.033 65.582 66.750 63.447 66.820 66.068 59.535
19 61.251 66.647 68.425 64.982 69.811 70.202 61.883
20 61.678 67.842 70.528 66.578 74.196 75.971 65.100

3.3.3 The combined method

In order to improve the efficiency of above methods, a combined complex–steepest descent method is developed
to achieve better results. The process of the calculation is: first, we use CM to find an optimized winding angle
sequence, then curve fit the results to obtain a more smooth distribution of winding angle sequence, and finally,
optimize the fitted curve with SD. The combined method diagram is given in Fig. 2.
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Fig. 3 The optimized winding angle and the corresponding strength ratio distributions via thickness of T300/934

3.4 Optimized winding angle sequence

Here carbon fiber epoxy (T300/934) and E-glass/epoxy are used, whose properties are listed in Table 1.
Under 0.1111111 MPa internal pressure, letting n = 1, it describes a uniform winding angle cylinder.

Letting n = 1, 3, 5, 10, 20, multi-angle FW cylinder with different number of winding angle sequence for
ratio of the inner radius to outer radius r0/rn = 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65 is simulated.

To get the optimal variation of winding angles sequence, we used CM, SD and a combined complex–steepest
descent method to solve the problem.
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Fig. 3 continued

3.4.1 Results of CM

For a series multi-layered T300/934 cylinders and E-glass/epoxy cylinders, the optimized winding angle is
obtained with CM.

For different radius ratio cylindrical vessels, it is found that the variation of the optimized winding angle
is unstable and fluctuating for large number of n. This result makes the distributions of strength ratio via
thickness are also unstable and fluctuating, so the maximum strength ratio and more uniform strength for all
layers cannot be achieved. For example, a T300/934 cylinder (n = 10), the results were obtained and given in
Table 2.
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Fig. 3 continued

Table 5 The strength ratio in 20-layer cylinder of original and optimized winding angle of (a) T300/934

r0/rn Original winding angle Optimized winding angle

Maximum Minimum D-value Performance (%) Maximum Minimum D-value Performance (%)

0.95 239.114 205.204 33.910 14.18 225.640 222.639 3.001 1.17
0.90 533.356 452.496 80.860 15.16 522.258 507.212 15.046 2.88
0.85 885.986 755.753 130.233 14.70 842.930 791.887 51.043 6.06
0.80 1323.426 984.517 338.909 25.61 1243.018 1019.579 223.439 17.98
0.75 1874.700 1141.303 733.397 39.12 1758.986 1230.130 528.856 30.07
0.70 2587.480 1259.050 1328.430 51.34 2354.651 1384.064 970.587 41.22
0.65 3533.295 1346.453 2186.842 61.90 3067.299 1493.992 1573.307 51.29

3.4.2 Results of SD

With SD, the results with the same geometric parameters for T300/934 cylinders and E-glass/epoxy cylinders
are given.

From the results, we find that the optimized winding angle sequences are smooth, but the strength ratios
do not achieve the optimal state, so the maximum strength ratio is not achieved. For example, a E-glass/epoxy
cylinder (n = 10), the results are obtained and given in Table 3.

3.4.3 Results of the combined method

The optimization study shows that the optimized winding angle sequences tend to unique distribution of
winding angle when the layer number n goes to large number and the lowest strength ratio achieves the
optimal level.

For T300/934 cylinders and E-glass/epoxy cylinders with different radius ratio r0/rn and layer numbers
n, the results are obtained with the combined method and listed in Table 4(a,b), respectively.

From the results, we find that the variation of the optimized winding angle is stable and smooth for large
number of n, and the strength ratios achieve the optimal state. More details will be discussed in the next
section.

4 Discussion of the results

Choose the combined method and different radius ratio r0/rn = 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, etc.,
the winding angle sequence to maximize the lowest strength ratio is optimized. We choose layer number
n = 1, 3, 5, 10 and 20, to simulate the winding angle variation for the optimized scheme of infinite thin
thickness of winding layer. For a single-angle winding thin-walled cylinder, the optimized winding angle is
about 55◦ [7–11]. So φ = 55◦ is chosen as the original winding angle.
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Fig. 4 The optimized winding angle and the corresponding strength ratio distributions via thickness of E-glass/epoxy

The optimized winding angle sequence, the maximum strength ratio and the strength ratio distribution via
thickness are calculated, respectively.

4.1 T300/934 cylinders

For T300/934 cylinders, the optimized winding angle sequence for different layer number n and the correspond-
ing strength ratio distributions via thickness are shown in Fig. 3 for r0/rn = 0.95, 0.90, 0.85, 0.80, 0.75, 0.70
and 0.65.
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Fig. 4 continued

From the figures we find that, for single-layered cylinder, the winding angles distribute in range 54◦–57◦
for r0/rn = 0.95 − 0.65. This conclusion is consistent with the paper [24].

For a multi-layered thin-walled FW cylinder, such as r0/rn = 0.95, the optimized winding angle, which is
stable and smooth for large number of n, increases versus thickness outward, whose minimum and maximum
appear on the inner and outer surface, respectively. With the increase number of n, the maximum strength ratio
and more uniform strength distribution are achieved. With thicker wall thickness, such as r0/rn = 0.80, the
optimized winding angle increases rapidly near the inner surface and the optimized winding angle decreases
rapidly near the outer surface, like a parabola. For large number of n, the maximum strength ratio and more
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Fig. 4 continued

Table 6 The strength ratio in 20-layer cylinder of original and optimized winding angle of (b) E-glass/epoxy

r0/rn Original winding angle Optimized winding angle

Maximum Minimum D-value Performance (%) Maximum Minimum D-value Performance (%)

0.95 57.421 55.665 1.76 3.06 58.894 58.537 0.357 0.61
0.90 127.180 121.161 6.02 4.73 130.783 129.716 1.066 0.82
0.85 209.269 199.061 10.21 4.88 218.746 215.965 2.781 1.27
0.80 307.677 292.823 14.85 4.83 323.977 318.945 5.033 1.55
0.75 427.566 394.203 33.36 7.80 453.787 443.286 10.501 2.31
0.70 575.960 490.068 85.89 14.91 609.855 592.580 17.275 2.83
0.65 762.576 582.509 180.07 23.61 799.652 769.562 30.090 3.76

uniform strength distribution are achieved. For very thick cylinders, such as r0/rn = 0.65, the optimized
winding angle reaches nearly 90◦ near the inner surface and uniform strength distribution cannot be achieved.
Obviously, it is difficult to achieve uniform strength ratio via thickness only by changing winding angle. A
20-layer strength ratio variation is compared in Table 5.

From the results, for original scheme, the difference of strength ratio via thickness for r0/rn = 0.95−0.65
is 14.18, 15.16, 14.70, 25.61, 39.12, 51.34, 61.90 %, respectively, while that of the optimized scheme is 1.17,
2.88, 6.06, 17.98, 30.07, 41.22, 51.29 %, respectively. The optimized scheme leads to more uniform strength
ratio than the original one, and the minimum strength is much higher than that of the original scheme.

4.2 E-glass/epoxy cylinders

For E-glass/epoxy cylinders, the optimized winding angle sequence for different layer number n and the
corresponding maximum strength ratio are shown in Fig. 4.

The general trends of winding angle of E-glass/epoxy cylinders are the same with that of T300/934 cylinders.
It is worth to emphasize that the variation of the optimized winding angle is stable and smooth for large number
n, and with the increase number of n, the maximum strength ratio and more uniform strength distribution via
thickness can be achieved easily. It suggests that the material property has great influence on strength ratio
distribution via thickness. The more difference elasticity coefficients in different directions, the more difficult
to achieve an optimal winding angle scheme and large difference distribution in strength ratio via thickness
are produced.

The strength ratio variation in 20-layer cylinder is shown in Table 6. From the results, for original scheme,
the difference of strength ratio via thickness for r0/rn = 0.95 − 0.65 is 3.06, 4.73, 4.88, 4.83, 7.80, 14.91,
23.61 %, respectively, while the optimized scheme is 0.61, 0.82, 1.27, 1.55, 2.31, 2.83, 3.76 %, respectively.
More uniform strength ratio distribution is achieved, and their minimum strength ratio is improved significantly.
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Fig. 5 The optimized winding angle and the corresponding strength ratio distributions via thickness of T300/5208

4.3 Comparison of multi-angle winding vessel of T300

In order to prove the accuracy of the results in this paper, here the 20-layered filament-wound cylinder in [24]
is chosen and compared for strength ratio R = 1, rn/r0 = 1.1, 1.5.

The optimized winding angle sequence and distribution of the burst pressures via the thickness of a 20-
layered cylinder are shown in Fig 5. From the results, for the thin-walled FW cylinder (rn/r = 1.1), it is found
that the two optimized winding angle sequences are very similar, and the distribution of the burst pressures of
this paper is much better than those of [24]. For very thick cylinders (rn/r = 1.5), it is found that there is no
difference between the distribution of the burst pressures.

5 Conclusion

The investigation leads to conclusions:

(1) A suitable optimization method has great influence to the optimized winding angle sequence. Numeric
results show that the combined complex–steepest descent method has better efficiency to achieve the
optimization solution.

(2) The material property has great influence on strength ratio distribution via thickness. Large difference in
elasticity coefficients in different directions, more evident variation winding angle should be adopted to
achieve more uniform strength ratio, so the corresponding strength ratio distributions of E-glass/epoxy
are much better than T300/934.
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(3) The material utilization and working pressure can be increased by proper winding angle variation, and
several optimization winding angle sequence schemes are found for different radius ratio cylindrical
vessels made of E-glass/epoxy or T300/934.

(4) In this paper, more accurate calculation results are given for multi-layered thin-walled FW cylinder. It
is difficult to achieve uniform strength ratio via thickness for carbon fiber cylinder by changing winding
angle, and the strength ratios of the carbon fibers are approximately double the values of the glass fibers.
Therefore, the carbon fiber is not suitable for a thick-walled FW cylinder.
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