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Abstract In this work, the geometrically nonlinear deflection responses of glass/epoxy composite flat/curved
shell panel structure have been analysed theoretically with the help of three different displacement field kine-
matics and Green–Lagrange strain–displacement relation. In this analysis, the numerical models are developed
based on two higher-order shear deformation mid-plane kinematics and one simulation model with the help
of commercial finite element package (ANSYS). The present mathematical model is general in the sense that
it includes all the nonlinear higher-order terms arising due to Green–Lagrange strain–displacement relation
to capture the exact flexural strength of the laminated structure. The present nonlinear model is so generic
that it can be easily extended for solving different kinds of geometrical configurations (spherical, cylindri-
cal, elliptical, hyperboloid and plate). The equilibrium equation of the transversely loaded panel is achieved
by minimizing total potential energy expression and discretized using the suitable finite element steps. The
required deflection values are computed numerically via a homemade MATLAB code in conjunction with
Picard’s iterative method. Consequently, the stability of the present numerical solutions has been established
through the convergence test and validated by comparing the results with those available published results. In
addition, the transverse deflections are obtained experimentally via three-point bend test and utilized for the
comparison purpose to demonstrate the significance of the newly developed higher-order finite element model.

Keywords Nonlinear bending · HOSDT · Nonlinear FEM · Doubly curved panel · Green–Lagrange ·
ANSYS

1 Introduction

The high specific strength/stiffness and better energy absorption properties of the laminated composite struc-
tures have made them favourable for the lightweight and high-performance engineering applications. In addi-
tion, the layered structure properties can also be tailor-made by changing the parameters like ply-angle to
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meet the specific functional requirements. Owing to their wide range of applications, the laminated composite
structures (flat/curved) have appealed the attention of many researchers involved in structural design from the
industries such as aviation, marine, nuclear, aerospace and shipbuilding for the past few decades [1]. However,
it is also true that these structures are subjected to large deformation under the complex loading conditions
throughout their operational life. As a result of this, the nonlinearity in geometry is induced, and the original
geometries of the structure as well as the final responses of the structural component deviate from the expected
line. Hence, an accurate knowledge of the deformation behaviour and the induced stresses in the laminated
structures under higher load is extremely essential for the analysis and subsequent design of the final finished
product. In this regard, many researchers have already put forward numerous attempts in the past to study
the linear and the geometrically nonlinear static behaviour of the laminated flat and curved panel by using
various existing [2,3] and refined theories [4,5]. We also note the widespread implementation of the finite
element method (FEM) for the numerical analysis of the mechanical (free vibration, transient, buckling and
post-buckling) responses of the laminated composite structures using various shear deformation plate/shell
theories and nonlinear kinematic models [6]. However, besides involving complexities in the formulation and
greater computational effort, the higher-order shear deformation theory (HOSDT) is mostly preferred over
other available mid-plane kinematics [7–13]. This is because it assumes more realistic shear stress distribution
through the panel thickness and eliminates the necessity of the shear correction factors. A brief literature survey
on the available numerical, analytical and experimental investigations has been presented in the following lines
to outline the prime objective of the present research.

Two displacement-based four-noded quadrilateral elements were developed by Zhang and Kim [14] for the
analysis of the geometrical nonlinear bending behaviour of the laminated composite plate. The formulation
is based on the first-order shear deformation theory (FOSDT) and von-Karman nonlinearity. Arciniega and
Reddy [15] provided a simple tensor-based displacement FE model based on the FOSDT kinematics for
the nonlinear deformation analysis of the shell structure. Kishore et al. [16] reported the nonlinear static
behaviour of the laminated smart composite plate embedded with magnetostrictive layers using the third-order
shear deformation theory (TSDT) and von-Karman type of geometrical nonlinearity. Similarly, the effect of
random system properties on the transverse nonlinear central deflection of laminated composite spherical
shell panel under the combined hygro-thermo-mechanical loading was investigated by Lal et al. [17]. In this
analysis, the formulation is based on the HOSDT mid-plane kinematics and von-Karman nonlinearity. In
subsequent year, the thermo-elastic stability responses of thin-walled multilayered plate and shell structures
are analysed by Sabik and Kreja [18] using the FOSDT mid-plane kinematics. The static response of doubly
curved laminated composite shell panels is examined theoretically by Viola et al. [19] via HOSDT mid-
plane kinematics. Further, Green–Lagrange geometrical nonlinearity is employed first time by Naidu and
Sinha [20] to study the large deformation bending characteristic of the laminated composite shell panel under
hygrothermal environment using the FOSDT kinematic model. In the recent past, the significance of Green–
Lagrange geometrical nonlinearity on the laminated curved structural responses like the thermal post-buckling
[21] and the nonlinear free vibration [22] under the combined loading conditions has been reported by Panda
and his co-authors for shallow shell structures.

In continuation to the aforementioned numerical/analytical studies,many experimental investigations on the
mechanical behaviour of fibre-reinforced composite structures are also available in open literature. Paepegem
and Degrieck [23] reported the bending fatigue performance of the woven glass/epoxy composite panel using
the numerical and the experimental methods. Further, the practical importance of the geometrically nonlinear
higher-order theories for the analysis of sandwich beam structures has been demonstrated by Sokolinsky et
al. [24] by comparing the results with four-point bend test. Similarly, the flexural behaviour of S-2 glass and
T700s carbon fibre-reinforced hybrid composites has been investigated by Dong and Devies [25]. Awad et al.
[26] examined the behaviour of laminated glass fibre-reinforced polymer (GFRP) composite sandwich beams
for different spans and cross sections. The combined influences of the in-plane load and the moment on the
bending responses of the symmetric cross-ply laminated composite cantilever rectangular plate are investigated
by Zhang et al. [27]. Correspondingly, the bending fatigue behaviour of the E-glass/epoxy composite structures
has been examined by Koricho et al. [28] under the different levels of cyclic loading. Reddy et al. [29]
described the ballistic performance of the E-glass/phenolic composite and claimed a nonlinear relationship
between the energy absorption and the laminate thickness. The preceding literature survey reveals that a large
number of numerical analysis have already been completed on the linear and geometrically nonlinear transverse
deformations of the laminated composite structures. It is also clearly understood that most of the nonlinear
studies are focused on the flat panel geometries and based on the FOSDT/HOSDT type ofmid-plane kinematics
in conjunction with von-Karman nonlinear strain instead of Green–Lagrange type of geometrical nonlinearity.
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Fig. 1 Laminated composite shallow doubly curved shell panel

We also note that no experimental validation of the nonlinear bending behaviour of the laminated composite
flat/curved panel using the HOSDTmid-plane kinematics and Green–Lagrange nonlinearity has been reported
in open literature.

In order to bridge the gap, the present work is mainly focused on the computation of linear and nonlin-
ear bending responses of the glass/epoxy laminated composite flat/curved panel using three different shear
deformation theories in the framework of the HOSDT/FOSDT kinematics and Green–Lagrange nonlinearity.
The practical importance of the proposed geometrically nonlinear higher-order theories has been revealed first
time by comparing the numerical responses with experimental (three-point bend test) and simulation (ANSYS)
results. It is also worthmentioning that the present mathematical models have included all the nonlinear higher-
order terms in the formulation to achieve the indispensable generality. The desired governing equations are
obtained by minimizing the total potential energy expressions, and the desired results are computed numeri-
cally using Picard’s iterative method or popularly known as the direct iterative method. Further, a simulation
model is developed in ANSYS environment using ANSYS parametric design language (APDL) code. It is also
vital to mention that themechanical properties of the laminated glass/epoxy panel are evaluated experimentally
using simple tension test and utilized for the present numerical analysis. In order to demonstrate the efficacy of
the present nonlinear model, the numerical results are compared with those available published literature and
subsequent experimental results of the flat panel case only. Finally, the applicability of the proposed HOSDT
models for the static analysis of the doubly curved shell panel has been explored by solving numerous exam-
ples for different parameters (the side-to-thickness ratios, the curvature ratios, the constraint conditions and
the aspect ratios) and discussed in detail.

2 Theoretical modelling

In this present analysis, a generalized doubly curved laminated composite shallow shell panel of uniform
thickness ‘h’ is considered, and the details are shown in Fig. 1. The principal radii of curvatures along x- and
y-directions of the shallow (twisting radius of curvature Rxy = ∞) shell panel are defined as Rx and Ry ,
respectively. The two-dimensional projection of the shell panel is a rectangle with length, ‘a’, and breadth,
‘b’, along the x- and the y-directions, respectively. In this present investigation, the mathematical models of
the laminated composite panel have been developed using two higher-order theories (Model-I and Model-II)
as well as subsequent simulation model using the FOSDT (Model-III) kinematics, and the details are provided
in the following subsections.

2.1 Displacement models

2.1.1 Model-I

Firstly, the laminated shell panel model is developed using HOSDT type of mid-plane kinematics as same as
in [16] where the displacement functions are assumed to be varying cubically and linearly for the in-plane and
transverse directions and conceded in the following form:
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2.1.2 Model-II

Further, another kinematic model is assumed as in [3] considering the displacement variable through the
thickness, w(k) (x, y, z) to be inextensible or constant and expressed as:
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Here in Model-II, it is evident that only linear transverse normal strain [(εzz)l] is zero but not the total strain,
i.e., εzz �= 0, whereas in Model-1 neither of the linear nor the total transverse strain is zero, i.e., (εzz)l �= 0.

2.1.3 Model-III

Now, the third model is derived using the FOSDT kinematic model as in [30], where both the in-plane and the
out-of-plane kinematics are considered to be varying linearly. For this model, six degrees of freedom (DOF)
per node have been considered and expressed as:
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where u(k), v(k) andw(k) are the displacements on any kth layer along the longitudinal and transverse directions,
i.e., x-, y-, and z-axes, respectively, as shown in Fig. 1. In addition, the displacements on the mid-plane are
represented as u0, v0 and w0 along their corresponding direction as discussed previously. Similarly, θx and θy
are the rotations of normal to the mid-plane, i.e., z = 0, about y- and x-axes, respectively. Subsequently, θz
is the transverse normal extensional term through the thickness direction as seen in Model-I and III. Further,
few more functions (φx , φy, λx and λy), as presented in both the developed HOSDT models, correspond to
the higher-order terms in Taylor’s series expansion and help in maintain the original transverse deformation
modes.

2.2 Strain–displacement relations

The geometrical nonlinearity is incorporated for any general material continuum through the strain–
displacement relations, and in the current model it is introduced through Green–Lagrange strain and expressed
as in [31]:
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The total strain vector {ε} can be expressed as the summation of the linear {εl}and the nonlinear {εnl} strain
vectors and given by:

{ε} = {εl} + {εnl} (5)
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Now, substituting the Model-I in Eq. (4), we obtain the expression for the total strain as the function of
transverse thickness coordinate as below:
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Now, rearranging the above strain–displacement relation in the matrix form as below:
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The terms containing superscripts ‘l0’, ‘l1’, ‘l2 − l3’ in {ε̄l} and ‘nl0’, ‘nl1’, ‘nl2−6’ in {ε̄nl} are the membrane,
curvature and higher-order strain terms, respectively. The strains for the Model-2 and the Model-3 can be
obtained in the similar way, and the details can be seen in [22] and [30], respectively.

Again, the mid-plane strain vectors are expressed in the following form:

{ε̄l} = [Bl] {δ∗}
{ε̄nl} = 1

/
2 [Bnl] {δ∗}

}

(8)

or,

{ε̄nl} = 1/2 [Bnl]
{
δ∗} = 1/2 [A] [G]

{
δ∗}

where [Bl] and [Bnl] are linear and nonlinear strain–displacement matrices, and {δ} is the corresponding
displacement field vector. In addition, the details of [A] and [G] matrices can be seen in [22].

The stress–strain relationship for the laminated shell panel can be expressed as in [31]:

{σ } = [
Q
] {ε} (9)

where {σ }, [Q] and {ε} are the stress vector, transformed reduced stiffness matrix and the strain vectors,
respectively.
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2.3 Governing equation of equilibrium

The static equilibrium equation of any structural element under the influence of external mechanical load can
be expressed by minimizing the total potential energy. Thus, the governing equation can be conceded in the
following form.

∂
∏

= 0 or
∏

= Utotal − Wexternal (10)

where
∏

represents the total potential energy that can be obtained as the difference between the total strain
energy (Utotal) and the external work done (Wexternal).

Now, the total strain energy of the curved shell panel can be obtained using the general expression:
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∫
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{ε}T {σ } dV (11)

Also, Eq. (11) can be rewritten by substituting the necessary strain and the stress tensors from Eqs. (7) and (9)
and represented as:
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Now, the total work done under the external mechanical load (q) can be expressed as:

Wexternal =
∫∫

{δ (x, y)}T q (x, y)dxdy (13)

where q and δ are the global load and displacement vectors, respectively.

3 Finite element model

In order to solve the present nonlinear deflection problem numerically, the developed HOSDT models are
discretized using the displacement-based FE formulation steps. For the discretization purpose, a nine-nodded
isoparametric Lagrangian quadrilateral element with ten (

{
δ∗
i

} = {
u0i v0i w0i θxi θyi θzi φxi φyi λxi λyi

}T
)

degrees of freedom per node and nine (
{
δ∗
i

} = {
u0i v0i w0i θxi θyi φxi φyi λxi λxi

}T
) degrees of freedom

per node is utilized for Model-I and Model-II, respectively. The displacement vector {δe} and the element
geometry are represented by following relations using the FEM steps as in [32]:

{δe} =
Ne∑

i=1

[Si ]
{
δ∗}

i x =
Ne∑

i=1

[Si ]xi y =
Ne∑

i=1

[Si ]yi (14)

where [Si ] is the shape function for any i th node, {δ∗}i is the displacement vector for the i th node and Ne is
the number of nodes per element. The polynomial functions utilized for the nodal approximation are as same
as in [32].
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Fig. 2 Solution steps for the nonlinear bending responses

The total strain energy (Utotal) and the work done (Wexternal) expressions from Eqs. (12) and (13) are
substituted in Eq. (10) and applying FE approximations as in Eq. (14), the final form of the static equilibrium
equation is expressed as

[K ] {δ} = {q} or [Kl + Knl] {δ} = {q} (15)

where [K ] is the system stiffness matrix which comprises of the linear [Kl ] and the nonlinear [(Knl)] stiffness
matrices. The nonlinear stiffness matrices are linearly and quadratic functions of the state-space variables.
Similarly, {δ} is the global displacement vector and is obtained by assembling each elements considered for
any particular analysis.

Equation (15) is now solved to compute the desired nonlinear bending responses using the direct iterative
method, and the solution steps are explained in the flowchart in Fig. 2 as in [31]:
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Fig. 3 a, b Experimental set-up of three-point bend test and c specimens of four-layer angle-ply and cross-ply laminated
glass/epoxy composite

4 Experimental procedure

As previously mentioned, the nonlinear flexural strength of the laminated structure computed experimentally
for the comparison purpose and to show the relevance of presently developed HOSDT nonlinear model. In
this regard, the central deflection values of glass/epoxy composite specimens are obtained via the three-point
bend test. For the experimental purpose, the wrapped glass/epoxy composite plates (four-layer angle-ply
[(±45◦)s] and cross-ply [(0◦/90◦)s]) are procured from Axzact Consultancy (P) Ltd., Bhubaneswar, Odisha,
India. The plates are fabricated using glass fibre (300 gsm), LAPOX (L-12) matrix and K-6 hardener. Now,
the bending analysis has been carried out using the universal testing machine (UTM)-INSTRON 5967 with
environmental chamber and low capacity load cell (30 kN) available at National Institute of Technology (NIT)
Rourkela, Odisha, India. The details regarding the bending three-point experimental set-up and the deformed
test specimens for angle-ply and cross-ply plates are presented in Fig. 3a–c. For experimentation purpose, the
specimen dimensions are prepared in accordance with ASTM standard D790 [33]. Also, the elastic properties
of the laminated glass/epoxy composite specimens are obtained through the uniaxial tensile test via UTM-
INSTRON 1195 at NIT Rourkela, Odisha, India. The detailed experimental set-up and the fractured samples
are provided in Fig. 4a, b, respectively. In order to check the repeatability of the material properties and avoid
further misperceptions, the test has been conducted for three different sets prepared from each type of plates,
i.e., the cross-ply and angle-ply. The composite specimens from each plate are prepared for the tensile test as
per ASTM standard D 3039/D 3039M [34]. The longitudinal and transverse Young’s modulus i.e., El and Et
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Fig. 4 a Experimental set-up for tensile test and b specimens of four-layer angle-ply (±45◦)s and cross-ply (0◦/90◦)s laminated
glass/epoxy composite plate

are evaluated for each specimen (length 200 mm and width 25 mm) and averaged to obtain the final value.
In addition, the modulus is also obtained for another sets of sample prepared at an inclined plane, i.e., E45
(angle of inclination 45◦ to the longitudinal direction), and the values are utilized for the calculation of the
shear modulus. The properties of the laminated composite plate are obtained using the uniaxial tensile test
through UTM by setting the loading rate as 1 mm/min to maintain the quasi-static type of load. It is important
to mention that necessary Poisson’s ratio for the present study is taken 0.25 as same as in [3]. Now, the shear
modulus of the individual specimens has been computed using the following formula given in [35]:

(

Glt = 1

/
4

E45
− 1

El
− 1

Et
− 2υ12

El

)

(16)

In addition, the flexural stress–strain diagrams of the three-point bend test for each specimens [(±45◦)s and
(0◦/90◦)s] are provided in Fig. 5a, b. Finally, the dimensions, lay-up schemes of each specimen of glass/epoxy
plate and their corresponding experimental properties utilized for the present analysis are presented in Table 1.

5 Numerical results and discussion

The nonlinear static deflections of the laminated composite single/doubly curved panels are computed numer-
ically using a customized homemade computer FE code developed in MATLAB environment with the help of
present HOSDT mathematical models (Model-I and Model-II). Also, the results are computed using a simula-
tion model developed in ANSYS by means of APDL code (Model-III). Further, the validity and the efficacy of
the proposed models are examined by comparing the responses with those available numerical and experimen-
tal results in the published literature. The deflections of the laminated plate are found additionally through the
experimentation (three-point bend test) and compared with the present numerical responses computed using
the Model-I, Model-II and Model-III to evident the degree of accuracy. The variation of nonlinear bending
responses due to various geometrical parameters such as the side-to-thickness ratio (a/h), shell panel curvature
(R/a), aspect ratios (a/b) and different end constraint conditions are investigated using the developed nonlin-
ear mathematical models of different mid-plane kinematics. For the present computation, different constraint
conditions are utilized to avoid rigid body motion and provided in Table 2, where S, C and H represent the
simply support, clamped and hinged type of end conditions, respectively. The nondimensionalized deflections

and the mechanical load parameter are expressed using the formulae W = wc
h and Q = qa4

E2h4
, respectively,

where wc is the central deflection and q is the applied load.
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Fig. 5 Experimental stress–strain curve of laminated composite specimen of a four-layer angle-ply (±45◦)s and b cross-ply
(0◦/90◦)s plate

Table 1 Experimental composite material properties

Lamination scheme (±45◦)s (0◦/90◦)s

Dimension (mm) (64 × 16 × 4) (64 × 16 × 4)
Young’s modulus in x-direction (El) (GPa) 4.408 5.639
Young’s modulus in y-direction (Et ) (GPa) 4.081 4.926
Young’s modulus in z-direction (Ez) (GPa) 4.081 4.926
Shear modulus (Glt ) (GPa) 1.1 0.75
Shear modulus (Gtz) (GPa) 0.55 0.375
Shear modulus (Glz) (GPa) 1.1 0.75
Density (ρ) (kgm−3) 1900 1900

Table 2 Different sets of end conditions employed in this present analysis

Boundary conditions Nodal degrees of freedom Locations

CCCC u0 = v0 = w0 = θx = θy = θz = φx = φy = λx = λy At x = 0, a and y = 0, b

SSSS
v0 = w0 = θz = φy == λy = 0
u0 = w0 = θz = φx = λx = 0 At x = 0, a;at y = 0, b

HHHH
u0 = v0 = w0 = θz = φy = λy = 0
u0 = v0 = w0 = θz = φx = λx = 0 At x = 0, a;at y = 0, b
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geometries
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Table 3 Composite material properties considered for numerical parametric study

Properties MATERIAL-1 (M1) [14] MATERIAL-2 [M2] [14]

Longitudinal modulus (El) 12.604 GPa 25Et
Transverse modulus (Ez) 12.627 GPa Open
In-plane Poisson’s ratio (νlt ) 0.023949 0.25
Transverse Poisson’s ratio (νlz) 0.023949 0.25
Transverse Poisson’s ratio (νt z) 0.023949 0.25
In-plane Shear modulus (Glt ) 2.15 GPa 0.5Et
Transverse Shear modulus (Gtz) 2.15 GPa 0.2Et
Transverse Shear modulus (Glz) 2.15 GPa 0.5Et

Table 4 Linear central deflection (mm) of clamped four-layer symmetric cross-ply (0◦/90◦)s square plate subjected to UDL

Load (kPa) Central deflection (mm)

Zhang and Kim [14] Putcha and Reddy [4] Model-I Model-II Model-III

2.758 2.139 2.210 2.110 2.110 1.717
5.516 4.277 4.191 4.224 4.219 3.436
8.273 6.414 6.198 6.335 6.330 5.156
11.032 8.552 8.382 8.446 8.438 6.875
13.79 10.691 10.389 10.556 10.549 8.595

5.1 Convergence and comparison study

As a very first step, the convergence behaviour of the linear and nonlinear deflection values of the laminated
composite panels of different geometries (spherical, cylindrical, elliptical, hyperboloid and flat) has been tested.
In each case, the responses are computed using both the developed FE models (Model-I and Model-II) for
differentmesh refinement and presented in Fig. 6a–c. For the computation purpose, simply supported laminated
panels with a/h = 40 and R/a = 20 (except flat) under uniformly distributed load (UDL) parameter as
Q = 100 are considered. The glass/epoxy compositematerial properties (as provided in Table 1) are considered
in the present example. It is clearly observed that the present models are showing good convergence rate with
mesh refinement. Subsequently, a (6× 6) mesh is utilized to compute the deflection responses throughout the
study.

Now, the developed numerical models (Model-I and Model-II) are extended further to compute the linear
central deflections of the square symmetric cross-ply (0◦/90◦)s laminated flat composite panels under five
mechanical UDLs (q) using the material properties similar to Zhang and Kim [14] (M1 in Table 3). The present
nondimensional linear central deflections are compared with the published analytical [4] and numerical [14]
values and presented in Table 4. It can clearly be observed that both the higher-order models are showing good
agreement with the references.

Another example has been solvedusing thepresently developedHOSDT(Model-I andModel-II) to examine
the nonlinear bending behaviour of the laminated composite flat panel. The responses are computed for the
square simply supported cross-ply (0◦/90◦)s laminated panel under five different mechanical UDLs (Q =
50, 100, 150, 200 and 250) by considering the geometrical parameter and material properties (M1) same as
to the reference [14] and presented in Fig. 7. The nonlinear results obtained using both the higher-order
models (Model-I and Model-II) are showing good agreement with the available sources [14] and [9]. It is
also interesting to note that the differences between the present and reference are higher in few cases for the
Model-I. This is because of the fact that the present model is developed based on the HOSDT kinematics and
Green–Lagrange nonlinearity instead of the FOSDT/HOSDT kinematics with von-Karman nonlinearity as in
the references. In addition to that, the displacement through the thickness for the Model-I is taken as the linear
variation instead of constant as in the Model-II. It can also be noted that the Model-I is showing the higher
values for the linear/nonlinear deflections in comparison with the Model-II, because of the more flexibility or
lower stiffness.

Further, the linear and nonlinear responses are computed using the numerical and the simulationmodels, i.e.,
Model-I,Model-II andModel-III, by considering the experimentally obtainedmaterial properties and compared
with present experimental results. The transverse central deflection values of the laminated composite panels
of two different laminations (cross-ply and angle-ply) are obtained experimentally via three-point bend test
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Fig. 7 Comparison study of the nondimensional nonlinear central deflection of a simply supported cross-ply (0◦/90◦)s laminated
composite flat panel (a/h = 40)
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Fig. 8 Comparison study of the experimental and numerical linear central deflections of four-layer angle-ply (±45◦)s and cross-
ply (0◦/90◦)s laminated composite flat panel subjected to point load

under point load using the INSTRON 5967 at NIT Rourkela, Odisha, India. The comparison of results for
the linear bending responses are shown in Fig. 8, and the nonlinear responses of four-layer angle-ply (±45◦)s
and cross-ply (0◦/90◦)s laminated composite plate are presented in Table 5a, b, respectively. It is clear from
the comparison study that the results computed using all three models are showing good agreement with
linear experimental results as in Fig. 8. It is worth noting that the present higher-order element in Model-I is
better for computing the linear responses in cross-ply (0◦/90◦)s as compared to the angle-ply (±45◦)s case.
However, it is clearly observed from Table 5a, b that Model-I is more efficient to solve the nonlinear bending
responses of the laminated composite panels for both the laminations specifically, corresponding to higher
loading rates, i.e., when the geometrical nonlinearity is severe. It is also useful to mention that the Model-III
(FOSDT) is incapable of solving the nonlinear bending responses of the laminated composite panels for both
the laminations at higher load as evident from Table 5a, b. Thus, it is clear from the comparison study that
the present higher-order nonlinear models with Green–Lagrange nonlinearity are most appropriate for the
nonlinear bending analysis of laminated structures. It is also understood that the simulation model developed
in ANSYS in the framework of the FOSDT type kinematics is unable to solve the nonlinear bending responses
under higher load cases.
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Table 5 Comparison study of experimental and numerical nonlinear central deflection of four-layer (a) angle-ply (±45◦)s and
(b) cross-ply (0◦/90◦)s laminated composite plate

Load Experimental Present (mm)

(N) (mm) Model-I Model-II Model-III

(a)
50 0.5704 0.6985 0.6085 0.599
78 0.9066 0.9641 0.9422 0.929
134 1.8142 1.6203 1.6000 1.591
180 2.7216 2.2775 2.2011 2.148
220 3.6292 2.7427 2.6302 2.616
251 4.5367 3.9920 3.1134 2.985

(b)
51 0.9066 1.0532 0.8311 0.909
96 1.8141 1.9636 1.5689 1.713
131 2.7210 2.6272 2.1237 2.316
159 3.6291 3.1581 2.5804 2.809
181 4.5366 3.5655 2.9394 3.195
200 5.4441 3.9059 3.2453 3.523

Table 6 Variation of nonlinear bending responses of simply supported square cross-ply (0◦/90◦)s single/doubly curved panels
(R/a = 20) for different thickness ratios using Model-2

Kinematic models Shell type a/h Load parameter (Q)

50 100 150 200 250

Model-I Cylindrical 40 0.3395 0.6269 0.8662 1.0638 1.2330
100 0.3084 0.5689 0.7897 0.9751 1.1325

Hyperboloid 40 0.3533 0.6681 0.9295 1.1416 1.3225
100 0.3366 0.6587 0.9354 1.1693 1.3605

Ellipsoid 40 0.3098 0.5670 0.7817 0.9656 1.1183
100 0.2181 0.4060 0.5712 0.7160 0.8456

Model-II Cylindrical 40 0.3395 0.6269 0.8662 1.0638 1.2330
100 0.3084 0.5689 0.7897 0.9751 1.1325

Hyperboloid 40 0.3533 0.6681 0.9295 1.1416 1.3225
100 0.3366 0.6587 0.9354 1.1693 1.3605

Ellipsoid 40 0.3098 0.5670 0.7817 0.9656 1.1183
100 0.2181 0.4060 0.5712 0.7160 0.8456

5.2 Parametric study

The convergence and the comparison study indicate that the present higher-order models (Model-I andModel-
II) are capable of computing the linear and nonlinear bending responses accurately. Hence, the study is further
extended to analyse the influence of different geometries, geometrical parameters and support conditions on
the nonlinear static behaviour of the laminated composite flat/curved panels under different mechanical UDLs
and discussed in detail. The glass/epoxy composite material properties (M2 as in Table 3), the simply supported
(SSSS) end conditions and the square symmetric cross-ply (0◦/90◦)s laminations are considered throughout
the investigation, if not stated otherwise.

5.2.1 Variation of nonlinear bending responses with thickness ratio

It is true that the thickness ratio (a/h) plays an important role in determining the flexural strength of any
structure or structural component, and it is more pronounced in the case of the laminated structures due to their
flexibility. The influence of thickness ratio on the nonlinear bending behaviour is examined in this example
and presented in Table 6. For the computational purpose, the square symmetric cross-ply laminated composite
panel is analysed using two proposed models (Model-I and Model-II) for two thickness ratios (a/h = 40 and
100) and five UDL load parameters (Q = 50, 100, 150, 200 and 250). It is interesting to note that the nonlinear
central deflections are higher and lower for hyperboloid and ellipsoid shell panel, respectively, for both the
models.
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Table 7 Variation of nonlinear bending responses of simply supported square cross-ply (0◦/90◦)s single/doubly curved panels
(a/h = 40) for different curvature ratios using Model-2

Kinematic models Shell type R/a Load parameter (Q)

50 100 150 200

Model-I Cylindrical 20 0.2344 0.3977 0.5446 0.6543
100 0.2622 0.4616 0.6027 0.7242

Hyperboloid 20 0.1892 0.3842 0.5615 0.696
100 0.2715 0.4818 0.6387 0.7598

Ellipsoid 20 0.1650 0.2891 0.3893 0.4794
100 0.2513 0.4284 0.5663 0.6722

Model-II Cylindrical 20 0.2382 0.4109 0.5460 0.6400
100 0.2652 0.4589 0.5967 0.7188

Hyperboloid 20 0.1885 0.3847 0.5605 0.6956
100 0.2721 0.4844 0.6370 0.7578

Ellipsoid 20 0.1646 0.2885 0.3871 0.4734
100 0.2503 0.4319 0.5653 0.6736

Table 8 Variation of nonlinear bending responses of simply supported cross-ply (0◦/90◦)s single/doubly curved panels (a/h = 40
and R/a = 20) for different aspect ratios using Model-1

Shell type a/b Load parameter (Q)

50 100 150 200

Cylindrical 0.5 0.3336 0.5556 0.7123 0.8436
1 0.1938 0.3430 0.4598 0.5553
1.5 0.1143 0.2120 0.2944 0.3634

Hyperboloid 0.5 0.2176 0.4030 0.5580 0.6863
1 0.083 0.1712 0.2640 0.3569
1.5 0.0382 0.0801 0.1245 0.1721

Ellipsoid 0.5 0.2297 0.4100 0.5555 0.6734
1 0.0875 0.1625 0.2266 0.2849
1.5 0.043 0.0813 0.1162 0.1456

Flat 0.5 0.4103 0.6837 0.8735 1.0240
1 0.2688 0.4697 0.6148 0.7354
1.5 0.1657 0.2951 0.3903 0.4633

Spherical 0.5 0.3028 0.5120 0.6655 0.7945
1 0.1474 0.2605 0.3527 0.4306
1.5 0.0805 0.1444 0.1990 0.2452

Table 9 Influence of end conditions and panel geometries on the nonlinear central deflection values of square cross-ply (0◦/90◦)s
panels (a/h = 40 and R/a = 20) using Model-1

Shell configuration Support conditions Load parameter (Q)

50 100 150 200

Cylindrical SSSS 0.2929 0.5699 0.8339 1.0744
HHHH 0.2549 0.4578 0.6165 0.7574
CCCC 0.2203 0.3763 0.4981 0.5921

Hyperboloid SSSS 0.2994 0.5958 0.8808 1.1495
HHHH 0.2514 0.4606 0.6332 0.7744
CCCC 0.1607 0.3355 0.4825 0.5981

Ellipsoid SSSS 0.2772 0.5348 0.7712 0.9879
HHHH 0.2386 0.4281 0.5804 0.7063
CCCC 0.1585 0.2771 0.3715 0.4515

Flat SSSS 0.286 0.5548 0.7977 1.032
HHHH 0.2489 0.4457 0.6045 0.7341
CCCC 0.2049 0.3392 0.4439 0.5358

Spherical SSSS 0.2972 0.5857 0.859 1.1169
HHHH 0.2881 0.5291 0.7228 0.8729
CCCC 0.2484 0.4501 0.5845 0.6961
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Fig. 9 Deformed shape of simply supported four-layer cross-ply (0◦/90◦)s flat/curved panels (a/h = 20, a/b = 1 and R/a = 10)
using Model-1 and Model-2 a, b cylindrical; c, d hyperboloid; e, f spherical, g, h flat; i, j ellipsoid

5.2.2 Variation of nonlinear bending responses with curvature ratio

In general, the curvature ratio (R/a) defines the type of shell, i.e., deep/shallow, and it is well known that the
stretching energy is high for the shell panel as compared to the bending energy. In this example, the effect of two
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Fig. 9 continued

curvature ratios (R/a = 20 and 100) and the shell geometries (cylindrical/hyperboloid/elliptical/spherical/flat)
on the nonlinear bending responses of laminated composite panel (a/h = 40) is investigated under four UDL
(Q = 50, 100, 150 and 200) parameters using Model-I and Model-II and presented in Table 7. It can be
observed that the nonlinearity is more pronounced for the higher values of the curvature ratio for any particular
geometry. It is also seen that the hyperboloid shell panels have higher stretching energy as compared to all the
other geometries due to the unequal (positive and negative) curvature.

5.2.3 Variation of nonlinear bending responses with aspect ratio

The aspect ratio (a/b) plays a significant role in determining the stiffness and stability characteristic of
laminated composite curved panel structural element. In order to examine the effect of different aspect ratios
(a/b = 0.5, 1 and 1.5) on the nonlinear flexural behaviour of simply supported laminated composite shell
panel this example is solved using the Model-I. The responses are computed using the geometrical parameters
as a/h = 40 and R/a = 20 under the mechanical UDL (Q = 50, 100, 150 and 200) and presented in Table 8.
It is clear that the flat rectangular panel (a/b = 0.5 and R/a = ∞) and square ellipsoid shell panels are
showing the highest and lowest deflection values, respectively. The results also indicate that the doubly curved
(unequal curvature) shell panels have higher stretching energy as compared to the bending energy.

5.2.4 Variation of nonlinear bending responses with support condition and panel geometries

It is well known that the flexibility of any structural component greatly depends on the type of constraint
conditions. In this example, the effect of three different support conditions (SSSS, HHHH and CCCC) on the
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nonlinear bending behaviour of laminated composite shell panel (a/h = 40, a/b = 1 and R/a = 20) is
analysed using the Model-I. The responses are computed using four load parameters (Q = 50, 100, 150 and
200) and given in Table 9. It is clearly observed from the computed responses that the results are following the
expected line, i.e., the responses are highest for the simply supported (SSSS) case, lowest in clamped (CCCC)
type of end conditions, whereas the values lie in between these two for all sides hinged (HHHH) case.

5.2.5 Variation of nonlinear bending responses with laminated shell geometry

Figure 9a–j shows the deformation behaviour of five different geometries (spherical, cylindrical, ellipsoid,
hyperboloid and flat panel) of simply supported symmetric cross-ply (0◦/90◦)s laminated panels under load
parameter, Q = 100 using both the higher-order models (Model-I and Model-II). For the computational
purpose, the geometrical parameter is taken as a/h = 20, a/b = 1 and R/a = 10. It is clearly observed that
the deformation behaviour is increasing in the ascending order of ellipsoid, spherical, cylindrical, hyperboloid
and flat panel. It is also interesting to note that the Model-I is showing higher deformation values than the
Model-II, irrespective of the type of shell geometry. This may be attributed to the higher flexibility of Model-I
in comparison with Model-II.

6 Summary and conclusions

In this article, the nonlinear transverse bending responses of the layered glass/epoxy composite curved panel
of different geometries have been analysed using two different HOSDT mid-plane kinematics, i.e., ten DOF
(Model-I) and nine DOF (Model-II), in conjunction with Green–Lagrange type of strain–displacement rela-
tions. The presently developed mathematical models included all the linear and the nonlinear strain terms to
achieve the full geometrical nonlinearity as well as the generality. The equilibrium equation of the mechani-
cally loaded layered structure is obtained via minimizing the total potential energy expression and discretized
through the suitable isoparametric FE steps. Further, the nonlinear transverse deflection values are worked
out using the direct iterative method. The stability and the validity of the proposed higher-order models have
been determined through the proper convergence and comparison studies by solving the variety of numerical
examples. Also, the results are verified with the simulation model (ANSYS) developed using APDL code
(Model-III) as well as experimental values. The inevitability of the present approach has been recognized by
comparing the results with those available published analytical and numerical results. Additionally, the static
responses of the layered composite plate are also obtained experimentally with the help of three-point bend
test and utilized for the comparison purpose. Based on the comparison study, it is understood that the presently
developed HOSDT kinematic model together with the nonlinear higher-order terms has a crucial role in the
evaluation of the bending strength of the laminated structure, especially when the degree of nonlinearity is sig-
nificant. It is also concluded that various geometrical parameters such as the side-to-thickness ratio, the aspect
ratio, the curvature ratios and the end conditions have the significant influence on the nonlinear deflection
behaviour of the single/doubly curved shell panels.
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