
Arch Appl Mech (2017) 87:201–217
DOI 10.1007/s00419-016-1187-8

ORIGINAL

Jianbin Chen · Qihong Fang · Jianke Du · Chao Xie ·
Feng Liu

Impact of process parameters on subsurface crack growth
in brittle materials grinding

Received: 23 April 2016 / Accepted: 27 September 2016 / Published online: 13 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The main failure mechanism of brittle materials occurs through the initiation and propagation of
cracks. Researches involved with various loading modes and material defects have been widely investigated to
control the stability of subsurface crack.However, no detailed fracturemechanics analysis has been published to
understand the direct effect of process parameters on crack growth. In this paper, taking the plastic deformation
below the tool and the intrinsic line defect located at the plastic zone boundary into account, a mechanical and
numerical study of the fracture mechanics is proposed from the perspective of process parameters in grinding
of brittle materials. The stress intensity factors are computed in detail to analyze the various impacts of process
parameters and tool geometry on the subsurface crack propagation. Results indicate that the main fracture
mode for median crack induced in brittle material grinding is opening rather than shear. Although the residual
stress caused by plastic zone plays an important role in fracture behavior, the effect of dislocations cannot
be ignored as well. In addition, the starting point of opening fracture is also affected by grinding parameters
and tool geometry. A small grinding speed, a sharp large tool, a large table speed and grinding depth will
lead to strong anti-shielding effect on mode I crack propagation and strong shielding effect on mode II crack
propagation. The results can be used to provide guidance for the development of controlled spalling technology
which enables the reuse of cracking substrate.

Keywords Brittle materials · Grinding parameters · Subsurface crack growth · Stress intensity factor

1 Introduction

Brittlematerials such as silicon, ceramic andglass are themost employedmaterials utilized in themanufacturing
of a vast majority of semiconductor products, optical instruments, biological materials and various other fields
[1–4]. However, brittle materials are not amenable to machining process due to their low fracture toughness.
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When a brittle material is loaded to the limit of its strength, it tends to undergo cleavage-based fracture in
a macroscale machining process and finally fails by the nucleation and propagation of a crack resulting in
damaged and non-transparent machined surface [5]. These damages may seriously alter the surface properties
and cause strength degradation or even a catastrophic failure of brittle materials [6]. As a consequence, the
investigation of growth of surface and subsurface cracks plays an important role in the evaluation of the
machining of brittle materials.

In fact, quite a few researches in crack propagation under different loading modes have been carried out.
Early in 1964, Cook et al. [7] computed the stress distribution close to crack tip with a finite tip radius which
could be opened by means of a remotely applied tension field or a concentrated force, etc. It is concluded that
inside a brittle solid, if a plane of weakness or potential cleavage was present and was roughly normal to the
plane of the original crack, this interface might break and produce a secondary crack in such a manner as to
interfere with the progress of the primary crack. Hillberry et al. [8] described an idea on how to control the
propagation of a crack in crystalline materials to produce thin wafers in their patent. Ewart and Suresh [9]
studied the crack propagation in ceramics under cyclic loads. Xu andNeedleman [10] numerically analyzed the
dynamic crack growth in brittle solids with an initial central crack subjected to tensile loading. Gao et al. [11]
studied the mechanisms of intersonic shear crack propagation along a weak interface under shear dominated
loading by both molecular dynamics and continuum elastodynamics. Promising results were presented for the
simulation of crack propagation in single crystals under monotonic loading by Aslan et al. [12]. Bouchard et
al. [13] presented a mechanical and numerical study of the fracture process through a detailed analysis of stress
intensity factors (SIFs). Influences of process variables on crack propagation direction were elucidated in their
study. Yu et al. [14–16] investigated the dynamic responses and fracture behavior of various structural members
under impulsive loading. Additionally, Comninou et al. [17,18] have done many works on the propagation of
subsurface crack subjected to surface force utilizing the distribution dislocation technique.

It has long been known that the presence of material defects such as impurities, vacancies, dislocations
and microcracks can strongly influence the initiation and propagation of cracks [19–21]. In particular, the
availability of dislocations in a material has a strong impact on fracture toughness. Lawn [22] mentioned that a
propagating crack might activate pre-existing dislocation sources. Rice and Thomson [23] instituted a physical
modeling to study the competition between dislocation emission and cleavage decohesion by comparing the
load required to propagate a given crack with the load necessary to emit a dislocation on a slip plane inclined
to the crack plane and intersecting the crack front. Renormalized molecular dynamics simulation of machining
defect-free monocrystal silicon was carried out to investigate crack initiation process by Inamura et al. [24]. In
their study, the generation of dislocation was observed and believed to play an important role in crack initiation
process. Beltz et al. [25] and Fischer and Beltz [26] studied the role of crack blunting in the favorability of
crack propagation versus dislocation emission using continuum concepts. The growth of a plane strain crack
subjected to remote mode I cyclic loading under small-scale yielding was carried out by Deshpande et al.
[27] and Clevering et al. [28] using discrete dislocation dynamics. Results showed that the resistance to
crack growth tended to increase with an increasing density of dislocation sources. Investigations that aimed
to describe the origin of fracture surface instabilities in brittle crystals containing intrinsic line defects in
the form of dislocations were presented by Sherman et al. [29]. Sen et al. [30] reported an atomistic-level
study of crack-tip cleavage to dislocation emission transition in silicon single crystals. Molecular dynamics
simulations of crack propagation in the presence of defects in brittle crystalline materials under mode I loading
were carried out by Petucci et al. [21]. Results indicated that the critical load was dependent on the defect
species, geometry and position. Additionally, Zhou et al. [31–33] and Fang et al. [34–36] have done a great
deal of successful works on the interaction between material defects and cracks as well. The solutions may
have potentially significant application in addressing challenging material science, in particular their wear and
contact fatigue analysis.

It is worth mentioning that observations of a small amount of plastic deformation in brittle materials have
been reported in wear or abrasive machining studies [37–39]. As suggested by Lawn et al. [40], the subsurface
cracks might also develop from the boundary zone between plastic and elastic deformation. Nakamura et
al. [41] detected experimentally that the ductile–brittle transition point determined by subsurface cracks was
shallower than that by surface cracks. Yan et al. [42] investigated the microscopic material removal mechanism
of reaction-bonded silicon carbide through diamond turning experiments. Raman spectroscopy revealed that
the ductile response of the workpiece material originated from the dislocation-based plasticity of 6H–SiC.
Venkatachalam et al. [3] studied the transition undeformed chip thickness in micromachining of single-crystal
brittle materials. In their research, the beginning of the formation and propagation of cracks were evaluated
utilizing Irwin’s model which gave the relation between the stress intensity factor (SIF) and applied normal
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stress including effects of crack size and crack inclination.Wang et al. [43] studied the brittle–ductile transition
mechanism involved in ultra-precision turning of silicon and pointed out that the deformation behavior of silicon
under cutting force was an interaction between crack propagation and dislocation movement. Kharin et al. [44]
developed an improved theoretical model of dislocational crack nucleation and growth in solids and analyzed
the ductile/brittle behavior. In order to build up a fracture theory which describes the plastic deformation based
on the behavior of various defects near the crack tip, the elastic interaction between defects and elliptical blunt
cracks has prompted many investigations [45–47]. Recently, Fang and Zhang [48,49] have established a new
analytical model considering the phase transformation in determining the normal threshold load that caused
the emission of partial dislocations in silicon during nanoindentation and nanoscratching.

As mentioned above, the main failure mechanism of brittle materials occurs through the creation and
propagation of cracks. Researches involved with various loading modes and material defects have been widely
investigated to control the crack stability. However, no detailed fracture mechanics analysis has been published
to understand the direct effect of process parameters on crack propagation in brittle materials grinding. As a
significance material that drives the semiconductor and information technology industries, there is no doubt
that the failure components made of silicon has become an important issue [50,51]. In this paper, a mechanical
and numerical study of the fracture mechanics is presented from the perspective of process parameters in
grinding of crystalline silicon. Stress fields caused by local plastic deformation and edge dislocation are both
taken into account. The effects of different process parameters and tool geometry on crack propagation can be
obtained rapidly through a detailed analysis of stress intensity factors.

2 Modeling

The physical problem to be investigated in the current work is depicted in Fig. 1. During brittle materials
grinding, a plastic deformation zone with a depth d generates below the indenter. Generally speaking, the
plastic zone is determined by material properties, normal force P and indenter geometry. While brittle mode
serving as the dominant mode of material removal, median cracking which is considered as the main type
of subsurface cracking nucleates and propagates downward along the load axis from the plastic deformation
boundary. According to Fang and Zhang [48], we assume that an edge dislocation with Burgers vector �b is
located at the plastic zone boundary in silicon substrate (b = a/

√
6, a is the lattice parameter). The initial

position and glide plane of edge dislocation are represented by αd and β, respectively. The normal force P
and the tangential force Q are imposed simultaneously on the specimen surface. Note that the edge dislocation
can emit into the elastic matrix when the force acting on it reaches a critical value [36] and the median crack
will be initiated only if the normal load is above a threshold value [52].

Various theoretical equations [53–55] have been proposed to evaluate the plastic zone size and subsurface
crack, respectively. In the following study, we suppose that the median crack is well developed, that is to say,
the median crack is larger than the plastic zone. Considering the threshold parameters (critical loading and
its corresponding critical crack) obtained by Lawn and Evans [53], in brittle materials machining, the plastic
zone and median crack are given as [56]:

Fig. 1 Description of median crack propagation in brittle crystal materials grinding
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Table 1 Material and geometric parameters in calculation

Young’s
modulus
E (GPa)

Poisson’s
ratio υ

Hardness
H (GPa)

Fracture
toughness
Kc (MPa ·
m0.5)

Lattice
parameter
a (nm)

Slip plane
β (deg)

α η χe χr

168 0.27 10 0.6 0.542 54 2
π

1 0.038 0.026

d =
√

η2P

απH
(1)

c =
[
(χe + χr ) P

Kc

]2/3
(2a)

χr = ℘r (φ) (E/H)1−m (cot αi )
2/3 (2b)

χe = ℘e (φ) ln (2c/d) (2c)

where E is the Young’s modulus, H is the hardness, Kc is the fracture toughness, and αi is the half apex
angle of indenter. The dimensionless factors α and η are determined by indenter geometry, and the other two
dimensionless terms ℘e (φ) and ℘r (φ) are dimensionless terms independent of the indenter/specimen system.
The special values of indenter/specimen system parameters χe and χr for silicon have also been given by Lawn
et al. [56] in their study as illustrated in Table 1.

Firstly, we consider the stress field induced in the material in the absence of the crack. Denote the normal
and shear stresses along the line of the crack are σ̃yy and σ̃xy , respectively, in the present case.

σ̃yy (x, 0) = σyy_s (x, 0) + σyy_r (x, 0) + σyy_d (x, 0) , d < x < c (3)

σ̃xy (x, 0) = σxy_s (x, 0) + σxy_r (x, 0) + σxy_d (x, 0) , d < x < c (4)

The stress components σxy_s and σyy_s caused by surface loading are written as [57]:

σyy_s (x, 0) = P (1 − 2υ)

4πx2
(5)

σxy_s (x, 0) = 0 (6)

where υ is the Poisson’s ratio.
The residual stresses σxy_r and σyy_r originated by the local inelastic deformation can be expressed as

[58]:

σyy_r (x, 0) =
{
0, Q = 0
4Frυ
x2

, Q �= 0 (7)

σyy_r (x, 0) =
{
0, Q = 0
− 4Fr

x2
, Q �= 0 (8)

The strength parameter Fr of residual stress field is determined by Jing et al. [55]

Fr = fE

H

3Pλ2r cot αi

4π2 (1 − 2υ) (1 + υ)
(9)

where f is the compaction factor ( f E/H = 1.09 for sharp indenter) and λr is a dimensionless parameter
determined by indenter geometry (λr = 1.25 for a Berkovich indenter).

By utilizing the distributed dislocation technique [59], the stress fields σxy_d and σyy_d due to the edge
dislocation at position (x0, y0) with Burgers vector �b are given as:

σyy_d (x, 0) = 2μ

π (κ + 1)

[
bxGxyy (x, 0; x0, y0) + byGyyy (x, 0; x0, y0)

]
(10)

σxy_d (x, 0) = 2μ

π (κ + 1)

[
bxGxyx (x, 0; x0, y0) + byGyyx (x, 0; x0, y0)

]
(11)
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where

bx = b sin β

by = b cosβ

κ = 3 − 4υ

Gxyy (x, 0; x0, y0) = −y0[
(x − x0)2 + y20

]2 [
(x − x0)

2 − y20
]

− 4x0y0[
(x + x0)2 + y20

]2
[
(3x + 2x0) − 4x (x + x0)2

(x + x0)2 + y20

]

+ y0
(x + x0)2 + y20

[
2 (x + x0)2

(x + x0)2 + y20
− 1

]

Gxxy (x, 0; x0, y0) = x − x0[
(x − x0)2 + y20

]2 [
(x − x0)

2 − y20
]

+ 4x0 (x + x0)[
(x + x0)2 + y20

]2
[
(4x + x0) − 4x (x + x0)2

(x + x0)2 + y20

]

+ x + x0
(x + x0)2 + y20

[
2 (x + x0)2

(x + x0)2 + y20
− 1

]
− 2x0

(x + x0)2 + y20

Gyyy (x, 0; x0, y0) = x − x0[
(x − x0)2 + y20

]2 [
(x − x0)

2 + 3y20
]

+ 4x0 (x + x0)[
(x + x0)2 + y20

]2
[
(4x + x0) − 4x (x + x0)2

(x + x0)2 + y20

]

− x + x0
(x + x0)2 + y20

[
2 (x + x0)2

(x + x0)2 + y20
− 3

]
− 2x0

(x + x0)2 + y20

Gyxy (x, 0; x0, y0) = −y0[
(x − x0)2 + y20

]2 [
(x − x0)

2 − y20
]

+ 4x0y0[
(x + x0)2 + y20

]2
[
x − 4x (x + x0)2

(x + x0)2 + y20

]

+ y0
(x + x0)2 + y20

[
2 (x + x0)2

(x + x0)2 + y20
− 1

]

For the convenience of writing, we set

G1 (x) = Gxyy (x, 0; x0, y0) ,G2 (x) = Gxxy (x, 0; x0, y0)
G3 (x) = Gyyy (x, 0; x0, y0) ,G4 (x) = Gyxy (x, 0; x0, y0)

It should be emphasized that four possible modes of response, i.e., open, closed and slipping forwards, closed
and stuck, closed and slipping backwards, may well occur in combination for a given crack, sometimes at a
given point in its history. The point (x, 0) at crack line is expected to be closed when the stress component
σ̃yy (x, 0) is compressive and only glide dislocations will be distributed along crack line. In contrast, the crack
is expected to be open if σ̃yy (x, 0) is tensile. In this case, climb dislocations must be distributed along the
crack line and glide dislocations should be distributed as well if σ̃xy (x, 0) �= 0. Therefore, in order to judge
whether the median crack is open or closed in current state, influences of surface load on normal stress σ̃yy
and shear stress σ̃xy along the imaginary crack line are shown in Fig. 2. Notice that both the plastic zone d and
the median crack depth c changed with the normal force P , and therefore the horizontal axis in Fig. 2 has been
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Fig. 2 Stress components generated in the imaginary crack line (αd = 45◦)

replaced by a normalized position (xi − d)/(c − d) for comparison. In addition, the material and geometric
parameters adapted in calculation are given in Table 1 [48,53,56].

It can be seen that if there is a lateral force (Fig. 2c, d) or not (Fig. 2a, b), the normal stress component
is always positive which means the median crack is always open while the shear stress component is always
negative. As a result, both climb dislocations and glide dislocations need distributing along the crack line.
Besides, larger surface normal load corresponds to smaller normal stress and the tangential force can increase
both the normal and shear stresses.

In the presence of median crack, the normal N (x) and shear S(x) tractions arising on the crack faces
(y = 0) can be expressed as [59]:

S (x) ≡ σ̃xy (x, 0) + σ̄xy (x, 0) , d < x < c (12)

N (x) ≡ σ̃yy (x, 0) + σ̄yy (x, 0) , d < x < c (13)

The corrective solutions σ̄xy (x, 0) and σ̄yy (x, 0) due to the crack can be obtained as distributions of edge
dislocations.

σ̄xy (x, 0) = 2μ

π (κ + 1)

∫ d

c

[
1

x − ξ
+ K (x, ξ)

]
Bx (ξ) dξ (14)

σ̄yy (x, 0) = 2μ

π (κ + 1)

∫ c

d

[
1

x − ξ
+ K (x, ξ)

]
By (ξ)dξ (15)
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where K (x, ξ) = − 1
x+ξ

− 2ξ
(x+ξ)2

+ 4ξ2

(x+ξ)3
, Bx (ξ) and By (ξ) are the density of glide and climb dislocations

at point (ξ, 0), respectively. The integration limits in Eqs. (14) and (15) are controlled by the plastic zone and
the median crack depth depending on normal force P as expressed in Eqs. (1) and (2).

According to the definition of stress intensity factor, the Mode I and Mode II SIFs at crack tips D and C
are

KI (D) = − lim
x→d

{
2μ

(κ + 1)
By (x)

√
2π (x − d)

}
(16)

KI (C) = − lim
x→c

{
2μ

(κ + 1)
By (x)

√
2π (c − x)

}
(17)

KII (D) = − lim
x→d

{
2μ

(κ + 1)
Bx (x)

√
2π (x − d)

}
(18)

KII (C) = lim
x→c

{
2μ

(κ + 1)
Bx (x)

√
2π (c − x)

}
(19)

Substituting Eqs. (14), (15) into Eqs. (12), (13) yields

S (x) =
⎧⎨
⎩

2μ
π(κ+1)

[
bxG2 (x) + byG4 (x) + ∫ c

d

(
1

x−ξ
+ K (x, ξ)

)
Bx (ξ) dξ

]
, Q = 0

− 4Fr
x2

+ 2μ
π(κ+1)

[
bxG2 (x) + byG4 (x) + ∫ c

d

(
1

x−ξ
+ K (x, ξ)

)
Bx (ξ) dξ

]
, Q �= 0

(20)

N (x) =
⎧⎨
⎩

P(1−2υ)

4πx2
+ 2μ

π(κ+1)

[
bxG1 (x) + byG3 (x) + ∫ c

d

(
1

x−ξ
+ K (x, ξ)

)
By (ξ) dξ

]
, Q = 0

P(1−2υ)

4πx2
+ 4Frυ

x2
+ 2μ

π(κ+1)

[
bxG1 (x) + byG3 (x) + ∫ c

d

(
1

x−ξ
+ K (x, ξ)

)
By (ξ) dξ

]
, Q �= 0

(21)

When the crack is open at all points, the requirement that the crack faces holds traction-free is

N (x) = S (x) = 0 , d ≤ x ≤ c (22)

Then Eqs. (20), (21) can be rewritten as:

1

π

∫ c

d

[
1

x − ξ
+ K ′ (x, ξ)

]
Bx (ξ) dξ =

{− 1
π

[
bxG2 (x) + byG4 (x)

]
, Q = 0

− 1
π

[
bxG2 (x) + byG4 (x)

] + 2Fr (κ+1)
μx2

, Q �= 0
(23)

1

π

∫ c

d

[
1

x − ξ
+ K (x, ξ)

]
By (ξ) dξ =

⎧⎨
⎩

− bxG1(x)+byG3(x)
π

− P(1−2υ)(κ+1)
8μπx2

, Q = 0

− bxG1(x)+byG3(x)
π

− [P(1−2υ)+16πFrυ](κ+1)
8μπx2

, Q �= 0
(24)

Notice that these two equations give rise to two uncoupled integral equations as for a crack normal to the
surface of a half-plane.

In addition, due to the uniqueness of displacements, two further equations are needed to render the problem
determinate. ∫ c

d
Bx (ξ) dξ = 0 (25)∫ c

d
By (ξ) dξ = 0 (26)

3 Numerical solutions

As the presence of the Cauchy integral in Eqs. (23) and (24), firstly, the interval of integration (d, c) is
normalized by the change of variables

x = δs + ρ, ξ = δr + ρ (27)
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where

δ = c − d

2
, ρ = c + d

2
, |s| < 1, |r | ≤ 1 (28)

Substituting Eqs. (27), (28) into Eqs. (23), (24) yields

1

π

∫ +1

−1

[
1

s − r
+ δK ′ (s, r)

]
Bx (r) dr =

{− 1
π

[
bxG ′

2 (s) + byG ′
4 (s)

]
, Q = 0

− 1
π

[
bxG ′

2 (s) + byG ′
4 (s)

] + 2Fr (κ+1)
μ(δs+ρ)2

, Q �= 0 (29)

1

π

∫ +1

−1

[
1

s − r
+ δK ′ (s, r)

]
By (r) dr =

⎧⎨
⎩

− bxG ′
1(s)+byG ′

3(s)
π

− P(1−2υ)(κ+1)
8μπ(δs+ρ)2

, Q = 0

− bxG ′
1(s)+byG ′

3(s)
π

− [P(1−2υ)+16πFrυ](κ+1)
8μπ(δs+ρ)2

, Q �= 0
(30)

where

G ′
1 (s) = −y0

[
(δs + ρ − x0)2 − y20

]
[
(δs + ρ − x0)2 + y20

]2 − 4x0y0
{
[2x0 − (δs + ρ)] (δs + ρ + x0)2 + [3 (δs + ρ) + 2x0] y20

}
[
(δs + ρ + x0)2 + y20

]3
+ y0

[
(δs + ρ + x0)2 − y20

]
[
(δs + ρ + x0)2 + y20

]2
G ′

2 (s) = (δs + ρ − x0)
[
(δs + ρ − x0)2 − y20

]
[
(δs + ρ − x0)2 + y20

]2 + 4x0 (δs + ρ + x0)
{
x0 (δs + ρ + x0)2 + [4 (δs + ρ) + x0] y20

}
[
(δs + ρ + x0)2 + y20

]3
+ (δs + ρ + x0)

[
(δs + ρ + x0)2 − y20

]
[
(δs + ρ + x0)2 + y20

]2 − 2x0
(δs + ρ + x0)2 + y20

G ′
3 (s) = (δs + ρ − x0)

[
(δs + ρ − x0)2 + 3y20

]
[
(δs + ρ − x0)2 + y20

]2 + 4x0 (δs + ρ + x0)
{
x0 (δs + ρ + x0)2 + [4 (δs + ρ) + x0] y20

}
[
(δs + ρ + x0)2 + y20

]3
+ (δs + ρ + x0)

[
(δs + ρ + x0)2 + 3y20

]
[
(δs + ρ + x0)2 + y20

]2 − 2x0
(δs + ρ + x0)2 + y20

G ′
4 (s) = −y0

[
(δs + ρ − x0)2 − y20

]
[
(δs + ρ − x0)2 + y20

]2 + y0
[
(δs + ρ + x0)2 − y20

]
[
(δs + ρ + x0)2 + y20

]2 + 4x0y0 (δs + ρ)
[
y20 − 3 (δs + ρ + x0)2

]
[
(δs + ρ + x0)2 + y20

]3
K ′ (s, r) = − 1

δ (s + r) + 2ρ
− 2 (δr + ρ)

[δ (s + r) + 2ρ]2
+ 4 (δr + ρ)2

[δ (s + r) + 2ρ]3

and Eqs. (25), (26) can be rewritten as:

∫ +1

−1
Bx (r) dr = 0 (31)

∫ +1

−1
By (r) dr = 0 (32)

For handling singular integral equations with Cauchy kernels, we follow the widely used Gauss–Chebyshev
numerical quadrature developed by Erdogan and Gupta [60]. Since both Bx and By are bounded functions, we
set

Bx (r) = w (r) ϕx (r) (33)

By (r) = w (r) ϕy (r) (34)

where the unknown ϕx (r) and ϕy (r) in the expressions of dislocation density are some smooth regular
functions.

In current case, both the crack tips are singular. The corresponding fundamental function w (r) has been
given by Dundurs and Comninou [61].

w (r) = (
1 − r2

)−1/2
(35)
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Finally, the discrete forms of Eqs. (29) and (30) become

n∑
i=1

Wiϕx (ri )

[
1

sk − ri
+ δK ′ (sk, ri )

]
=

{− 1
π

[
bxG ′

2 (sk) + byG ′
4 (sk)

]
, Q = 0

− 1
π

[
bxG ′

4 (sk) + byG ′
4 (sk)

] + 2Fr (κ+1)
μ(δsk+ρ)2

, Q �= 0

k = 1, . . . , n − 1 (36)

n∑
i=1

Wiϕy (ri )

[
1

sk − ri
+ δK ′ (sk, ri )

]
=

⎧⎨
⎩

− bxG ′
1(sk)+byG ′

3(sk )
π

− P(1−2υ)(κ+1)
8μπ(δsk+ρ)2

, Q = 0

− bxG ′
1(sk)+byG ′

3(sk )
π

− [P(1−2υ)+16πFrυ](κ+1)
8μπ(δsk+ρ)2

, Q �= 0

k = 1, . . . , n − 1 (37)
n∑

i=1

ϕx (ri )

n
= 0 (38)

n∑
i=1

ϕy (ri )

n
= 0 (39)

where

ri = cos

(
2i − 1

2n
π

)
, i = 1, . . . , n

sk = cos

(
k

n
π

)
, k = 1, . . . , n − 1

Wi = 1

n

G ′
1 (sk) = −y0

[
(δsk + ρ − x0)2 − y20

]
[
(δsk + ρ − x0)2 + y20

]2 − 4x0y0
{
[2x0 − (δsk + ρ)] (δsk + ρ + x0)2 + [3 (δsk + ρ) + 2x0] y20

}
[
(δsk + ρ + x0)2 + y20

]3
+ y0

[
(δsk + ρ + x0)2 − y20

]
[
(δsk + ρ + x0)2 + y20

]2
G ′

2 (sk) = (δsk + ρ − x0)
[
(δsk + ρ − x0)2 − y20

]
[
(δsk + ρ − x0)2 + y20

]2 + 4x0 (δsk + ρ + x0)
{
x0 (δsk + ρ + x0)2 + [4 (δsk + ρ) + x0] y20

}
[
(δsk + ρ + x0)2 + y20

]3
+ (δsk + ρ + x0)

[
(δsk + ρ + x0)2 − y20

]
[
(δsk + ρ + x0)2 + y20

]2 − 2x0
(δsk + ρ + x0)2 + y20

G ′
3 (sk) = (δsk + ρ − x0)

[
(δsk + ρ − x0)2 + 3y20

]
[
(δsk + ρ − x0)2 + y20

]2 + 4x0 (δsk + ρ + x0)
{
x0 (δsk + ρ + x0)2 + [4 (δsk + ρ) + x0] y20

}
[
(δsk + ρ + x0)2 + y20

]3
+ (δsk + ρ + x0)

[
(δsk + ρ + x0)2 + 3y20

]
[
(δsk + ρ + x0)2 + y20

]2 − 2x0
(δsk + ρ + x0)2 + y20

G ′
4 (sk) = −y0

[
(δsk + ρ − x0)2 − y20

]
[
(δsk + ρ − x0)2 + y20

]2 + 4x0y0 (δsk + ρ)
[
y20 − 3 (δsk + ρ + x0)2

]
[
(δsk + ρ + x0)2 + y20

]3
+ y0

[
(δsk + ρ + x0)2 − y20

]
[
(δsk + ρ + x0)2 + y20

]2
And the stress intensity factors at crack tips are directly related to the regular functions ϕ (r) at end points
r = ±1 which can be determined as:

KI (±1) = ±
√

π (c − d)

2

2μ

(κ + 1)
ϕy (±1) (40)

KII (±1) = ±
√

π (c − d)

2

2μ

(κ + 1)
ϕx (±1) (41)
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The expressions of ϕ (±1) are given as [59]:

ϕ (+1) = ME (+1)
n∑

i=1

�E (+1)ϕ (ri ) (42)

ϕ (−1) = ME (−1)
n∑

i=1

�E (−1)ϕ (rn+1−i ) (43)

where

ME (+1) = ME (−1) = 1

n

�E (+1) = �E (−1) =
sin

[
(2i−1)(2n−1)π

4n

]
sin

( 2i−1
4n π

)
Note that in the above equations, the negative sign refers to the shallower crack tip D, while the positive sign
+ refers to the deeper one C . Additionally, although the indexes for ϕ (±1) on the right side of Eqs. (41) and
(42) are impossible, these two vitally important values can be obtained by the discrete set of points ri from
Krenk’s interpolation formulae [62].

4 Results and discussion

The stress intensity factor can be used for determining whether the mode of material removal is plastic
deformation or crack propagation along certain slip systems [2]. On the other hand, each machining method
has its corresponding input parameters. For scratch test, the main input parameters are normal force P , lateral
force Q and penetration depth h applied on indenter. Notice that there is no lateral force in indentation
experiment. Therefore, the stress intensity factors at both the shallower and deeper median crack tip under
scratch or indentation test can be directly obtained from Eqs. (40) and (41) based on the MATLAB procedure.

Figure 3 shows the variation of stress intensity factors at pointC with different positions of edge dislocation
located at plastic deformation boundary in the presence of lateral force. Results show that the main fracture
mode is opening rather than shear as themode I SIF is always positive, while themode II SIF is always negative.
By comparing the data in Fig. 3a, c, we also find that the mode I SIF is larger than the fracture toughness Kc
when P = 100mN which means that a large surface normal load can promote the growth of type I cracking.
However, it makes the occurrence of mode II crack difficult as depicted in Fig. 3b, d. Besides, each curve has
a maximum value when the edge dislocation coincides with the start point of median crack (αd = 90◦). In the
following analyses, we take αd = 36◦ when the effect of edge dislocation is under consideration.

The influence of normal force on stress intensity factors at both the two crack tips are illustrated in Fig. 4.
It is seen that, when the median crack is well developed, the mode I SIF at the shallower tip is always larger
than the deeper one with a positive value whether there is a lateral force or not. It is worth mentioning that this
result does not mean the propagation of shallower crack is easier. The reason is that the plastic zone expands
with the increased surface normal load and finally engulfs the shallower crack tip as demonstrated in Eq. (1).
In addition, the mode II SIFs are positive only when the lateral force is absent and two intersections occur
when the normal force is close to 37.5 and 500mN, respectively.

As the shallower crack tip will become engulfed with the increased normal force, we are more interested
in the crack propagation behavior of the deeper one. By comparing the critical normal force when the fracture
occurs with and without consideration of existence of tangential force Q (see Fig. 4b, a respectively), we find
that the threshold in the absence of lateral force is much larger (350mN) than that in the presence of lateral
force (1.33mN). It means that the residual stress caused by plastic zone plays an important role in fracture
behavior. This is most probably because the residual stress induced by plastic deformation in the subsurface
is tensile as mentioned in Chen et al. [63]. Moreover, the Mode II fracture toughness can be easily obtained

according to Chang et al. [64], i.e., KIIC =
√
3
2 KIC = 0.52. Therefore, we can conclude that the Mode II crack

propagation never happens whether the tangential force exists or not from the stress intensity factor shown in
Fig. 4c, d. In particular, the tangential force has a obvious shielding effect on Mode II crack growth.

It is generally known that dislocation pile-up or coalescence is one of the mechanisms leading to the crack
nucleation. According to the typical crack systems in brittle materials machining mentioned by Chen et al.
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Fig. 3 Effects of various dislocation positions on stress intensity factors

[6], the median crack is the main type of subsurface damages. However, the lateral crack also initiates at or
close to the boundary of the plastic zone and spreads out laterally on a plane closely parallel to the machined
surface. Therefore, in this paper, an edge dislocation with specified location as discussed by Fang et al. [48]
has been introduced before the lateral crack formation to investigate the interaction between median crack and
dislocation. Figure 5a shows the proportion of stress intensity factors caused by dislocation in the absence of
lateral force. Result indicates that the normal force P has no effect on mode II SIF. As illustrated in Fig. 5b, the
percentage of mode II SIF caused by tangential force is above 100 % after considering the present of lateral
force. That is to say, the dislocation generates a positive mode II SIF, while the lateral force induces a negative
one. The total mode II SIF is caused by the combination of dislocation and residual stress. The proportion of
mode I SIF caused by residual stress is nearly 83 % as depicted in Fig. 5b which reconfirms again the dominant
role of plastic zone in growth of subsurface crack. In addition, a single edge dislocation can bring about 3 %
of mode I SIF when normal force is close to 10 mN (see Fig. 5a). According to Yan et al. [65], the dislocation
density depends on the machining conditions such as cutting depth and tool rake angle. A high dislocation
density may exhibit around the potential crack. Therefore, the effect of dislocations on fracture behavior cannot
be ignored in machining of brittle crystal materials. In the future work, the interaction between lateral crack
and median crack can be further studied by utilizing the distributed dislocation technique as well.

When a component is processed by grinding, themain input parameters becomewheel speed Vs , workpiece
speed Vw and penetration depth h. Asmentioned by Zhu et al. [66], median cracks could be effectively inhibited
by moderate wheel speed. In order to quickly obtain the effect of various grinding parameters on subsurface
crack propagation, we introduce the following equation established by Gu and Yao [67].

cm = λch
4/3
m (44)
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Fig. 4 Stress intensity factors under different loading conditions
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Fig. 5 The percentage of stress intensity factor caused by a dislocation, b residual stress

where λc = 0.206(μH)1/3/(Kcβc)
2/3 (cot αi )

4/9 (tan αi )
4/3, H is the hardness, Kc is the fracture toughness,

and βc is material parameter depended on elastic recovery.
The maximum penetration depth hm was deduced by Shaw [68].

hm =
[

4

Arc

Vw

Vs

(
ap
de

)1/2
]1/2

(45)
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Fig. 6 The effect of grinding parameters on crack propagation

where rc is the chip width-to-thickness ratio, A is the grain surface density (usually a large grain surface density
corresponds to a small grit), ap is the grinding depth, and de is the equivalent diameter of grinding wheel.

Then the median crack cm can be expressed as a function of material properties, geometry of the abrasive
grain and other grinding parameters by substituting Eqs. (45) into (44)

cm = 0.206

[
4

Arc

Vw

Vs

(
ap
de

)1/2
]2/3 (

μH

K 2
c β2

c

)1/3

(tan αi )
8/9 (46)

In the current situation, the normal grinding force P , the strength parameter of residual stress field Fr and the
plastic zone size d can be rewritten as

P =
0.0935

[
4
Arc

Vw

Vs

(
ap
de

)1/2]
(μH)1/2 (tan αi )

4/3

βc (χe + χr )
(47)

Fr =
0.0764λ2r

[
4
Arc

Vw

Vs

(
ap
de

)1/2]
(μH)1/2 (tan αi )

1/3

π2βc (χe + χr ) (1 − 2υ) (1 + υ)
(48)

d =
0.3058η

[
4
Ar

Vw

Vs

(
ap
de

)1/2]1/2 (
μ
H

)1/4
(tan αi )

2/3

[αβcπ (χe + χr )]1/2
(49)

Finally, the effects of grinding parameters and abrasive grain geometry on crack propagation can be obtained
by substituting Eqs. (47), (48) and (49) into Eqs. (40), (41). For convenience, we introduce two dimension-
less parameters, i.e., the speed ratio rs and the dimension ratio rd .

rs = Vw

Vs
, rd = ap

de
(50)

As shown in Figs. 6 and 7, the mode I SIF at crack tip C is always positive, while the mode II SIF is always
negative. The large speed ratio and dimension ratio correspond to a large magnitude of SIF, while the blunt and
small grit corresponds to a small magnitude. Results indicate that a small grinding speed, a sharp large tool,
a large table speed and grinding depth will lead to strong anti-shielding effect on mode I crack propagation
and strong shielding effect on mode II crack propagation. As a main fracture mode in brittle crystal materials
grinding, the starting point of opening fracture is also affected by grinding parameters and tool geometry.

It is worth mentioning that the branch fracture will occur under the mixed-mode I/II loading conditions. Li
et al. [69] stated that the angle between branches of brittle fracture was between 45◦ and 90◦ in most papers.
Kozhushko et al. [70] observed the fracture behavior of silicon with mixed-mode loading, an angle of ∼ 70◦
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Fig. 8 Bifurcation angle at various a speed ratio, b grinding depth, c indenter’s apex angle

providing an example of crack bifurcation after nucleation. In the following analysis, the bifurcation angle θb
is calculated as Eq. (51) according to Erdogan’s criterion mentioned by Chang et al. [64].

tan

(
θb

2

)
= 1

4

(
KI

KII

)
± 1

4

√(
KI

KII

)2

+ 8 (51)
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The effects of grinding speed, grinding depth and the apex of indenter on bifurcation angle are shown in
Fig. 8. Results indicate that the large grinding depth and the large apex angel of indenter will increase the
bifurcation angle, while the grinding depth has little effect on it. In particular, the calculated bifurcation angle
is approximately between 62.5◦ and 66.5◦. Therefore, the result is within the acceptable range of values.

5 Conclusions

As one of the most significant properties of brittle materials, the estimation of subsurface crack propagation
resistance in finish machining has been drawn much attention. However, controlling the crack stability is
still a challenge. In this paper, the grinding of brittle materials with pre-existing subsurface crack is analyzed
utilizing a numerical investigation of stress intensity factor (SIF) from the perspective of process parameters.
Both the plastic deformation below the tool and the intrinsic line defect (dislocation) located at the plastic zone
boundary in silicon substrate are taken into consideration. This analysis aims at understanding the influence of
various grinding parameters and tool geometries on the growth of subsurface crack. The results can be used to
provide guidance for the development of controlled spalling technology which enables the reuse of cracking
substrate. The conclusions drawn from this study are:

1. The main fracture mode for median crack induced in brittle material is opening rather than shear. A large
compressive force perpendicular to surface will promote the growth of type I cracking and make the
occurrence of mode II crack difficult. Comparing with the situation in the presence of lateral force, the
threshold normal force of fracture occurrence is much larger when the lateral force is zero. It indicates that
the residual stress caused by plastic zone plays an important role in fracture behavior.

2. A single edge dislocation at plastic zone boundary can bring about 3 % of mode I SIF when normal force
is close to 10 mN. Since a high dislocation density may exhibit around the potential crack, the effect of
dislocations on fracture behavior cannot be ignored in machining of brittle crystal materials. In addition,
the edge dislocation generates a positive mode II SIF, while the lateral force induces a negative one. The
mode II SIF is totally caused by the combination of dislocation and residual stress.

3. As a main fracture mode in brittle crystal materials grinding, the starting point of opening fracture is also
affected by grinding parameters and tool geometry. A small grinding speed, a sharp large tool, a large table
speed and grinding depth will lead to strong anti-shielding effect on mode I crack propagation and strong
shielding effect on mode II crack propagation.
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