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Abstract We present an analytical solution (in series form) to the plane strain problem associated with an
edge dislocation in the vicinity of a circular elastic inhomogeneity with a ‘mixed-type imperfect interface.’ The
latter is a representation of the interfacial region in which the inhomogeneity and the matrix are endowed with
separate and distinct Gurtin–Murdoch surface elasticities and bonded together through a spring-type imperfect
interface. The coefficients in the resulting series solution are determined in a rather elegant manner requiring
only the inverse of a number of 4×4 real symmetric positive definite matrices. The stress distribution in the
composite structure and the normalized image force acting on the edge dislocation are found to be dependent on
six size-dependent dimensionless parameters, among which four arise from the associated surface elasticities
and two from the linear spring model of the interface. Asymptotic expressions for the image force when
the dislocation is located at a remote distance from the inhomogeneity are also obtained analytically. The
correctness of the solution is verified both numerically and analytically by comparison with existing results in
the literature. Most importantly, our numerical results indicate that it is possible to find multiple equilibrium
positions for the edge dislocation.

Keywords Mixed-type imperfect interface · Circular inhomogeneity · Edge dislocation · Image force · Size
dependency

1 Introduction

The interaction of dislocations with elastic inhomogeneities has attracted the attention of theoreticians and
practitioners alike (see, for example, [3–7,12,19,23–25]). The inhomogeneity–matrix interface remains a
critical focus point in the analysis of the dislocation–inhomogeneity interaction problem. In an effort to allow
tractability of the ensuing mathematical models, early studies assumed an idealized model of the interface,
for example, perfectly bonded [5,6] or sliding [4]. In an effort to more accurately model the influence of
the interface, in particular to account for interface damage (for example, debonding, sliding and/or micro-
cracking across the interface), the linear spring model has been introduced into the dislocation–inhomogeneity
interaction problem [7,19,23]. This more comprehensive interface model is based on the assumption that
tractions are continuous, but displacements are discontinuous across the interface. More precisely, jumps in the

X. Wang
School of Mechanical and Power Engineering, East China University of Science and Technology,
130 Meilong Road, Shanghai 200237, China
E-mail: xuwang@ecust.edu.cn

P. Schiavone (B)
Department of Mechanical Engineering, University of Alberta, 10-203 Donadeo Innovation Centre for Engineering,
Edmonton, AB T6G 1H9, Canada
E-mail: p.schiavone@ualberta.ca

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-016-1178-9&domain=pdf


88 X. Wang, P. Schiavone

displacement components are proportional to their respective interface traction components in terms of ‘spring-
factor-type’ interface parameters [16]. The linear spring interface model is also referred to as a ‘soft interface’
since it is particularly appropriate when modeling a soft and thin interphase layer lying between two elastic
media [1]. It is well known that when composite assemblies involving elastic inhomogeneities are analyzed at
much smaller length scales (for example, at the nanoscale), the increasing surface area-to-bulk volume ratio
means that the effects of surface mechanics (on all surfaces involved in the assembly) play a significant role
in the overall deformation of the composite [17]. One of the most commonly adopted ‘surface models’ is the
continuum-based surface/interface model of Gurtin and Murdoch [9–11]. In the absence of residual surface
tension, the Gurtin–Murdoch model is strictly equivalent to the membrane-type stiff interface referred to in [1,
2]. TheGurtin–Murdochmodel has recently been incorporated into the study of the dislocation–inhomogeneity
interaction problem [8,13,20]. Most recently, the current authors [21,22] have proposed the so-called mixed-
type imperfect interface model to account for the most accurate representation of possible interface damage in
nanosized inhomogeneities. In this interface model, both the inhomogeneity and the matrix are endowed with
separate and distinct surface elasticities and bonded through a spring-type imperfect interface. This allows for
a comprehensive account of the contribution of each of the surfaces involved in the mechanical analysis.

In this paper, the mixed-type imperfect interface is incorporated into the interaction problem of an edge
dislocation near a circular elastic inhomogeneity. A simple and effective method based on analytic continu-
ation is proposed to solve the interaction problem with highly unusual and nonstandard boundary/interface
conditions. The image force acting on the edge dislocation is also derived using the analytic solution obtained
and the Peach–Koehler formula [3]. The size dependency of the induced stress field and the normalized image
force is clearly demonstrated. The correctness of the obtained solution is carefully verified by comparison with
the classical solutions of Dundurs [3] for a perfectly bonded interface and Dundurs and Gangadharan [4] for
a sliding interface.

The paper is structured as follows: In Sect. 2, the bulk elasticity, the surface elasticity and the spring-
type imperfect interface models are reviewed briefly for completeness. In Sect. 3, an analytic solution to the
dislocation–inhomogeneity interaction problem is subsequently derived. Explicit expressions for the image
force in the case of gliding and climbing dislocations are presented in Sect. 4 as well as analytic results for the
long-range interaction results when the dislocation is located remotely with respect to the inhomogeneity.

2 Formulation

2.1 The bulk elasticity

In what follows, unless otherwise stated, Latin indices i, j, k take the values 1,2,3 and we sum over repeated
indices. In a Cartesian coordinate system {xi }, the equilibrium equations and the constitutive relations describ-
ing the deformation of a linearly elastic, homogeneous and isotropic bulk solid are given by

σi j, j = 0, σi j = 2μεi j + λεkkδi j , εi j = 1

2
(ui, j + u j,i ), (1)

where λ and μ are Lamé constants, σi j and εi j are, respectively, the Cartesian components of the stress and
strain tensors in the bulk material, ui is the i th component of the displacement vector, and δi j is the Kronecker
delta.

For plane strain problems, the stresses, displacements and associated stress functions φ1, φ2 can be
expressed in terms of two analytic functions ϕ(z) and ψ(z) of the complex variable z = x1 + ix2 as [14,18]

σ11 + σ22 = 2
[
ϕ′(z) + ϕ′(z)

]
,

σ22 − σ11 + 2iσ12 = 2
[
z̄ϕ′′(z) + ψ ′(z)

]
,

2μ(u1 + iu2) = κϕ(z) − zϕ′(z) − ψ(z),

φ1 + iφ2 = i
[
ϕ(z) + zϕ′(z) + ψ(z)

]
, (2)

where κ = 3− 4ν in which ν(0 ≤ ν ≤ 1/2) is Poisson’s ratio. In addition, the stresses are related to the stress
functions through [18]

σ11 = −φ1,2, σ12 = φ1,1,

σ21 = −φ2,2, σ22 = φ2,1. (3)
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Let t1 and t2 be traction components along the x1- and x2-directions, respectively, on a boundary L . If s is the
arc length measured along L such that, when facing the direction of increasing s, the material remains on the
left-hand side, and it can be shown that [18]

t1 + it2 = −d(φ1 + iφ2)

ds
. (4)

2.2 The Gurtin–Murdoch surface elasticity

The equilibrium conditions on a surface incorporating interface/surface elasticity according to the Gurtin–
Murdoch theory can be expressed as [9–11,15]:

[σα j n j eα] + σ s
αβ,βeα = 0, (tangential direction)

[σi j ni n j ] = σ s
αβκαβ, (normal direction) (5)

where ni is the i th component of the outward unit normal vector to the surface, [∗] denotes the jump across
the surface, and σ s

αβ and καβ are the components of the surface stress tensor and the surface curvature tensor,
respectively. In addition, the constitutive equations on the isotropic surface are given by

σ s
αβ = σ0δαβ + 2(μs − σ0)ε

s
αβ + (λs + σ0)ε

s
γ γ δαβ, (6)

where εsαβ are the components of the surface strain tensor, σ0 is the surface tension, and λs and μs are the two
surface Lamé constants.

Wemention that in Eqs. (5) and (6), the Greek indices α, β and γ take on values of the surface components.
For example, in the case of circular cylindrical fibers, α, β, γ each takes on the values θ , z.

2.3 The spring-type imperfect interface

Denote by ur and uθ the respective components of the displacement vector, normal and tangential to the
inhomogeneity–matrix interface L and σrr ,σrθ the normal and shear components, respectively, of the traction
along the interface L . The interface conditions on the spring-type imperfect interface are [1].

[σrr + iσrθ ] = 0, σrr = kr [ur ], σrθ = kθ [uθ ], on L , (7)

where kr and kθ are two nonnegative interface parameters and [∗] = [∗]M − [∗]I denotes the jump across L
(with subscripts ‘M’ and ‘I ’ denoting the matrix and inhomogeneity, respectively).

3 An edge dislocation near a circular inhomogeneity with a mixed-type imperfect interface

Consider a domain in �2, infinite in extent, containing a single circular elastic inhomogeneity with elastic
properties different from those of the surrounding matrix, as shown in Fig. 1. The inhomogeneity, with its
center at the origin of the coordinate system and radius R, occupies a region denoted by S1. The matrix
occupies the region S2, and the inhomogeneity–matrix interface is represented by the curve L . In what follows,
the subscripts 1 and 2 [or the superscripts (1) and (2)] are used to identify the respective quantities in S1 and
S2. Separate surface elasticities are simultaneously incorporated into the surface of the inhomogeneity and
into that of the matrix. In addition, the two phases are bonded through a spring-type imperfect interface as
described above. An edge dislocation with Burgers vector (b1, b2) is located at (ξ, 0) on the x1-axis in the
matrix. The composite remains free from any other external loading.

If we assume that the interface L is coherent (i.e., εsαβ = εαβ) with respect to either the inhomogeneity
or the matrix, it follows from Eqs. (5) and (6) that the boundary conditions on the surfaces of the circular
inhomogeneity and the surrounding matrix can be written in the form
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x1

x2

Circular Inhomogeneity S1

ξ

Mixed-Type Imperfect Interface L

R

Matrix S2

θ

Fig. 1 An edge dislocation near a circular inhomogeneity with a mixed-type imperfect interface

(σ (1)
rr + iσ (1)

rθ ) − (σ−
rr + iσ−

rθ ) = −σ
(1)
0

R
+ J (1)

0

R2

[
i
∂2u(1)

θ

∂θ2
+ i

∂(u(1)
r + iu(1)

θ )

∂θ
− u(1)

r

]
,

on the surface of the inhomogeneity, (8)

(σ+
rr + iσ+

rθ ) − (σ (2)
rr + iσ (2)

rθ ) = −σ
(2)
0

R
+ J (2)

0

R2

[
i
∂2u(2)

θ

∂θ2
+ i

∂(u(2)
r + iu(2)

θ )

∂θ
− u(2)

r

]
,

on the surface of the matrix, (9)

where J ( j)
0 = 2μ( j)

s + λ
( j)
s − σ

( j)
0 ≥ 0, j = 1, 2, and

σ−
rr + iσ−

rθ = σ+
rr + iσ+

rθ = kr + kθ

2

[
(u(2)

r + iu(2)
θ ) − (u(1)

r + iu(1)
θ )

]

+kr − kθ

2

[
(u(2)

r − iu(2)
θ ) − (u(1)

r − iu(1)
θ )

]
, (10)

According to Eq. (7), Eqs. (8)–(10) describe a mixed-type imperfect interface under inplane deformations.
The imperfect interface model in Eqs. (8)–(10) contains six nonnegative imperfect interface parameters
J (1)
0 , J (2)

0 , σ
(1)
0 , σ

(2)
0 , kr , kθ . In order to solve the boundary value problem, we introduce the following

analytical continuations:

ϕ1(z) = −zϕ̄′
1(R

2/z) − ψ̄1(R
2/z), |z| > R,

ϕ2(z) = −zϕ̄′
2(R

2/z) − ψ̄2(R
2/z), |z| < R. (11)

Consequently, the boundary conditions in Eqs. (8)–(10) can be concisely expressed in terms ofϕ1(z), ϕ2(z)
and their analytic continuations are as follows

ϕ′+
1 (z) − ϕ′−

1 (z) − kr+kθ

4

[
R
μ2

(
κ2z−1ϕ−

2 (z) + z−1ϕ+
2 (z)

) − R
μ1

(
κ1z−1ϕ+

1 (z) + z−1ϕ−
1 (z)

)]

− kr−kθ

4

[
R−1

μ2

(
κ2zϕ̄

+
2 (R2/z) + zϕ̄−

2 (R2/z)
) − R−1

μ1

(
κ1zϕ̄

−
1 (R2/z) + zϕ̄+

1 (R2/z)
)]

= − σ
(1)
0
R + J (1)

0
2Rμ1

(
−iIm

{
κ1z−1ϕ+

1 (z) − κ1ϕ
′+
1 (z) + κ1zϕ′′+

1 (z) + z−1ϕ−
1 (z) − ϕ

′−
1 (z) + zϕ′′−

1 (z)
}

+κ1z−1ϕ+
1 (z) − κ1ϕ

′+
1 (z) + z−1ϕ−

1 (z) − ϕ
′−
1 (z) − Re

{
κ1z−1ϕ+

1 (z) + z−1ϕ−
1 (z)

}
)

,

|z| = R,

(12)
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ϕ
′+
2 (z) − ϕ

′−
2 (z) + kr+kθ

4

[
R
μ2

(
κ2z−1ϕ−

2 (z) + z−1ϕ+
2 (z)

) − R
μ1

(
κ1z−1ϕ+

1 (z) + z−1ϕ−
1 (z)

)]

+ kr−kθ

4

[
R−1

μ2

(
κ2zϕ̄

+
2 (R2/z) + zϕ̄−

2 (R2/z)
) − R−1

μ1

(
κ1zϕ̄

−
1 (R2/z) + zϕ̄+

1 (R2/z)
)]

= − σ
(2)
0
R + J (2)

0
2Rμ2

⎛
⎝−iIm

{
κ2z−1ϕ−

2 (z) − κ2ϕ
′−
2 (z) + κ2zϕ

′′−
2 (z) + z−1ϕ+

2 (z) − ϕ
′+
2 (z) + zϕ

′′+
2 (z)

}

+κ2z−1ϕ−
2 (z) − κ2ϕ

′−
2 (z) + z−1ϕ+

2 (z) − ϕ
′+
2 (z) − Re

{
κ2z−1ϕ−

2 (z) + z−1ϕ+
2 (z)

}

⎞
⎠ ,

|z| = R,

(13)

where the superscripts ‘+’ and ‘−’ denote limiting values as we approach the interface L from either the inside
or outside, respectively.

The two analytic functions ϕ1(z), ϕ2(z) and their analytic continuations can be written in terms of the
following convergent series:

ϕ1(z) =
{∑+∞

n=0 XnR−nzn, |z| < R,

−X̄1R−1z + ∑+∞
n=0 Yn R

nz−n, |z| > R,

ϕ2(z) =
{

−A ln z−R2/ξ
z + R2(R2−ξ2)

ξ3
Ā

z−R2/ξ
+ ∑+∞

n=0 BnR−nzn, |z| < R,

A ln(z − ξ) + ∑+∞
n=0 AnRnz−n, |z| > R,

(14)

where Xn, Yn, An, Bn, n = 0, 1, 2, . . . ,+∞ are unknown complex coefficients to be determined and

A = μ2(b2 − ib1)

π(κ2 + 1)
. (15)

SubstitutingEq. (14) into the boundary conditions inEqs. (12) and (13), and equating coefficients of like-powers
of z = Reiθ , we finally arrive at the following sets of linear algebraic equations
[
2 + ρ(κ1 − 1) + χ(κ1 + 1) + γ1(κ1 − 1)

]
X1 + [

2 + ρ(κ1 − 1) − χ(1 + κ1) + γ1(κ1 − 1)
]
X̄1

−�(ρ + χ)B1 − �(ρ − χ)B̄1 = −4Rδ1μ1 + �κ2(ρ + χ)E1 + �κ2(ρ − χ)Ē1,

[ρ(1 − κ1) − χ(1 + κ1)] X1 + [ρ(1 − κ1) + χ(1 + κ1)] X̄1

+ [
2 + �(ρ + χ) + γ2

]
B1 + [

�(ρ − χ) + γ2
]
B̄1

= −4Rδ2μ2 + [
2 − �κ2(ρ + χ) − γ2κ2

]
E1 − [

�κ2(ρ − χ) + γ2κ2
]
Ē1, (16)

(1 + κ1γ1)X2 + ρχ

ρ − χ

[
�(κ2 Ā0 + κ2 Ē0 + B̄0) − (κ1 X̄0 + Ȳ0)

] = 0,

(1 + γ2)B2 − ρχ

ρ − χ

[
�(κ2 Ā0 + κ2 Ē0 + B̄0) − (κ1 X̄0 + Ȳ0)

] = (1 − κ2γ2)E2,

�(κ2E2 + B2) − κ1X2 = −ρ + χ

ρ − χ

[
�(κ2 Ā0 + κ2 Ē0 + B̄0) − (κ1 X̄0 + Ȳ0)

]
, (17)

[
2n + κ1(ρ + χ) + n2κ1γ1

]
Xn + [

ρ − χ − n(n − 2)γ1
]
Ȳn−2 − �(ρ + χ)Bn − κ2�(ρ − χ) Ān−2

= �κ2(ρ + χ)En + �(ρ − χ)F̄n−2,

κ1
[
ρ − χ − γ1n(n − 2)

]
Xn + [

2(n − 2) + ρ + χ + γ1(n − 2)2
]
Ȳn−2 − �(ρ − χ)Bn − �κ2(ρ + χ) Ān−2

= �κ2(ρ − χ)En + �(ρ + χ)F̄n−2,

−κ1(ρ + χ)Xn − (ρ − χ)Ȳn−2 + [
2n + �(ρ + χ) + γ2n

2] Bn + κ2
[
�(ρ − χ) − γ2n(n − 2)

]
Ān−2

= [
2n − κ2�(ρ + χ) − n2κ2γ2

]
En + [

γ2n(n − 2) − �(ρ − χ)
]
F̄n−2,

−κ1(ρ − χ)Xn − (ρ + χ)Ȳn−2 + [
�(ρ − χ) − n(n − 2)γ2

]
Bn

+ [
2(n − 2) + κ2�(ρ + χ) + κ2γ2(n − 2)2

]
Ān−2

= κ2
[
γ2n(n − 2) − �(ρ − χ)

]
En + [

2(n − 2) − �(ρ + χ) − γ2(n − 2)2
]
F̄n−2,

n = 3, 4, . . . , +∞, (18)

where the dimensionless parameters ρ, χ, γ1, γ2, δ1, δ2 and � are defined by

ρ = Rkr
2μ1

, χ = Rkθ

2μ1
, γ1 = J (1)

0

2Rμ1
, γ2 = J (2)

0

2Rμ2
, δ1 = σ

(1)
0

2Rμ1
, δ2 = σ

(2)
0

2Rμ2
, � = μ1

μ2
, (19)
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and the loading parameters E0, En, Fn, n = 1, 2, . . . ,+∞ by

E0 = A ln(−ξ), En = − A

n

(
R

ξ

)n

, Fn =
(
A

n
− Ā

)(
R

ξ

)n

+ Ā

(
R

ξ

)n+2

, n = 1, 2, . . . ,+∞. (20)

It is clear from the definitions in Eq. (19) that the four size-dependent parameters γ1, γ2, δ1 and δ2 arise from
surface elasticities and that the two size-dependent parameters ρ and χ arise from the spring-type imperfect
interface. The two coefficients X1 and B1 can then be uniquely determined by solving Eq. (16), leading to

X1 = �ρE ′
1(κ2 + 1) − 2Rδ1μ1(1 + �ρ + γ2) − 2Rρδ2μ2�

(1 + �ρ + γ2)
[
2 + (ρ + γ1)(κ1 − 1)

] − ρ2�(κ1 − 1)
+ i

�(κ2 + 1)

κ1 + 1
E ′′
1 ,

B1 = ρ(κ1 − 1)(ρ�κ2E ′
1 − 2Rδ1μ1) + [

2 + (ρ + γ1)(κ1 − 1)
] [

(1 − γ2κ2 − ρ�κ2)E ′
1 − 2Rδ2μ2

]

(1 + �ρ + γ2)
[
2 + (ρ + γ1)(κ1 − 1)

] − ρ2�(κ1 − 1)
+ iE ′′

1 ,

(21)

where E ′
1 and E ′′

1 are, respectively, the real and imaginary parts of E1. Interestingly, the imaginary parts of
X1 and B1 are independent of b2 and the existence of the mixed-type interface. In addition, the imaginary part
of X1 is also independent of the elastic properties of the matrix, while that of B1 is independent of the elastic
properties of the inhomogeneity.

The three coefficients X2, B2 and κ1X0 + Y0 − �(κ2A0 + B0) can be uniquely determined as follows by
solving Eq. (17)

X2 = E2ρχ�(κ2 + 1)

(ρ + χ)(1 + κ1γ1)(1 + γ2) + ρχ
[
� + κ1(1 + �γ1 + γ2)

] ,

B2 = E2
{
(ρ + χ)(1 + κ1γ1)(1 − κ2γ2) + ρχ

[
κ1 − κ2� − κ1κ2(�γ1 + γ2)

]}

(ρ + χ)(1 + κ1γ1)(1 + γ2) + ρχ
[
� + κ1(1 + �γ1 + γ2)

] ,

κ1X0 + Y0 − �(κ2A0 + B0) = Ē2�(ρ − χ)(κ2 + 1)(1 + κ1γ1)

(ρ + χ)(1 + κ1γ1)(1 + γ2) + ρχ
[
� + κ1(1 + �γ1 + γ2)

] + �κ2E0.

(22)

The four coefficients X0, Y0, A0 and B0 are constrained by Eq. (22)3. Setting X0 = B0 = 0 and A0 = −κ2E0,
the left coefficient Y0 can be uniquely determined from Eq. (22)3 as

Y0 = Ē2�(ρ − χ)(κ2 + 1)(1 + κ1γ1)

(ρ + χ)(1 + κ1γ1)(1 + γ2) + ρχ
[
� + κ1(1 + �γ1 + γ2)

] . (23)

The coefficients Xn, Yn−2, Bn, An−2, n = 3, 4, . . . ,+∞ are then uniquely determined by solving Eq. (18):

⎡
⎢⎣

κ1Xn

Ȳn−2
�Bn

�κ2 Ān−2

⎤
⎥⎦ = −�

⎡
⎢⎣

0
0

κ2En

F̄n−2

⎤
⎥⎦ + 2(κ2 + 1)

κ2
Q−1

n

⎡
⎢⎣

0
0

nκ2En

(n − 2)F̄n−2

⎤
⎥⎦ , n = 3, 4, . . . , +∞, (24)

where

Qn =
⎡
⎢⎣

ρ + χ ρ − χ −(ρ + χ) χ − ρ
ρ − χ ρ + χ χ − ρ −(ρ + χ)

−(ρ + χ) χ − ρ ρ + χ ρ − χ
χ − ρ −(ρ + χ) ρ − χ ρ + χ

⎤
⎥⎦

+

⎡
⎢⎢⎢⎣

2n
κ1

+ γ1n2 −γ1n(n − 2) 0 0
−γ1n(n − 2) 2(n − 2) + γ1(n − 2)2 0 0

0 0 2n+γ2n2

�
− γ2n(n−2)

�

0 0 − γ2n(n−2)
�

2(n−2)
�κ2

+ γ2(n−2)2

�

⎤
⎥⎥⎥⎦ .

(25)
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It can be shown in a relatively straightforward manner thatQn is a positive definite real symmetric matrix.
From Eq. (24), we can see that to determine the unknown coefficients it is sufficient to find the inverse of the
4×4 matrices Qn, n = 3, 4, . . . , +∞.

All of the coefficients in the expressions for ϕ1(z), ϕ2(z) and their analytic continuations have now been
completely determined. The two original analytic functions ψ1(z) defined in the inhomogeneity and ψ2(z)
defined in the matrix can also be conveniently obtained from Eqs. (11) and (14) as

ψ1(z) = −
+∞∑
n=0

[
Ȳn + (n + 2)Xn+2

]
R−nzn, |z| < R;

ψ2(z) = Ā ln(z − ξ) − ξ A

z − ξ
−
[
Ā ln(−ξ) + A(ξ2 − R2)

ξ2
+ B̄0

]

+
(
R

ξ
A − B̄1

)
Rz−1 +

+∞∑
n=2

[
(n − 2)An−2 − B̄n

]
Rnz−n, |z| > R. (26)

By substituting the analytic functions obtained into Eq. (2), we arrive at the stress field in the composite. It
is clear from the above analysis that the induced stress field in the composite depends on the six size-dependent
parameters ρ, χ, γ1, γ2, δ1 and δ2.

In particular, the average mean stress within the inhomogeneity and the rigid body rotation at the center of
the circular inhomogeneity can be given quite simply by

< σ11 + σ22 > = −
4μ1

[
ρb2
πξ

+ 2δ1(1 + �ρ + γ2) + 2ρδ2

]

(1 + �ρ + γ2)
[
2 + (ρ + γ1)(κ1 − 1)

] − ρ2�(κ1 − 1)
, (27)

�21 = 1

2
(u2,1 − u1,2) = b1

2πξ
, at z = 0, (28)

where <*> denotes the average. From Eq. (27), we can see that the sign of the average mean stress is simply
opposite to that of the sum of the three terms in the square brackets in the numerator. Interestingly, the rigid
body rotation at the center of the inhomogeneity in Eq. (28) is independent of the elastic properties of the
composite, the imperfection of the interface and the component b2 of the Burgers vector.

4 Image force on the edge dislocation

Using the Peach–Koehler formula [3], we can derive the image force acting on the edge dislocation. We will
discuss two cases in detail: (1) The Burgers vector is normal to the interface with b1 �= 0 and b2 = 0; (2) the
Burgers vector is directed tangentially to the interface with b2 �= 0 and b1 = 0.

4.1 The case b1 �= 0, b2 = 0

The image force acting on the gliding dislocation can be given explicitly by

F∗ = πR(κ2 + 1)

μ2b21
F1 = − (ρ + χ)(1 + κ1γ1)(1 − κ2γ2) + ρχ

[
κ1 − κ2� − κ1κ2(�γ1 + γ2)

]

(ρ + χ)(1 + κ1γ1)(1 + γ2) + ρχ
[
� + κ1(1 + �γ1 + γ2)

] η5

+
+∞∑
n=3

η2n−3
{
κ−1
2 (n − 1)2(1 − 2η2) + η4

[
κ2 + κ−1

2 n(n − 2)
]}

+ 2(κ2 + 1)

�κ2

+∞∑
n=3

η2n−3 [0, 0, −nη2, κ−1
2 (n − 2)(nη2 − n + 1)

]
Q−1

n

⎡
⎢⎣

0
0
κ2η

2

n − 1 − (n − 2)η2

⎤
⎥⎦,

F2 = 0,

(29)
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Fig. 2 Normalized image force F∗ on a gliding dislocation for different values of the parameters γ1, γ2, ρ and χ with � =
5, κ1 = κ2 = 2

where F1 and F2 are, respectively, the image force components along the x1- and x2-directions and η =
R/ξ, −1 < η < 1. It is seen from the above expression that the normalized image force F∗ depends on
the four size-dependent parameters γ1, γ2, ρ and χ . In other words, the normalized image force is also size
dependent. It is also clear from the above expression that F∗ is an odd function of η. It has been verified
numerically (using MATLAB) that: (1) when choosing γ1 = γ2 = 0 and ρ, χ → ∞, Eq. (29) recovers
Eq. (7.8) in [3] in the case of a perfect interface; (2) when choosing γ1 = γ2 = χ = 0 and ρ → ∞, Eq.
(29) recovers Eq. (15) in [4] for a sliding interface. These results verify numerically, to a certain extent, the
correctness of the solution obtained. We illustrate in Fig. 2 the normalized image force for different values of
the parameters γ1, γ2, ρ and χ with � = 5, κ1 = κ2 = 2. The set of parameters γ1 = γ2 = 0, ρ = χ = ∞
corresponds to a perfect interface [3], while the set γ1 = γ2 = 0, ρ = ∞, χ = 0 describes the sliding interface
[4]. From Fig. 2, we can see that the gliding dislocation is repelled from the inhomogeneity when the interface
is assumed to be perfect or sliding; there exist inner stable and outer unstable equilibrium positions for the
gliding dislocation (recall that η = R/ξ) when γ1 = 1, γ2 = 3, ρ = 30, χ = 0. This fact implies that the
mixed-type imperfect interface will exert a significant influence on the stability of the dislocation.

When the dislocation is located far from the inhomogeneity, the asymptotic expression for the image force
can be obtained from Eq. (29) as

F∗ = 4η3

κ2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −

(κ2 + 1)

⎛
⎜⎜⎝
3(2 + 3γ2)

[
2 + γ1(3κ1 + 1)

]
+ρ

[
6 + 2κ1 + 2� + γ1(� + 16κ1 + 3�κ1) + 3γ2(3 + κ1) + 24κ1γ1γ2

]
+χ

[
6 + 2κ1 + 2� + γ1(� + 4κ1 + 3�κ1) + 3γ2(3 + κ1) + 6κ1γ1γ2

]
+2ρχ

[
2(� + κ1) + 3κ1(�γ1 + γ2)

]

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

3
[
2 + γ1(3κ1 + 1)

] [
2 + γ2(κ2 + 3)

]

+ρ

[
γ1 [� + (16 + 3�)κ1 + 3�κ2 + 9�κ1κ2] + γ2 [9 + 3κ1 + (3 + 16�)κ2 + κ1κ2]
+8γ1γ2 [3κ1 + �κ2 + (1 + 3�)κ1κ2] + 2(3 + � + κ1 + 3�κ2)

]

+χ

[
γ1 [� + (4 + 3�)κ1 + 3�κ2 + 9�κ1κ2] + γ2 [9 + 3κ1 + (3 + 4�)κ2 + κ1κ2]
+2γ1γ2 [3κ1 + �κ2 + (1 + 3�)κ1κ2] + 2(3 + � + κ1 + 3�κ2)

]

+2ρχ
[
2(� + κ1)(�κ2 + 1) + (�γ1 + γ2) [3κ1(�κ2 + 1) + κ2(� + κ1)]

]

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+O(η5), η → 0. (30)

Below, we present several typical examples to illustrate the solution and simultaneously verify its correctness.

• ρ, χ → ∞



Interaction between an edge dislocation 95

In this case, Eq. (30) reduces to

F∗ = 4η3
[
2(� + κ1)(� − 1) + (�γ1 + γ2)(3κ1� + � − 2κ1)

]

2(� + κ1)(�κ2 + 1) + (�γ1 + γ2) [3κ1(�κ2 + 1) + κ2(� + κ1)]
, (31)

which indicates that �γ1 + γ2 = (J (1)
0 + J (2)

0 )/(2Rμ2) can now be taken whole. If we further assume that
γ1 = γ2 = 0, Eq. (31) becomes

F∗ = 4η3(� − 1)

�κ2 + 1
, (32)

which is just Eq. (7.13) in [3] for a perfect interface.

• γ1 = γ2 = 0

In this case, the surface elasticities are absent. Consequently, Eq. (30) reduces to

F∗ = 4η3 [−6 + (ρ + χ)(2� − 3 − κ1) + 2ρχ(� − 1)(� + κ1)]

6 + (ρ + χ)(3 + � + κ1 + 3�κ2) + 2ρχ(� + κ1)(�κ2 + 1)
. (33)

If we further assume that χ = 0 and ρ → ∞, Eq. (33) becomes

F∗ = 4η3(2� − 3 − κ1)

3 + � + κ1 + 3�κ2
, (34)

which is just Eq. (19) in [4] for a sliding interface.

• ρ = χ = 0

In this case, Eq. (30) becomes

F∗ = 8η3(γ2 − κ2)

κ2
[
2 + γ2(κ2 + 3)

] , (35)

which is independent of the elastic properties of the inhomogeneity. If we further assume that γ2 = 0, Eq. (35)
becomes

F∗ = −4η3, (36)

which is just the result of a gliding dislocation located far from a traction-free hole. Equation (36) can also be
obtained by setting � = 0 in Eqs. (32) or (34).

4.2 b2 �= 0, b1 = 0

The image force acting on the climbing dislocation can be given explicitly by

F∗ = πR(κ2 + 1)

μ2b22
F1 = −2πR(κ2 + 1)

b2

ρ(κ1 − 1)δ1� + [
2 + (ρ + γ1)(κ1 − 1)

]
δ2

(1 + �ρ + γ2)
[
2 + (ρ + γ1)(κ1 − 1)

] − ρ2�(κ1 − 1)
η2

−ρ2�(κ1 − 1)(κ2 − 1) + [
2 + (ρ + γ1)(κ1 − 1)

] [
2 + (1 − κ2)(�ρ + γ2)

]

(1 + �ρ + γ2)
[
2 + (ρ + γ1)(κ1 − 1)

] − ρ2�(κ1 − 1)
η3

− (ρ + χ)(1 + κ1γ1)(1 − κ2γ2) + ρχ
[
κ1 − κ2� − κ1κ2(�γ1 + γ2)

]

(ρ + χ)(1 + κ1γ1)(1 + γ2) + ρχ
[
� + κ1(1 + �γ1 + γ2)

] η5 (37)

+
+∞∑
n=3

η2n−3
{
κ−1
2 (n − 3)2 − 2η2κ−1

2 (n − 1)(n − 3) + η4
[
κ2 + κ−1

2 n(n − 2)
]}

+2(κ2 + 1)

�κ2

+∞∑
n=3

η2n−3 [0, 0, nη2, κ−1
2 (n − 2)(n − 3 − nη2)

]
Q−1

n

⎡
⎢⎣

0
0
−κ2η

2

(n − 2)η2 − n + 3

⎤
⎥⎦ .
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Fig. 3 Normalized image force F∗ on a climbing dislocation for different values of the parameters γ1, γ2, ρ and χ with � =
3, κ1 = κ2 = 2 and δ1 = δ2 = 0

It is clear from the above expression that the normalized image force F∗ depends on all six size-dependent
parameters γ1, γ2, δ1, δ2, ρ and χ . The existence of residual surface tensions means that F∗ in Eq. (37) is
no longer an odd function of η. It has been verified numerically (using MATLAB) that: (1) when choosing
γ1 = γ2 = δ1 = δ2 = 0 and ρ, χ → ∞, Eq. (37) recovers Eq. (7.9) in [3] for a perfect interface; (2) when
choosing γ1 = γ2 = δ1 = δ2 = χ = 0 and ρ → ∞, Eq. (37) recovers Eq. (16) in [4] for a sliding interface.
Thus, the correctness of the solution has also been verified numerically. Figure 3 shows the normalized image
force on a climbing dislocation for different values of the parameters γ1, γ2, ρ and χ with � = 3, κ1 = κ2 = 2
and δ1 = δ2 = 0. It is observed from Fig. 3 that the climbing dislocation is repelled from the inhomogeneity
when the interface is perfect with γ1 = γ2 = 0, ρ = χ = ∞; there is an unstable equilibrium position for the
climbing dislocation when the interface is sliding freely with γ1 = γ2 = 0, ρ = ∞, χ = 0; and there exist
an inner stable equilibrium position and an outer unstable equilibrium position for the climbing dislocation
when γ1 = γ2 = 0.1, ρ = 30, χ = 0. The results in Figs. 2 and 3 indicate that it is possible to find multiple
equilibrium positions for an edge dislocation interacting with a circular inhomogeneity with a mixed-type
imperfect interface.

When the dislocation is located far from the inhomogeneity, the asymptotic expression for the image force
can be extracted from Eq. (37) as

F1 = − 2μ2b2
{
ρ(κ1 − 1)δ1� + [

2 + (ρ + γ1)(κ1 − 1)
]
δ2
}

(1 + �ρ + γ2)
[
2 + (ρ + γ1)(κ1 − 1)

] − ρ2�(κ1 − 1)
η2

− μ2b22
πR(κ2 + 1)

ρ2�(κ1 − 1)(κ2 − 1) + [
2 + (ρ + γ1)(κ1 − 1)

] [
2 + (1 − κ2)(�ρ + γ2)

]

(1 + �ρ + γ2)
[
2 + (ρ + γ1)(κ1 − 1)

] − ρ2�(κ1 − 1)
η3 + O(η5),

η → 0, (38)

which is independent of χ . The existence of residual surface tensions means that the magnitude of the image
force on a climbing dislocation decays slower than that on a gliding dislocation as the dislocation moves away
from the inhomogeneity. It is seen from Eq. (38) that the sign of F1 is simply opposite to that of b2 when the
climbing dislocation is very far from the inhomogeneity. Below, several examples are presented to illustrate
the solution serving also to verify the correctness of the solution.

• ρ → ∞
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In this case, Eq. (38) reduces to

F1 = − 2μ2b2(κ1 − 1)(δ1� + δ2)

2� + (κ1 − 1)(�γ1 + γ2 + 1)
η2

− μ2b22
πR(κ2 + 1)

2(κ1 − 1) − 2�(κ2 − 1) − (�γ1 + γ2)(κ1 − 1)(κ2 − 1)

2� + (κ1 − 1)(�γ1 + γ2 + 1)
η3, (39)

which also indicates that both �γ1 + γ2 = (J (1)
0 + J (2)

0 )/(2Rμ2) and �δ1 + δ2 = (σ
(1)
0 + σ

(2)
0 )/(2Rμ2) are

now taken as whole. If we further assume that γ1 = γ2 = δ1 = δ2 = 0, Eq. (39) becomes

F∗ = 2η3 [�(κ2 − 1) − (κ1 − 1)]

2� + κ1 − 1
, (40)

which is just Eq. (7.14) in [3] for a perfect interface and Eq. (20) in [4] for a sliding interface. Clearly, Eq. (40)
is valid for any value of χ .

• γ1 = γ2 = δ1 = δ2 = 0

Now the surface elasticities are absent. In this case, Eq. (38) reduces to

F∗ = −4 + 2ρ [κ1 − 1 − �(κ2 − 1)]

2 + ρ(2� + κ1 − 1)
η3. (41)

• ρ = 0

In this case, Eq. (38) reduces to

F1 = −2μ2b2δ2
1 + γ2

η2 − μ2b22
πR(κ2 + 1)

2 + γ2(1 − κ2)

1 + γ2
η3, (42)

which is independent of the elastic properties of the inhomogeneity. If we further assume that γ2 = δ2 = 0,
Eq. (42) becomes

F∗ = −2η3, (43)

which is just the result of a climbing dislocation located far from a traction-free hole. Equation (43) can also
be obtained by setting � = 0 in Eqs. (40) or (41).

5 Conclusions

In thiswork,we have derived a rigorous solution to the problemof an edge dislocation interactingwith a circular
elastic inhomogeneity with a mixed-type imperfect interface. The mixed-type imperfect interface is introduced
to reflect the complicated andmore realistic scenario inwhich a soft interface represented by the springmodel is
bounded by two stiff interfaces arising from Gurtin–Murdoch surface elasticities. The boundary conditions on
the mixed-type interface are concisely expressed in terms of ϕ1(z), ϕ2(z) and their analytic continuations. All
of the complex coefficients appearing in each of these four analytic functions are obtained in a quasi-decoupled
manner: X1 and B1 are determined by solving the two coupled linear algebraic equations in Eq. (16); X2, B2
and κ1X0 + Y0 − �(κ2A0 + B0) are determined by solving the three coupled linear algebraic equations in Eq.
(17); and Xn, Yn−2, Bn and An−2 for a certain value of n(≥ 3) can be determined by solving the four coupled
linear algebraic equations in Eq. (18). The stress field and the image force acting on the edge dislocation can
then be conveniently derived from the obtained analytic functions. Analytic expressions for the image force
on gliding and climbing dislocations are presented. It is observed that in general the normalized image force
depends on six size-dependent parameters γ1, γ2, δ1, δ2, ρ and χ , the first four of which result from surface
elasticities and the latter two from the linear spring model. The solution to the problem of an edge dislocation
inside a circular inhomogeneity with a mixed-type imperfect interface can be derived quite similarly.
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