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Abstract Based on the two-variable refined plate theory, free vibration of orthotropic plates is analyzed using
the differential transform method (DTM) and the Taylor collocation method (TCM). The refined plate theory
outperforms the classical plate theory, and its formulation is simpler than those of other higher-order theories.
Without the need for any shear correction factor, the theory performs reliably. The plates considered have two
opposite edges simply supported (Levy plates). The first part of the analysis considers three combinations
of clamped, simply supported and free edge conditions for the other two edges, keeping one of them simply
supported. Detailed formulations of DTM and TCM for the free vibration analysis are given and, consequently,
used to predict the frequency parameters and the effect of various factors ranging from geometric to material
parameters. Next, the paper presents analysis of some cases, the multi-span plates and plates with stepped
thickness and end rotational springs, whose analytical solutions are not readily available, particularly based on
the two-variable refined plate theory. In order to verify the results, formulations of three more plate theories,
namely the classical or Kirchhoff plate theory, the first-order shear deformation theory of Mindlin and the
high-order shear deformation theory of Sayyad and Gugal, were implemented and solved using the proposed
methods.

Keywords Differential transform method · Taylor collocation method · Free vibration analysis · Orthotropic
plates · Refined plate theory

1 Introduction

Plates are important structural components that have many applications in civil, aerospace, automobile and
marine structures, etc. Depending on the purpose, these plates may be isotropic or orthotropic, with the latter
becoming increasingly adopted due to its numerous advantages. Both static and dynamic analyses of these
elements require that certain theory or, more precisely, plate theory be used to arrive at the governing equations
subject to some boundary conditions. Starting from the classical plate theory (CPT), several works have been
reported and quite a number of other higher-order theories and their variations exist today.

The CPT or the Kirchhoff plate theory [1] is very appealing in terms of simplicity and ease of solution. It
has been successfully applied to free vibration analysis of orthotropic plates in [2–7]. However, the fact that
it does not take into account the effect of transverse shear stresses limits its application to thin plates. It is
also worth mentioning that the effect of shear stresses is more pronounced in orthotropic plates. As a result,
natural frequencies are overestimated by the CPT in case of thick/orthotropic plates. If a more reliable solution
is needed, other plate theories that incorporate shear deformation effects need to be sought. A number of such
shear deformation theories are available in the literature, including the first-order shear deformation theory
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(FSDT) [8–10] and the higher-order shear deformation theories (HSDT) [11–20]. Typical instances where free
vibration analyses of orthotropic plates were carried out based on these theories can be found in [21–24] based
on the FSDT and in [25–28] based on the HSDT. The FSDT assumes a constant distribution of shear stress
across the plate’s thickness, thereby violating zero-stress condition on the plate’s top and bottom surfaces. In
order to take care of this inconsistency, use of a correction factor becomes necessary in the FSDT. On the
other hand, the HSDT do not require the use of such correction factor and they, still, satisfy the zero-traction
boundary condition at the top and bottom surfaces of the plate. But, this happens at the expense ofmore complex
formulation, involving several unknowns, that becomes inconvenient to handle. Such set-backs encountered
in form of lesser accuracy in the CPT and the inconveniencies in formulating the higher-order theories can be
well taken care of by the adoption of the two-variable refined plate theory (RPT) of Shimpi [29], which was
later extended by Shimpi and Patel [30] to orthotropic plates. The RPT is very similar to the CPT, and it still
accounts for shear stress distribution that satisfies zero-traction boundaries without the need for any correction
factor. RPT expresses the governing equations in terms of only two unknown functions. Zig-zag and layer-wise
theories of plates [31] are other useful plate theories whose recent applications to laminate glass and solar
panels prove successful. Detailed analysis of free vibrations of functionally graded plates has been performed
using several variants of plate models in [32].

Each of the aforementioned theories yields a set of governing differential equations, some of which require
advanced methods of solution. Consequently, several studies reported the application of various methods to
analyze free vibration of orthotropic plates. Some of these include the works reported in [33,34] based on
the Navier’s method, [35] based on the Levy’s method, [36–38] based on the finite element method, [36,39–
41] based on the Rayleigh–Ritz method, [42–44] based on the state–space method, [36,45] based on the
differential quadrature method, [46–48] based on the meshless method including the RBF, [49,50] based
on the Galerkin method, [51,52] based on the discrete singular convolution (DSC) method, [53] based on
the extended Kantorovich method, [54] based on the mixed variational formulations and [7,55,56] based on
the exact solutions. A more comprehensive review of recent literature on free vibration analysis of general
composite plates can be found in the work of Sayyad and Ghugal [57].

As evident in the above and other numerous studies on the use of various solution tools and theories for free
vibration of orthotropic plates, it can be noticed that the application of differential transform method (DTM)
and Taylor collocation method (TCM) for free vibration of orthotropic plates is not popular, if any. Works
such as those reported in [58,59] utilized the DTM only for isotropic and not for orthotropic plates. As for
the TCM, most of the published research on its application addresses other problems but not free vibration of
orthotropic plates.

This paper has dual objectives, one of which is to present a study based on a very efficient and relatively
simple theory, the two-variable refined plate theory (RPT) [30], which outperforms the CPT. In addition, the
inconveniencies in formulating the first-order and higher-order shear deformation theories can be avoided by the
use of the refined plate theory. The theory allows quadratic shear stress distribution that satisfies zero-traction
boundaries without the need for any correction factor. Additionally, as the name implies, the two-variable
RPT expresses the governing equations in terms of only two unknown functions, contrary to the need for
several functions in many of the higher-order theories. The similarity, in some ways, of the refined theory
with the CPT speaks enough about its simplicity. The second objective of the paper is to present two solution
schemes, the DTM and TCM, having some similarities with respect to their origin and to illustrate how they
can, conveniently, be used in the analysis of free vibrations of the orthotropic plates based on the RPT. Thework
reported in [30] presents some results for free vibration of simply supported square orthotropic plate based on
this theory. Later, Thai and Kim [35] extended the analysis to consider other boundary conditions. However,
aside from the simply supported square plate, results of the work reported in [35] has been presented without
further verification with other methods. Hence, the present work will have a secondary benefit of serving as a
verification of some of the results reported in [35]. But, in addition, some cases whose analytical solutions are
not readily available, particularly based on the two-variable refined plate theory, are also analyzed. In order to
verify the results for those cases with no analytical solution, formulation of three more plate theories, the CPT,
the FSDT [10,60,61] and the HSDT [62], was implemented and solved using both the DTM and TCM. The
robustness and competitiveness of DTM and TCM in providing reliable results make them good alternatives
to the analytical solutions.

2 Two-variable refined plate theory (RPT) for orthotropic plate [30]

The two-variable RPT of Shimpi and Patel [30] has many attractive features that make it competitive with
other well-established and robust plate theories. First, the theory is similar to the CPT and, hence, it is simple.
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Fig. 1 Geometry and orientation of the plate considered

In addition, there is no need for shear correction factor as required in some shear deformation theories, and it
still takes into account the effect of shear stress distribution that satisfies zero-traction boundaries. This way,
the RPT takes care of both the lesser accuracy in the CPT and the complexities in formulating the first-order
and higher-order shear deformation theories. Detailed derivation of RPT for orthotropic plates can be found
in [30], but its overview is given as follows.

2.1 Coordinate system and orthotropic plate configuration

The plate under consideration has dimensions of a × b × h and is oriented with respect to a right-handed
Cartesian coordinate system as shown in Fig. 1. The displacement components U, V and W corresponding
to the x, y and z coordinate directions, respectively, are shown in bracket. For free vibration, the top and
bottom surfaces are free. On the other hand, convenient boundary conditions can be applied at the edges
x = 0, x = a, y = 0 and y = b.

2.2 Displacements, constitutive equations and stress resultants

According to CPT, the displacement components are given by Eq. (1).

U = −z
∂W

∂x
; V = −z

∂W

∂y
;W = Wb (1)

where Wb is the transverse displacement due to bending effect alone.
It is clear from Eq. (1) that, by default, any subsequent formulation in terms ofU, V and W based on CPT

neglects the effect of transverse shear. On the contrary, the RPT assumes that both U, V and W consists of
bending components (Ub, Vb andWb, respectively) and shear components (Us, Vs andWs , respectively) thus.

U = Ub +Us; V = Vb + Vs;W = Wb + Ws (2)

where
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The six independent strain components are obtained by using the displacement expressions given by Eq. (2)
in the following strain-displacement relations.

εx = ∂U

∂x
; εy = ∂V

∂y
; εz = ∂W

∂z
; γxy = ∂V

∂x
+ ∂U

∂y
; γyz = ∂W

∂y
+ ∂V

∂z
; γzx = ∂U

∂z
+ ∂W

∂x
(3)

Equation (3) can be substituted in the constitutive equations to obtain the corresponding stresses given by Eq.
(4).

σ = Q ε (4)



18 F. M. Mukhtar

where σ = [σx , σy, τxy, τyz, τzx
]T ; ε = [εx , εy, γxy, γyz, γzx]T and Q is a 5 × 5 matrix whose elements are

Q11 = Q11 = E1

1 − ν12ν21
; Q12 = Q21 = Q12 = ν12E1

1 − ν12ν21
; Q22 = Q22 = E2

1 − ν12ν21

Q33 = Q66 = G12; Q44 = Q44 = G23; Q55 = Q55 = G31 and Qi j = 0 for other combinations of i and j .
Ei (i = 1, 2) ,Gi j (i, j = 1, 2, 3& i �= j) and νi j (i, j = 1, 2& i �= j) are the Young’s modulus, shear

modulus and Poisson’s ratio, respectively. The subscripts 1, 2 and 3 correspond to the three coordinate direc-
tions, x, y and z, respectively.

Expressions for the stress resultants (moments and shear forces) can be obtained from Eq. (5a) to arrive at
Eq. (5b).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mb
x

Mb
y

Mb
xy

Ms
x

Ms
y

Ms
xy

Qx
Qy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
z=h/2∫
z=−h/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx z
σyz
τxyz

σx

(
− 1

4 z + 5
3 z
( z
h

)2)
σy

(
− 1

4 z + 5
3 z
( z
h

)2)
τxy

(
− 1

4 z + 5
3 z
( z
h

)2)
τzx
τyz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dz (5a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mb
x

Mb
y

Mb
xy

Ms
x

Ms
y

Ms
xy

Qx
Qy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−D11 −D12 0 0 0 0 0 0
−D12 −D22 0 0 0 0 0 0
0 0 −D66 0 0 0 0 0
0 0 0 − 1

84D11 − 1
84D12 0 0 0

0 0 0 − 1
84D12 − 1

84D22 0 0 0
0 0 0 0 0 − 1

84D66 0 0
0 0 0 0 0 0 A55 0
0 0 0 0 0 0 0 A44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2Wb
∂x2

∂2Wb
∂y2

2 ∂2Wb
∂x∂y

∂2Ws
∂x2

∂2Ws
∂y2

2 ∂2Ws
∂x∂y

∂Ws
∂x

∂Ws
∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5b)

The material parameters are

D11 = Q11h3

12
; D22 = Q22h3

12
; D12 = Q12h3

12
; D66 = Q66h3

12
; A44 = 5Q44h

6
; A55 = 5Q55h

6

2.3 Governing equations of motion

In deriving the equations of motion based on RPT, expressions for the kinetic and potential energies are, firstly,
written as in Eqs. (6) and (7), respectively [30,35].

Ek = 1

2

h
2∫

− h
2
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U = 1
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h
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− h
2
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a∫
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ρ
[
σxεx + σyεy + τxyγxy + τyzγyz + τzxγzx

]
dx dy dz (7)

Equations (6) and (7) are substituted in Eq. (8), written using Hamilton’s principle. Integrating the resulting
equation by parts, and due to the independence of δWb and δWs , their coefficients can be collected separately
which give the governing equations of motion, given by Eq. (9), for free vibration of orthotropic plates.

∫t0 δ (Ek −U ) dt = 0 (8)
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L1 [Wb] + I0

(
∂2Wb

∂t2
+ ∂2Ws

∂t2

)
= q (9a)

L1 [Ws] + 84

(
L2 [Ws] + I0

(
∂2Wb

∂t2
+ ∂2Ws

∂t2

))
= 84q (9b)

where the linear differential operators L1 and L2 are defined thus

L1 [· · · ] = D11
∂4 (· · · )

∂x4
+ 2 (D12 + 2D66)

∂4 (· · · )
∂x2∂y2

+ D22
∂4 (· · · )

∂y4
− I2

∂2

∂t2
(∇2 (· · · ))

L2 [· · · ] = −
(
A55

∂2 (· · · )
∂x2

+ A44
∂2 (· · · )

∂y2

)

I0 and I2 are inertias given by ρh and ρh3/12, respectively.
For free vibration, the external transverse load q = 0.
It is important, at this point, to discuss the concept of consistencywhich ariseswhen deciding the conformity

of the various plate theories/models with linear three-dimensional theory of elasticity. This is of concern
because there are several plate theories, including the RPT presented in this work, that are based on some
priori assumptions which may result in system of equations that violate the elasticity theory. Interestingly,
however, Shimpi [29] has already reported that the RPT is variationally consistent. Details of the consistent
approach are well addressed by Kienzler [63], where he derived some consistent plate theories from the basic
equations of three-dimensional linear theory of elasticity by applying the uniform-approximation technique
which, depending on the order of the approximation chosen, yields a set of governing partial differential
equations without invoking any priori assumptions or shear correction factors. Some recent works where
similar idea was used include [64] where the concept is applied to anisotropic materials and [65] where
comparison of various linear plate theories in light of consistent second-order approximation is made.

2.4 Free vibration equations for the orthotropic plate under consideration

The present study considers rectangular orthotropic plates with the two opposite boundaries, parallel to the
x-axis (i.e., y = 0 and y = b), simply supported (i.e., Levy plates). The first part of the analysis considers
a case of three combinations of clamped (C), simply supported (S) and free (F) edge conditions on the two
remaining boundaries (i.e., at x = 0 and x = a), keeping one of them to be simply supported. Consequently,
plates with one end simply supported and the other free, one end simply supported and the other clamped, and
both ends simply supported are referenced as SF, SC and SS plates, respectively. Next, multi-span plates and
plates with stepped thickness and end rotational springs, whose analytical solutions are not readily available,
particularly based on the two-variable refined plate theory are also analyzed in this work.

Assuming a solution, given by Eq. (10), for the transverse displacement components Wb and Ws , it can
easily be seen that the boundary conditions of zero displacement and zero moment at y = 0 and y = b are
automatically satisfied [35].

Wb (x, y, t) =
∞∑
n=1

wb (x) eiωnt sin (βy) (10a)

Ws (x, y, t) =
∞∑
n=1

ws (x) eiωnt sin (βy) (10b)

where the unknown functions wb (x) and ws (x) need to be determined. β = nπ/b and the natural frequency
of the nth mode is denoted by ωn .

Substituting Eq. (10) in the two governing equations given by Eq. (9) yields the system of two coupled
equations given by Eq. (11). Similarly, the boundary conditions can be written as given in Table 1.

D11w
′′′′
b − [2β2 (D12 + 2D66) − ω2

n I2
]
w′′
b − [ω2

n I0 + ω2
n I2β

2 − D22β
4]wb − ω2

n I0ws = 0 (11a)

D11w
′′′′
s − [84A55 + 2β2 (D12 + 2D66) − ω2

n I2
]
w′′
s − [84ω2

n I0 + β2 (ω2
n I2 − D22β

2 − 84A44
)]

ws

− 84ω2
n I0wb = 0 (11b)

where (· · · )′ = d(··· )
dx , (· · · )′′ = d2(··· )

dx2
and so on.
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Table 1 Boundary conditions for the SS, SC and SF plates

Boundary condition Boundary type

C S F

wb 0 0 –
ws 0 0 –
w′
b 0 – –

w′
s 0 – –

−D11w
′′
b + D12β

2wb – 0 0
− (1/84)

(
D11w

′′
s − D12β

2ws
)

– 0 0
−D11w

′′′
b + ((D12 + 4D66) β2 − I2ω2

n

)
w′
b – – 0

−D11w
′′′
s + ((D12 + 4D66) β2 − I2ω2

n + 84A55
)
w′
s – – 0

In the subsequent analyses, use is made of a non-dimensional space variable x̄ = x/a, where a is the
x-directional dimension of the plate shown in Fig. 1. Hence, 0 ≤ x̄ ≤ 1.

3 Differential transform method (DTM)

Originally proposed by Zhou [66], the DTM is a semi-analytical method that, in recent decades, gained
recognition for solving problems governed by differential equations. Its concept stems from the Taylor series
expansion, and solution of the original problem is approximated in form of polynomials. However, unlike in
the Taylor series method, symbolic evaluation of the derivatives is avoided in DTM. Instead, they are obtained
by some recursive relations obtainable from the transformed governing equations.

3.1 Fundamentals of DTM

Consider an analytic functionw(x) that is sufficiently differentiablewithin the domain of interest. By definition,
the differential transformation of w(x) near the point x = x0 is W (k) given by Eq. (12). Conversely, the
differential inverse transform of W (k) is given by Eq. (13). Due to the consequence of Eq. (12), Eq. (13) can
be rewritten in the form given by Eq. (14); the Taylor series expansion.

W (k) = 1

k!
(
dkw (x)

dxk

)
x=x0

(12)

w (x) =
∞∑
k=0

(x − x0)
k W (k) (13)

w (x) =
∞∑
k=0

(x − x0)k

k!
(
dkw (x)

dxk

)
x=x0

(14)

For an integer N̄ large enough to result in a negligibly small value of the summation
∑∞

k=N̄+1 (x − x0)k W (k),
the approximation of the original function (in our case, the solution) given by Eq. (13) can be truncated and
rewritten as shown in Eq. (15). This way, N̄ represents the number of terms sufficient enough for the series
convergence.

w(x) =
N̄∑

k=0

(x − x0)
k W (k) (15)

Since the aim of DTM is to transform the original differential equation(s) into recursive formulas needed to
evaluate the terms W (k)

{
k, 0, N̄

}
, some basic mathematical operations required in the transformation are

given by Eqs. (16) to (23).
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w(x)
transformsto−−−−−−→ W (k) (16)

cw(x) cW (k) (17)

α1w1(x) + α2w2(x) + · · · + αnwn(x) α1W1 (k) + α2W2 (k) + · · · + αnWn (k) (18)

dw(x)

dx
(k + 1)W (k + 1) (19)

d2w(x)

dx2
(k + 1) (k + 2)W (k + 2) (20)

d3w(x)

dx3
(k + 1) (k + 2) (k + 3)W (k + 3) (21)

d4w (x)

dx4
(k + 1) (k + 2) (k + 3) (k + 4)W (k + 4) (22)

...
...

...
...

dnw (x)

dxn
(k + n)!

k! W (k + n) (23)

3.2 Free vibration analysis based on DTM

This section presents the application of DTM for the free vibration analysis of orthotropic plates based on the
two governing equations given by Eq. (11). For that purpose, the bending and shear displacement components
of the transverse displacement are approximated around x̄ = x̄0 as follows.

wb (x̄) =
N̄∑

k=0

(x̄ − x̄0)
kWb (k) ; ws (x̄) =

N̄∑
k=0

(x̄ − x̄0)
kWs (k) (24)

It should be noted thatWb (k) andWs (k) in the present section are constants and are, therefore, different from
Wb (x) andWs (x) appearing in the previous sections (which are continuous functions of the space variable x).

Substituting the transform values of Eqs. (16) to (23) in Eq. (11) results in the following equations.

Wb (k + 4) = c1 (k + 1) (k + 2)Wb (k + 2) + c2Wb (k) + c3Ws (k)

(k + 1) (k + 2) (k + 3) (k + 4)
(25a)

Ws (k + 4) = c4 (k + 1) (k + 2)Ws (k + 2) + c5Ws (k) + c6Wb (k)

(k + 1) (k + 2) (k + 3) (k + 4)
(25b)

where

c1 =
(
2β2 (D12 + 2D66) − ω2

n I2
)

D11
, c2 =

(
ω2
n I0 + ω2

n I2β
2 − D22β

4
)

D11
, (26a)

c3 = ω2
n I0
D11

, c4 =
(
84A55 + 2β2 (D12 + 2D66) − ω2

n I2
)

D11
, (26b)

c5 =
(
84ω2

n I0 + β2
(
ω2
n I2 − D22β

2 − 84A44
))

D11
, c6 = 84ω2

n I0
D11

(26c)

Since the three cases considered in the first part of the work are the SF, SS and SC plates, the boundary
conditions at x̄ = 0 (i.e., the S-type boundary) are, therefore, common to all the three plate cases. Consequently,
the displacement and moment expressions from Table 1 for this boundary are written using Eq. (24) near the
point x̄0 = 0 to arrive at Eq. (27).

Wb (0) = 0, Ws (0) = 0, Wb (2) = 0, Ws (2) = 0 (27)

At x̄ = 1, different boundary conditions are applicable to the SF, SS and SC plates. These are obtained from
expressions in Table 1 written, again, using Eq. (24) near the point x̄0 = 0 to arrive at the following.
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C-type boundary:

N̄∑
k=0

Wb (k) = 0,
N̄∑

k=0

Ws (k) = 0,
N̄∑

k=1

kWb (k) = 0,
N̄∑

k=1

kWs (k) = 0 (28)

S-type boundary:

N̄∑
k=2

Wb (k) = 0,
N̄∑

k=2

Ws (k) = 0, −D11

N̄∑
k=3

k (k − 1)Wb (k) + D12β
2

N̄∑
k=1

Wb (k) = 0, (29a)

−
(

1

84

)⎛⎝D11

N̄∑
k=3

k (k − 1)Ws (k) − D12β
2

N̄∑
k=1

Ws (k)

⎞
⎠ = 0, (29b)

F-type boundary:

−D11

N̄∑
k=2

k (k − 1)Wb (k) + D12β
2

N̄∑
k=1

Wb (k) = 0, (30a)

−
(

1

84

)⎛⎝D11

N̄∑
k=2

k (k − 1)Ws (k) − D12β
2

N̄∑
k=1

Ws (k)

⎞
⎠ = 0, (30b)

−D11

N̄∑
k=3

k (k − 1) (k − 2)Wb (k) + ((D12 + 4D66) β2 − I2ω
2
n

) N̄∑
k=1

kWb (k) = 0 (30c)

−D11

N̄∑
k=3

k (k − 1) (k − 2)Ws (k) + ((D12 + 4D66) β2 − I2ω
2
n + 84A55

) N̄∑
k=1

kWs (k) = 0 (30d)

Since the values of the transformation terms Wb (k) and Ws (k) are known for k = 0 and 2 as given by Eq.
(27), one can write the terms for k = 1 and 3 in terms of some unknown constants ζ and η as follows.

Wb (1) = ζb,Wb (3) = ηb,Ws (1) = ζs and Ws (3) = ηs . (31)

where the subscripts b and s stand for the bending and shear, respectively.
Using the recursive formulas given by Eq. (25) and values of the termsWb (k) andWs (k) for k = 0, 1, 2, 3

given by Eqs. (27) and (31), one can find that, Wb (4) = 0 and Ws (4) = 0. Similarly, Wb (5) and Ws (5) are
obtained as follows.

Wb (5) = (c2ζb + c3ζs + 6c1ηb) /120, Ws (5) = (c6ζb + c5ζs + 6c4ηs) /120 (32)

Continuing in similar manner, the subsequent terms are obtained in terms of ζb,ηb, ζs and ηs as shown in
Table 2. These were evaluated up to the N̄ th terms (i.e., Wb

(
N̄
)
and Ws

(
N̄
)
).

Substituting the terms from Wb(0) and Ws(0) to Wb(N̄ ) and Ws(N̄ ) in Eqs. (28), (29) and (30) for the SF,
SS and SC plates respectively, the following system of algebraic equations is obtained.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
N̄∑

k=3
Coeff. [Wb (k) , ζb] a12

N̄∑
k=3

Coeff. [Wb (k) , ηb] a13
N̄∑

k=3
Coeff. [Wb (k) , ζs ] a14

N̄∑
k=3

Coeff. [Wb (k) , ηs ]

a21
N̄∑

k=3
Coeff. [Ws (k) , ζb] a22

N̄∑
k=3

Coeff. [Ws (k) , ηb] a23
N̄∑

k=3
Coeff. [Ws (k) , ζs ] a24

N̄∑
k=3

Coeff. [Ws (k) , ηs ]

a31
N̄∑

k=3
Coeff. [Wb (k) , ζb] a32

N̄∑
k=3

Coeff. [Wb (k) , ηb] a33
N̄∑

k=3
Coeff. [Wb (k) , ζs ] a34

N̄∑
k=3

Coeff. [Wb (k) , ηs ]

a41
N̄∑

k=3
Coeff. [Ws (k) , ζb] a42

N̄∑
k=3

Coeff. [Ws (k) , ηb] a43
N̄∑

k=3
Coeff. [Ws (k) , ζs ] a44

N̄∑
k=3

Coeff. [Ws (k) , ηs ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζb

ηb

ζs

ηs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ (33)
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Table 2 Values of the terms Wb (k) and Ws (k) in the DTM formulation

k Wb (k) Ws (k)

0 0 0
1 ζb ζs
2 0 0
3 ηb ηs
4 0 0
5 (c2ζb + c3ζs + 6c1ηb) /120 (c6ζb + c5ζs + 6c4ηs) /120
6 0 0
7 (c2ηb + (c1/6) (c2ζb + c3ζs + 6c1ηb) + c3ηs) /840 (c6ηb + (c4/6) (c6ζb + c5ζs + 6c4ηs) + c5ηs) /840
8 0 0
9 (c22ζb + c2c3ζs + c21 (c2ζb + c3ζs)+ 6c31ηb)/362880+ (6c1 (2c2ηb + c3ηs) + c3 (c6ζb + c5ζs + 6c4ηs)) /362880

(c2c6ζb + c5c6ζb + c25ζs + c3c6ζs
+ 6c1c6ηb + c24 (c6ζb + c5ζs) + 6c34ηs+ 6c4 (c6ηb + 2c5ηs))/362880

10 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

The summation symbol
∑N̄

k=3 Coeff. [Wb (k) , ζb] used, signifies the sum of coefficients of ζb in the terms
Wb (k)

{
k = 3, 4, . . . , N̄

}
. Definition of other elements in the matrix of Eq. (33) follows similar convention.

Values of the terms ai j , {i, j = 1, 2, 3, 4} depend on the boundary condition of the plate and are given in the
appendix.

Determinant of the 4 × 4 coefficient matrix of Eq. (33) is obtained in each case of the plate with different
boundary conditions and equated to zero in order to avoid trivial solution. Solving the resulting equation(s)
yields the natural frequency ωn .

4 Taylor collocation method (TCM)

Collocation method refers to a family of various numerical solution techniques of differential equations based
on selecting a candidate solution that, discretely, satisfies the governing equation and boundary conditions at
certain number of domain and boundary points (collocation points), respectively. What differs between such
methods is the choice of candidate solutions. The radial basis function (RBF) collocation method, for example,
uses some suitable RBF centered at a given number of points. The TCM, on the other hand, makes use of
Taylor polynomials derived from the Taylor series expansion of the candidate solution.

Taylor series was discovered to be useful in solving integral equations encountered in physical sciences and
engineering by past researches such as [67]. The formalized approach has been presented by Kanwal and Liu
[68]. Later, extension of the method to solve different kinds of differential equations and their systems has been
carried out by different researchers, with the work reported in [69] as one of the early ones. Analysis of plates
using this method is not very popular. However, its recent application to axisymmetric plates and shells have
proved successful [70]. The concept of TCM is similar to that of DTMwith the exception that the former is fully
numerical while the latter is semi-analytical. In other words, contrary to the evaluation of coefficients of the
Taylor series expansion by some recursive formulas in theDTM, in TCM the domain of interest needs a physical
discretization followed by a collocation procedure to generate a number of algebraic equations equal to the num-
ber of the Taylor series coefficients that are finally determined by solving the system of equations so generated.

4.1 TCM formulation

The basic principle of TCM and its formulation are explained in terms of a general governing equation (of
a dependent variable w (x)), over the domain �, described by a domain operator L subject to some generic
boundary conditions, on the boundary � (a0, a1), described by a boundary operator B as given by Eq. (34). f
and g are some continuous functions of the position variable.
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L�w (x)� = f, in � (34a)

B�w (x)� = g, on � (34b)

To use the TCM, we seek a solution of Eq. (34) in the form given by Eq. (35), a Taylor series expansion of w
around point c. As a priori, the function w is assumed to have nth derivatives in the interval of expansion.

w (x) =
∞∑
n=0

w(n) (c)

n! (x − c)n , a0 ≤ x, c ≤ a1, (35)

The above infinite series can be truncated at n = N̄ (where N̄ is chosen large enough to ensure the series
convergence) as shown in Eq. (36).

w (x) =
N̄∑

n=0

w(n) (c)

n! (x − c)n , a0 ≤ x, c ≤ a1, (36)

To find the N̄ +1 unknowns (w(n) (c)) in Eq. (36), the geometry of the problem is modeled by N̄ +1 randomly
distributed nodes such that N̄ + 1 = Nd + Nb, where Nd and Nb represent the domain and boundary nodes,
respectively. Applying Eqs. (34a) and (34b) at the Nd discrete nodes in the domain and Nb nodes on the
boundary, respectively, results in N̄ + 1 algebraic equations as shown below.

L�w (xi )� =
N̄∑

n=0

w(n) (c) L

�
1

n! (xi − c)n
�

, i = 1, Nd (37a)

B�w (xi )� =
N̄∑

n=0

w(n) (c) B

�
1

n! (xi − c)n
�

, i = 1, Nb (37b)

Solving the above system of equations yields the values of the coefficient w(n) (c) for n = 0, 1, 2, . . . N̄ . The
formal procedure for the free vibration analysis based on TCM is given in the following section.

4.2 Free vibration analysis based on TCM

It can be recognized that the two fourth-order governing equations for free vibration of orthotropic plates,
given by Eq. (11), can be written in the general form given by Eq. (38).

4∑
k=0

(
Pkjw

(k)
b (x̄) + Qkjw

(k)
s (x̄)

)
= 0, j = 1, 2, 0 ≤ x̄ ≤ 1 (38)

where the coefficients P and Q are given, in terms of ci {i, 1, 6} (Eq. 26), thus
P01 = −c2; P21 = −c1; Q01 = −c3; Q02 = −c5; Q22 = −c4; P02 = −c6; P41 = Q42 = 1 and
Pkj = Qkj = 0 for combinations of k and j otherwise.

Similarly, the general form of the eight boundary conditions (Table 1) can be written as follows.

3∑
j=0

(
αi jw

( j)
b (0) + βi jw

( j)
b (1) + γi jw

( j)
s (0) + κi jw

( j)
s (1)

)
= 0, i = 0, 1, 2, . . . , 7 (39)

The coefficients α, β, γ and κ in Eq. (39) depend on the actual boundary condition thus.

i. At x̄ = 0, βi j = κi j = 0 for all i and j while α and γ are common for SC,SS and SF plate types as given
below.

α00 = γ10 = 1; α22 = −D11, α20 = D12β
2; γ32 = −

(
1

84

)
(D11) ; γ30 = (1/84) D12β

2

αi j = γi j = 0, for combinations of i and j otherwise.
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ii. At x̄ = 1, αi j = γi j = 0 for all i and j , while β and κ are given, depending on the fixity condition, as
follows.

C-type boundary:

β40 = κ50 = β61 = κ71 = 1

βi j = κi j = 0, for combinations of i and j otherwise.

S-type boundary:

β40 = κ50 = 1; β62 = −D11; β60 = D12β
2; κ72 = −

(
1

84

)
(D11) ; κ70 = (1/84) D12β

2

βi j = κi j = 0, for combinations of i and j otherwise.

F-type boundary:

β42 = β63 = κ73 = −D11; β40 = D12β
2; κ52 = −

(
1

84

)
(D11) ; κ50 =

(
1

84

)
D12β

2;
β61 = ((D12 + 4D66) β2 − I2ω

2
n

) ; κ71 = ((D12 + 4D66) β2 − I2ω
2
n + 84A55

)
βi j = κi j = 0, for combinations of i and j otherwise.

Equation (40) gives the approximate solutions for the bending and shear components of the transverse dis-
placement, written as two truncated Taylor series expansions around c̄ in each case. N̄ is selected large enough
to ensure the series convergence.

wb (x) =
N̄∑

n=0

w
(n)
b (c̄)

n! (x̄ − c̄)n , 0 ≤ x̄, c̄ ≤ 1, N ≥ 3 (40a)

ws (x) =
N̄∑

n=0

w
(n)
s (c̄)

n! (x̄ − c̄)n , 0 ≤ x̄, c̄ ≤ 1, N ≥ 3 (40b)

A set of x̄i ,
(
i = 0, 1, 2, . . . , N̄

)
collocation points at some specified intervals within the problem domain is

used in order to find the unknown Taylor coefficients w
(n)
b (c̄) and w

(n)
s (c̄)

{
n = 0, 1, 2, . . . N̄

}
. However,

because there are two boundary conditions at each of the two boundary nodes, this will result in two extra
equations more than the number of unknowns. Therefore, the present work chooses to create two more virtual
nodes outside the domain, one adjacent to each of the boundary nodes at a distance dx̄ . Consequently, the
following range for x̄i results.

−dx̄ = x̄0 < x̄1 < · · · x̄N−1 < x̄N = 1 + dx̄

where, for a uniform interval, the value of x̄i becomes

x̄i = −dx̄ + i
1 + 2dx̄

N̄
, i = 0, 1, 2, . . . N̄ (41)

Writing Eq. (40) in terms of matrices, one obtains.

wb (x̄) = X̄M0Ab (42a)

ws (x̄) = X̄M0As (42b)

where

X̄ =
[
1 (x̄ − c̄) (x̄ − c̄)2 · · · (x̄ − c̄)N̄

]

M0 =

⎡
⎢⎢⎢⎢⎢⎣

1
0! 0 0 · · · 0
0 1

1! 0 · · · 0
0 0 1

2! · · · 0
...

...
...

...
...

0 0 0 · · · 1
N̄ !

⎤
⎥⎥⎥⎥⎥⎦
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Ab =
[
W (0)

b (c̄) W (1)
b (c̄) W (2)

b (c̄) · · · W (N̄)
b (c̄)

]T

As =
[
W (0)

s (c̄) W (1)
s (c̄) W (2)

s (c̄) · · · W (N̄)
s (c̄)

]T

Applying Eq. (42) at x̄i collocation points yields

wb (x̄i ) = X̄i M0Ab i = 0, 1, 2, . . . , N̄ (43a)

ws (x̄i ) = X̄i M0As i = 0, 1, 2, . . . , N̄ (43b)

where

X̄i =
[
1 (x̄i − c̄) (x̄i − c̄)2 · · · (x̄i − c̄)N̄

]

The vector of zero derivatives of the solution can be denoted as follows

w
(0)
b = [wb (x̄0) wb (x̄1) wb (x̄2) · · · wb

(
x̄ N̄
)]T

,

w(0)
s = [ws (x̄0) ws (x̄1) ws (x̄2) · · · ws

(
x̄ N̄
)]T

Hence, Eq. (43) can be written in the form shown below.

w
(0)
b = CM0Ab (44a)

w(0)
s = CM0As (44b)

where

C = [X̄0 X̄1 · · · X̄ N̄

]T =

⎡
⎢⎢⎢⎢⎣

1 (x̄0 − c̄) (x̄0 − c̄)2 · · · (x̄0 − c̄)N̄

1 (x̄1 − c̄) (x̄1 − c̄)2 · · · (x̄1 − c̄)N̄

...
...

... · · · ...

1
(
x̄ N̄ − c̄

) (
x̄ N̄ − c̄

)2 · · · (x̄ N̄ − c̄
)N̄

⎤
⎥⎥⎥⎥⎦

Similarly, the vector of the derivatives becomes

w
(k)
b = CMk Ab (45a)

w(k)
s = CMk As (45b)

where

w
(k)
b =

[
w

(k)
b (x̄0) w

(k)
b (x̄1) w

(k)
b (x̄2) · · · w

(k)
b

(
x̄ N̄
)]T

,

w(k)
s =

[
w(k)
s (x̄0) w(k)

s (x̄1) w(k)
s (x̄2) · · · w(k)

s

(
x̄ N̄
)]T

Applying Eq. (38) at the discrete interior points (i = 1, 2, . . . , N̄ − 1) yields

4∑
k=0

(
Pkjw

(k)
b (x̄i ) + Qkjw

(k)
s (x̄i )

)
= 0, j = 1, 2, (46)

or, equivalently

4∑
k=0

(
Pkjw

(k)
b + Qkjw

(k)
s

)
= 0, j = 1, 2, (47)

Substituting Eq. (45) in Eq. (47) yields[
4∑

k=0

PkjCMk

]
Ab +

[
4∑

k=0

QkjCMk

]
As = [0] , j = 1, 2, 0 ≤ x̄ ≤ 1 (48)
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Since the system of equations given by Eq. (48) is a consequence of collocating over the interior nodes to satisfy
Eq. (38), it therefore represents a set of

(
N̄ − i

)
equations involving

(
N̄ + 1

)
unknowns. Hence, the remaining

(i + 1) equations are generated as given in Eq. [49] by considering the boundary conditions given by Eq. (39).⎡
⎣ 3∑

j=0

(
αi j X0Mj + βi j X N̄ M j

)
⎤
⎦ Ab +

⎡
⎣ 3∑

j=0

(
γi j X0Mj + κi j X N̄ M j

)
⎤
⎦ As = [0] (49)

The overall set of the system of equations required to solve for the vector A = [Ab, As]T of the unknown
coefficients is given by Eq. (50) as a combination of domain and boundary equations.

⎡
⎢⎢⎢⎢⎣

[
4∑

k=0
PkjCMk

] [
4∑

k=0
QkjCMk

]

[
3∑
j=0

(
αi j X0Mj + βi j X N̄ M j

)] [ 3∑
j=0

(
γi j X0Mj + κi j X N̄ M j

)]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ab

As

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (50)

The natural frequency parameters ω̄n are obtained by equating determinant of the 2
(
N̄ + 1

) × 2
(
N̄ + 1

)
coefficient matrix of Eq. (50) to zero and solving the resulting equation.

5 Results and discussion

By implementing the DTM and TCM formulations presented in the previous sections, results for free vibration
analysis of orthotropic rectangular plate, based on the present theory (the RPT), with boundary conditions as
given in Table 1 are presented in the first part of the present section.

Comparison of the predicted resultswith those of other theories is, first, illustrated inSect. 5.1 for orthotropic
plates whose exact solution is available in the literature. Section 5.2 presents an extension of the problem to
cover SF, SC and SS rectangular plates. Convergence study for both DTM and TCM is given in Sect. 5.2.1,
followed by a parametric study, in Sect. 5.2.2, to illustrate the effect of different values of the thickness ratio
(a/h), the aspect ratio (a/b) and the modular ratio (E1/E2). For the sake of verification, analytical results
reported in [35] are given in each case.

Results for some cases whose analytical solutions are not readily available, particularly based on the two-
variable refined plate theory, are presented in Sect. 5.2.3. Formulations of three more plate theories, the CPT,
the FSDT [10,60,61] and the HSDT [62], were implemented and solved using both the DTM and TCM for
verification purposes. Similar to the case of RPT presented in the present work, the high-order theory in [62]
considers both the displacements in x and y directions, u and v, respectively, to be composed of shear and
bending components. However, while the bending components in [62] are similar to that of CPT, the shear
components are assumed to be exponential in nature with respect to the thickness coordinate. For that reason,
their theory is also referred to as the exponential shear deformation theory.

5.1 RPT-based DTM and TCM versus other plate theories

In order to demonstrate the performance of DTM and TCM based on the RPT, a simply supported square
orthotropic plate made from same material as that reported in the reference of Reddy [17] and, later,
adopted in [30,35], is considered. The material properties are E1 = 20, 830ksi, E2 = 10, 940ksi,G12 =
6, 100ksi,G13 = 3, 710ksi, υ12 = 0.44 and υ21 = 0.23 .

Three more plate theories, namely CPT, FSDT [10,60,61] and HSDT [62], were also formulated, imple-
mented and solved using both the DTM and TCM in order to demonstrate differences between models and
advantages of the proposed analysis. Details of the governing equations of these theories can be found in the
respective mentioned references.

As shown in Table 3, natural frequency parameters ω̄n = ωnh
√

ρ/Q11 predicted by DTM and TCM based
on the present theory compare favorably with the exact solution [71] based on 3D elasticity theory and the
HSDT [62] with a maximum deviation from the exact solution of 0.67% (on the conservative side). However,
it can be noticed that, while the CPT overestimates the natural frequencies, the FSDT results are a little less
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Table 3 Natural frequency parameters ω̄n = ωnh
√

ρ/Q11 of simply supported square plate with a
h = 10

Mode Exact ω̄n [59] Present CPT FSDT HSDT RPT

N̄ ω̄n N̄ ω̄n N̄ ω̄n N̄ ω̄n

1 0.0474 DTM 7 0.0532 7 0.0489 6 0.0439 7 0.0512
9 0.0490 9 0.0473 8 0.0492 9 0.0474
11 0.0493 11 0.0474 10 0.0474 11 0.0477
12 0.0493 12 0.0474 11 0.0474 12 0.0477

Error (%) 4.01 0.00 0.00 0.63
TCM 4 0.0484 2 1.3161 5 0.4623 4 0.0458

5 0.0485 4 0.0468 7 0.0473 6 0.0469
6 0.0493 6 0.0474 9 0.0474 8 0.0477
7 0.0493 7 0.0474 10 0.0474 9 0.0477

Error (%) 4.01 0.00 0.00 0.63
2 0.1033 DTM 7 0.1114 6 0.1015 8 0.1195 7 0.1054

9 0.1097 8 0.1021 10 0.1185 9 0.1039
11 0.1098 10 0.1032 12 0.1033 11 0.1040
12 0.1098 11 0.1032 13 0.1033 12 0.1040

Error (%) 6.29 −0.10 0.00 0.68
TCM 4 0.1085 7 0.1051 10 0.1085 4 0.1028

5 0.1094 9 0.1031 12 0.1015 5 0.1036
6 0.1098 11 0.1032 14 0.1033 6 0.1040
7 0.1098 12 0.1032 15 0.1033 7 0.1040

Error (%) 6.29 −0.10 0.00 0.68
3 0.1888 DTM 5 0.2030 11 0.1843 7 0.2354 5 0.1866

7 0.2082 13 0.1867 9 0.2178 7 0.1907
9 0.2070 15 0.1884 11 0.1887 9 0.1898

10 0.2070 16 0.1884 12 0.1887 10 0.1898
Error (%) 9.64 −0.21 −0.05 0.53
TCM 4 0.2060 10 0.1861 9 0.1886 4 0.1890

5 0.2068 12 0.1887 11 0.1887 6 0.1899
6 0.2071 14 0.1884 13 0.1887 8 0.1898
7 0.2071 15 0.1884 14 0.1887 9 0.1898

Error (%) 9.69 −0.21 −0.05 0.53
4 0.2969 DTM 5 0.3335 8 0.2986 7 0.3467 7 0.2986

7 0.3382 10 0.2924 9 0.3318 9 0.2979
9 0.3372 12 0.2960 11 0.2970 11 0.2980

10 0.3372 13 0.2960 12 0.2970 12 0.2980
Error (%) 13.57 −0.30 0.03 0.37
TCM 4 0.3363 13 0.2992 17 0.2967 4 0.2973

5 0.3370 15 0.2956 19 0.2964 5 0.2978
6 0.3372 17 0.2960 21 0.2965 6 0.2980
7 0.3372 18 0.2960 22 0.2965 7 0.2980

Error (%) 13.57 −0.30 −0.13 0.37

conservative compared to the present theory, at least for the orthotropic plate considered here. Although so far
there is no available plate theory that is both as simple as the CPT and as accurate (in all cases) as the other
more complex higher-order theories, the RPT attempts to satisfy such qualities to some extents. For instance,
its formulation resembles that of the CPT and, once the shear terms are dropped, the governing equations (Eq.
11) of the RPT turn, exactly, to the equation of CPT. Second, the elimination for the need of shear correction
as required in some shear deformation theories gives the present theory an additional advantage because it
still satisfies the zero-traction boundary condition at the top and bottom surfaces of the plate. In addition, the
resulting system of equations are easier to solve than those of other higher-order theories.

With regard to the method of solution, the results shown in Table 3 based on DTM and TCM agree per-
fectly with those reported in Refs. [30,35]. However, while both the DTM and TCM require lower N̄ value
to achieve convergence for all the four modes based on RPT, the N̄ value needed in the FSDT and HSDT
solution increases with increase in the mode and becomes much higher than those needed in RPT. This is
not surprising considering the complexity of the governing equations of FSDT and HSDT (available in the
respective references) compared to those of RPT (Eq. 11) and CPT.

By extending the analysis to cover additional plate types in terms of boundary conditions, geometric dimen-
sions and modular ratios, numerical results in the subsequent subsections are used to elaborate more on the
capability of the two methods of solution (DTM and TCM) proposed in this research.
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5.2 Extension to general rectangular plates with different boundary conditions

In this section, consideration is, initially, given to SF, SS and SC orthotropic plates having generic rectangu-
lar shapes with various thickness ratios. Non-dimensionalized material properties [35,72] are assumed thus:
G12/E2 = G13/E2 = 0.5,G23/E2 = 0.2, υ12 = 0.25 and E1/E2 is varied. First, convergence studies for
the DTM and TCM are carried out, followed by parametric studies. Next, multi-span plates and plates with
stepped thickness and end rotational springs are considered.

5.2.1 Convergence studies

In order to demonstrate the convergence behavior of DTM and TCM applied to SF, SS and SC plates, nine
cases of rectangular orthotropic plates are considered for each of SF, SS and SC plates, resulting in a total of 27
cases. The convergence results for the fundamental natural frequency parameters ω̄ = ω a2

h

√
ρ/E2 illustrating

effects of the aspect ratio, thickness ratio and modular ratio are, respectively, presented in Tables 4, 5 and 6.
Results predicted based on CPT and the analytical solution reported in [35] are also shown. Good agreement
exists between the DTM, TCMand analytical results, with the TCM resulting in lower percentage errors almost
consistently. However, it should be noted that, based on the CPT, both DTM and TCM provide solutions hav-
ing the same accuracy. In terms of computational demand, more computer memory is needed in TCM since
a system matrix of size 2

(
N̄ + 1

)× 2
(
N̄ + 1

)
needs to be handled, while DTM formulation results in only a

4 × 4 matrix size and, hence, it is less resource-consuming.
The purpose of using different values of a/h is to demonstrate the effect of plate thickness on the result. It is

evident, fromTable 5, that themagnitude of the error in CPT is higher for lower thickness ratios a/h = 5 and 20
(i.e., thick plates). This is expected due to the fact that CPT formulation neglects the effect of shear which, on
the other hand, is taken care of in RPT. Shear effects are only negligible in case of thin plates, and consequently,
the error in the plates with higher values of a/h (such as 100) becomes negligible in the predictions by CPT.

Increase in the modular ratio also causes increase in the shear effect, particularly for the SS and SC plates.
That is why, as given in Table 6, error in the solution based on CPT also increases with increase in E1/E2.
Such effect is, however, not observed in the SF plate because the free end relaxes the stiffness of the plate
which, in turn, causes less shear effect.

5.2.2 Parametric studies

Apart from the 27 cases analyzed in Sect. 5.2.1 above, a comprehensive parametric study consisting of 45 cases
with variations in the material modular ratio and geometric ratios is carried out for each of the SF, SS and SC
plate types. Hence, a total of 135 cases with the DTM and TCM applied to obtain solutions are presented. The
end results of the fundamental natural frequency parameters ω̄ = ω a2

h

√
ρ/E2 are presented in Tables 7, 8 and 9

for the SF, SS and SC plates, respectively. Variables targeted for the parametric study comprise of different
values of the thickness ratio (a/h), the aspect ratio (a/b) and the modular ratio (E1/E2). These results cover
other ranges of the variables not covered in Sect. 5.2.1, and they are presented in a more definite pattern to
enhance understanding the obvious roles played by each of the variables. Value of N̄ used in each method is
indicated as well as the error computed with respect to the analytical results available in [35].

It can be noticed that, throughout the results presented in Tables 7, 8 and 9, the effect of increasing the
aspect ratio and thickness ratio is to cause a corresponding increase in the fundamental natural frequency
parameter, hence, increase in the fundamental natural frequency for all the plate types studied. Similarly, the
effect of increasing the modular ratio causes an increase in the fundamental natural frequency parameter for
the SS and SC plates. On the other hand, no such effect is observed in the case of SF plate because of its free
end which lowers the plate’s stiffness. Denoting the fundamental natural frequency parameters for the SF, SS
and SC plates as ω̄SF , ω̄SS and ω̄SC , respectively, it can be seen that effect of end fixity suggests that, under
the same condition (same thickness ratio, aspect ratio and modular ratio), values of the fundamental natural
frequency parameters have magnitudes in the order ω̄SC > ω̄SS > ω̄SF . This is also confirmed by a general
analysis performed for arbitrary geometry and for elastic stiffeners along the part of the boundary in [73]. It
is logical to have such behavior due to the fact that increase in fixity results in higher reactive effects, in form
of increase in the stiffness, thereby amplifying the natural frequency.

It is worth mentioning that the both the two numerical methods, DTM and TCM, adopted in obtaining these
solutions do not require iterations as is the case with the analytical results reported in [35]. Additionally, unlike
other element-based numerical techniques, the DTM and TCM can be used to present solutions in symbolic
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Table 4 Convergence of fundamental frequency parameters ω̄ = ω a2
h

√
ρ/E2 for plates with a

h = 50 and E1
E2

= 10

a/b Theory/method SF SS SC

N̄ ω̄ N̄ ω̄ N̄ ω̄

0.5 CPT 1.3189 9.3409 14.3417
Error (%) 0.02 0.39 0.87

Present DTM 7 1.3215 7 11.6660 7 13.8004
9 1.3188 9 9.1326 9 13.7184

11 1.3187 11 9.3230 11 14.3240
12 1.3187 12 9.3230 12 14.3240

Error (%) 0.01 0.20 0.75
TCM 5 1.3251 6 9.3454 20 14.2192

7 1.3188 8 9.3035 22 14.2190
9 1.3186 10 9.3044 24 14.2188

10 1.3186 11 9.3044 25 14.2188
Error (%) 0.00 0.00 0.01

Analytical 1.3186 9.3044 14.2179
1.0 CPT 3.6107 10.4928 15.1988

Error (%) 0.10 0.38 0.77
Present DTM 7 3.6280 7 12.9848 7 14.1354

9 3.6091 9 10.3015 9 14.6449
11 3.6077 11 10.4680 11 15.1745
12 3.6077 12 10.4680 12 15.1745

Error (%) 0.01 0.14 0.61
TCM 13 3.6074 6 10.4893 20 15.0833

15 3.6073 8 10.4522 22 15.0832
17 3.6072 10 10.4530 24 15.0830
18 3.6072 11 10.4530 25 15.0830

Error (%) 0.00 0.00 0.00
Analytical 3.6072 10.4530 15.0824

2.0 CPT 12.2293 17.1223 20.5766
Error (%) 0.39 0.55 0.77

Present DTM 7 12.3176 7 18.3751 7 20.0321
9 12.2106 9 16.9400 9 20.2020

11 12.1851 11 17.0360 11 20.4814
12 12.1851 12 17.0360 12 20.4814

Error (%) 0.03 0.04 0.30
TCM 23 12.1822 6 17.0511 20 20.4202

25 12.1821 8 17.0289 22 20.4201
27 12.1817 10 17.0294 24 20.4200
28 12.1817 11 17.0294 25 20.4200

Error (%) 0.00 0.00 0.00
Analytical 12.1817 17.0294 20.4196

form which warrants the possibility of obtaining other secondary variables by differentiation, integration, etc.
Also, the obvious advantage of eliminating the need for method calibration as required in other meshless
methods, such as the Kansa method and method of fundamental solutions, adds to the appealing nature of the
presented methods.

5.2.3 Multi-span plates and plates with stepped thickness and end rotational springs

Since the problems presented in Sects. 5.2.1 and 5.2.2 are for single-span plates analyzed by the proposed
methods and verified using an existing analytical solution, the present section aims at presenting results for
some caseswhose analytical solution is not readily available particularly based on the two-variable refined plate
theory. For the sake of verification, formulation of three more plate theories, the CPT, the FSDT [10,60,61]
and the HSDT [62], was implemented and solved using both the DTM and TCM. These are the same plate
theories against which comparison of the results in Sect. 5.2.1 was made.

The analysis starts by, firstly, considering a multi-span Levy plate, consisting of (n − 1) internal supports.
Various engineering applications of such plates exist, such as in bridge decks, floor slabs, aeroplane parts, etc.
Such problems can be, conveniently,modeled as plateswith internal line supports are shown in Fig. 2. The prob-
lemnowgoes beyond just satisfying the governing equations in a span and the external boundary conditions as is
the case in the analysis carried out in the previous sections. In this case, the governing equationsmust be satisfied
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Table 5 Convergence of fundamental frequency parameters ω̄ = ω a2
h

√
ρ/E2 for plates with a

b = 2.0 and E1
E2

= 10

a/h Theory/method SF SS SC

N̄ ω̄ N̄ ω̄ N̄ ω̄

5 CPT 9.9516 15.8800 19.0438
Error (%) 10.91 36.43 48.79

Present DTM 32 8.9852 11 11.6428 33 12.8088
34 8.9821 13 11.6392 35 12.8056
36 8.9755 15 11.6394 37 12.8035
37 8.9755 16 11.6394 38 12.8035

Error (%) 0.03 0.00 0.03
TCM 20 8.9732 6 11.6474 18 12.7992

22 8.9728 8 11.6392 20 12.7991
24 8.9727 10 11.6394 22 12.7991
25 8.9727 11 11.6394 23 12.7991

Error (%) 0.00 0.00 0.00
Analytical 8.9727 11.6394 12.7991

20 CPT 12.1844 17.0490 20.4859
Error (%) 2.38 3.31 4.63

Present DTM 9 11.9539 9 16.4206 11 19.6737
11 11.9308 11 16.5114 13 19.6145
13 11.9240 13 16.5010 15 19.4740
14 11.9240 14 16.5010 16 19.4740

Error (%) 0.19 −0.01 −0.54
TCM 20 11.9033 6 16.5230 14 19.5838

22 11.9029 8 16.5026 16 19.5827
24 11.9030 10 16.5031 18 19.5820
25 11.9030 11 16.5031 19 19.5820

Error (%) 0.02 0.00 0.01
Analytical 11.9012 16.5030 19.5797

100 CPT 12.2357 17.1329 20.5897
Error (%) 0.10 0.14 0.19

Present DTM 5 12.6318 7 18.4801 5 21.5602
7 12.3307 9 17.0179 7 21.2473
9 12.2221 11 17.1030 9 20.3215

10 12.2221 12 17.1030 10 20.3215
Error (%) −0.01 −0.04 −1.11
TCM 9 12.2246 6 17.1315 4 19.7242

11 12.2241 8 17.1089 6 20.5622
13 12.2240 10 17.1094 8 20.5500
14 12.2240 11 17.1094 9 20.5500

Error (%) 0.00 0.00 0.00
Analytical 12.2238 17.1094 20.5500

in each of the “n” spans in turn. Also, in addition to the boundary conditions given in Table 1, the compatibility
conditions given by Eqs. (51) to (58) must hold at the interface between the i th and (i + 1)th span in order to
ensure continuity at the location of the internal supports. Consequently, the system of equations that needs to
be handled becomes different and much more involving than the case of single-span plates earlier analyzed.

(wb)i = 0 (51)

(ws)i = 0 (52)

(wb)i+1 = 0 (53)

(ws)i+1 = 0 (54)(
w′
b

)
i = (w′

b

)
i+1 (55)(

w′
s

)
i = (w′

s

)
i+1 (56)(−D11w

′′
b + D12β

2wb
)
i = (−D11w

′′
b + D12β

2wb
)
i+1 (57)(− (1/84)

(
D11w

′′
s − D12β

2ws
))

i = (− (1/84)
(
D11w

′′
s − D12β

2ws
))

i+1 (58)



32 F. M. Mukhtar

Table 6 Convergence of fundamental frequency parameters ω̄ = ω a2
h

√
ρ/E2 for plates with a

b = 0.5 and a
h = 100

E1
E2

Theory/method SF SS SC

N̄ ω̄ N̄ ω̄ N̄ ω̄

10 CPT 1.3190 9.3416 14.3442
Error (%) 0.00 0.09 0.21

Present DTM 5 1.3407 7 8.5354 7 13.2488
7 1.3217 9 9.1572 9 13.7818
9 1.3190 11 9.3220 11 14.3220

10 1.3190 12 9.3220 12 14.3220
Error (%) 0.00 −0.12 0.06
TCM 4 1.4772 8 9.3317 20 14.3133

5 1.3253 10 9.3327 22 14.3132
7 1.3190 12 9.3326 24 14.3131
8 1.3190 13 9.3326 25 14.3131

Error (%) 0.00 −0.01 0.00
Analytical 1.3190 9.3331 14.3137

25 CPT 1.3193 14.4571 22.4246
Error (%) 0.01 0.23 0.53

Present DTM 5 1.3281 7 18.0748 7 21.0018
7 1.3202 9 14.1457 9 21.4772
9 1.3192 11 14.4450 11 22.4400

10 1.3192 12 14.4450 12 22.4400
Error (%) 0.00 0.14 0.60
TCM 4 1.4711 6 14.4902 16 22.3075

6 1.3197 8 14.4223 18 22.3072
8 1.3192 10 14.4238 20 22.3069
9 1.3192 11 14.4238 21 22.3069

Error (%) 0.00 0.00 0.00
Analytical 1.3192 14.4245 22.3069

40 CPT 1.3193 18.1866 28.2839
Error (%) 0.00 0.36 0.84

Present DTM 5 1.3249 7 22.7126 7 26.7612
7 1.3199 9 17.7683 9 27.0147
9 1.3193 11 18.1570 11 28.2620

10 1.3193 12 18.1570 12 28.2620
Error (%) 0.00 0.20 0.76
TCM 4 1.4696 8 18.1187 18 28.0500

5 1.3210 10 18.1206 20 28.0490
7 1.3193 12 18.1205 22 28.0480
8 1.3193 13 18.1205 23 28.0480

Error (%) 0.00 −0.01 0.00
Analytical 1.3193 18.1215 28.0480

The two proposed methods, DTM and TCM, have been implemented based on RPT to solve a three-span plate
problemwith each span having a square shape. The sameproblemwas also solved based on threemore plate the-
ories (CPT, FSDT andHSDT) using the two techniques (DTMandTCM), and the results are shown in Table 10.

In order to generalize the case of multi-span Levy plates, plates with end rotational springs at the two
external boundaries (at x = 0 and x = a or, in non-dimensionalized form, x̄ = 0 and x̄ = 1) are considered.
The springs can represent location of continuity with adjacent plate members whose analysis is not included.
However, more interestingly, elastically supported plates represent the most general scenario of boundary
condition. The springs with non-dimensional stiffness k̄s = ks/

(
a2E2

)
are used to model the two-span plate

shown in Fig. 3. ks is the actual stiffness constant of the spring. Results achieved using the presented techniques
in this work for δ = 0.3 are shown in Table 11 based on both RPT and other plate theories.

The approach of formulating the multi-span problem above can be extended to deal with Levy plates with
stepped thickness which can have any number of thickness segments “n.” Again, for the sake of generalization
of the edge fixity conditions, end rotational springs are incorporated in the model as shown in Fig. 4. Although
the problem consists of a single span, the presence of the thickness steps results in the need to ensure continuity
conditions at the interface between the segments by satisfying the additional equations given by Eqs. (59) to
(66). These conditions are different from those (Eqs. 51–58) satisfied in the case of multi-span plates. Results
for a plate with two thickness steps of equal length in x-direction are shown in Table 11. It should be noted that,
unlike the previous cases treated for SS, SC and SF plates, and unlike the multi-span plates without springs,
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Table 7 Fundamental frequency parameters ω̄ = ω a2
h

√
ρ/E2 for SF plate

a/b a/h Method N̄ E1/E2

3 20 30 40 50

0.5 5 Present DTM/%Err. 20 1.2808 0.23 1.2801 0.14 1.2797 0.09 1.2794 0.07 1.2792 0.05
TCM/%Err. 25 1.2780 0.01 1.2783 0.00 1.2785 0.00 1.2785 0.00 1.2786 0.00

Analytical – 1.2779 1.2783 1.2785 1.2785 1.2786
20 Present DTM/%Err. 22 1.3164 0.03 1.3165 0.00 1.3166 0.00 1.3168 0.02 1.3169 0.02

TCM/%Err. 25 1.3161 0.01 1.3165 0.00 1.3166 0.00 1.3167 0.01 1.3167 0.00
Analytical – 1.3160 1.3165 1.3166 1.3166 1.3167

50 Present DTM/%Err. 10 1.3189 0.05 1.3189 0.01 1.3190 0.01 1.3190 0.01 1.3190 0.01
TCM/%Err. 15 1.3183 0.00 1.3188 0.00 1.3189 0.00 1.3189 0.00 1.3190 0.01

Analytical – 1.3183 1.3188 1.3189 1.3189 1.3189
1.0 5 Present DTM/%Err. 31 3.2680 0.21 3.2582 0.00 3.2587 0.00 3.2589 0.00 3.2591 0.00

TCM/%Err. 25 3.2610 0.00 3.2582 0.00 3.2586 0.00 3.2589 0.00 3.2591 0.00
Analytical – 3.2611 3.2582 3.2586 3.2589 3.2591

20 Present DTM/%Err. 16 3.5949 0.14 3.5875 0.06 3.5874 0.05 3.5876 0.05 3.5877 0.05
TCM/%Err. 25 3.5900 0.00 3.5855 0.00 3.5857 0.00 3.5859 0.00 3.5860 0.00

Analytical – 3.5900 3.5854 3.5857 3.5858 3.5859
50 Present DTM/%Err. 12 3.6309 0.52 3.6080 0.02 3.6082 0.01 3.6084 0.01 3.6085 0.01

TCM/%Err. 15 3.6122 0.00 3.6075 0.00 3.6078 0.00 3.6080 0.00 3.6081 0.00
Analytical – 3.6121 3.6074 3.6077 3.6079 3.6080

2.0 5 Present DTM/%Err. 31 9.0750 0.88 8.9739 0.03 8.9726 0.00 8.9730 0.00 8.9737 0.00
TCM/%Err. 25 8.9967 0.01 8.9715 0.00 8.9722 0.00 8.9730 0.00 8.9737 0.00

Analytical – 8.9954 8.9715 8.9722 8.9730 8.9737
20 Present DTM/%Err. 20 12.0400 0.73 11.9100 0.12 11.9000 0.05 11.9000 0.05 11.9050 0.09

TCM/%Err. 25 11.9551 0.02 11.8960 0.01 11.8949 0.00 11.8947 0.00 11.8947 0.00
Analytical – 11.9528 11.8952 11.8945 11.8944 11.8946

50 Present DTM/%Err. 12 12.3926 1.27 12.1802 0.04 12.1792 0.04 12.1790 0.04 12.1791 0.04
TCM/%Err. 25 12.2375 0.00 12.1755 0.00 12.1745 0.00 12.1744 0.00 12.1745 0.00

Analytical – 12.2370 12.1752 12.1743 12.1742 12.1742

Table 8 Fundamental frequency parameters ω̄ = ω a2
h

√
ρ/E2 for SS plate

a/b a/h Method N̄ E1/E2

3 20 30 40 50

0.5 5 Present DTM/%Err. 15 4.8399 0.00 8.2401 0.00 8.8813 0.00 9.2832 0.00 9.5660 0.00
TCM/%Err. 25 4.8399 0.00 8.2401 0.00 8.8813 0.00 9.2832 0.00 9.5660 0.00

Analytical – 4.8399 8.2401 8.8813 9.2832 9.5660
20 Present DTM/%Err. 20 5.4774 0.16 12.4005 0.00 14.7975 0.00 16.7100 0.00 18.3070 0.00

TCM/%Err. 25 5.4685 0.00 12.4009 0.00 14.7974 0.00 16.7105 0.00 18.3073 0.00
Analytical – 5.4685 12.4009 14.7974 16.7105 18.3073

50 Present DTM/%Err. 14 5.5000−0.23 12.9060 0.20 15.6250 0.00 17.9240 0.00 19.9300−0.02
TCM/%Err. 25 5.5126 0.00 12.8804 0.00 15.6247 0.00 17.9239 0.00 19.9333 0.00

Analytical – 5.5126 12.8804 15.6246 17.9239 19.9333
1.0 5 Present DTM/%Err. 17 6.1425 0.00 9.0458 0.00 9.7339 0.00 10.1864 0.00 10.5121 0.00

TCM/%Err. 25 6.1425 0.00 9.0458 0.00 9.7339 0.00 10.1864 0.00 10.5121 0.00
Analytical – 6.1425 9.0458 9.7339 10.1864 10.5121

20 Present DTM/%Err. 19 7.2200 0.01 13.2500−0.13 15.5840 0.00 17.4835 0.00 19.1000 0.00
TCM/%Err. 25 7.2194 0.00 13.2676 0.00 15.5846 0.00 17.4839 0.00 19.1002 0.00

Analytical – 7.2194 13.2676 15.5845 17.4839 19.1002
50 Present DTM/%Err. 12 7.3000−0.02 13.7600 0.17 16.3772 0.18 18.6072 0.19 20.5765 0.19

TCM/%Err. 25 7.3012 0.00 13.7360 0.00 16.3474 0.00 18.5726 0.00 20.5377 0.00
Analytical – 7.3012 13.7360 16.3474 18.5726 20.5377

2.0 5 Present DTM/%Err. 16 10.9975 0.00 12.3588 0.00 12.9019 0.00 13.3277 0.00 13.6720 0.00
TCM/%Err. 25 10.9975 0.00 12.3588 0.00 12.9019 0.00 13.3277 0.00 13.6720 0.00

Analytical – 10.9975 12.3588 12.9019 13.3277 13.6720
20 Present DTM/%Err. 16 14.9795 0.02 18.4740 0.00 20.2036 0.00 21.7469 0.00 23.1428 0.00

TCM/%Err. 25 14.9773 0.00 18.4742 0.00 20.2036 0.00 21.7468 0.00 23.1427 0.00
Analytical – 14.9772 18.4742 20.2036 21.7468 23.1427

50 Present DTM/%Err. 13 15.3502−0.19 19.2156 0.09 21.1663 0.11 22.9120−0.01 24.5480−0.01
TCM/%Err. 25 15.3796 0.00 19.1992 0.00 21.1436 0.00 22.9151 0.00 24.5504 0.00

Analytical – 15.3796 19.1992 21.1436 22.9151 24.5504
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Table 9 Fundamental frequency parameters ω̄ = ω a2
h

√
ρ/E2 for SC plate

a/b a/h Method N̄ E1/E2

3 20 30 40 50

0.5 5 Present DTM/%Err. 29 6.5400 0.74 9.7814 0.11 10.2926 0.02 10.6329 0.01 10.8923 0.00
TCM/%Err. 25 6.4920 0.00 9.7709 0.00 10.2901 0.00 10.6323 0.00 10.8921 0.00

Analytical – 6.4917 9.7709 10.2901 10.6323 10.8921
20 Present DTM/%Err. 21 8.0500 0.11 18.2250−0.02 21.3750 0.05 23.7500 0.13 25.7900 0.80

TCM/%Err. 25 8.0418 0.01 18.2310 0.01 21.3647 0.01 23.7211 0.01 25.5865 0.01
Analytical – 8.0410 18.2286 21.3634 23.7191 25.5851

50 Present DTM/%Err. 13 8.1750 0.07 19.9270 0.86 23.9440 0.07 27.4445 0.28 30.4350 0.34
TCM/%Err. 25 8.1692 0.00 19.7581 0.01 23.9296 0.01 27.3706 0.01 30.3356 0.01

Analytical – 8.1690 19.7562 23.9265 27.3668 30.3311
1.0 5 Present DTM/%Err. 30 7.5297 0.82 10.6965 0.08 11.2745 0.02 11.6554 0.00 11.9400 0.00

TCM/%Err. 25 7.4689 0.00 10.6878 0.00 11.2725 0.00 11.6549 0.00 11.9399 0.00
Analytical – 7.4686 10.6878 11.2725 11.6549 11.9399

20 Present DTM/%Err. 22 9.3740−0.51 19.1240 0.38 22.3250 0.23 24.8120 0.20 26.9144 0.51
TCM/%Err. 25 9.4227 0.01 19.0526 0.01 22.2747 0.00 24.7638 0.00 26.7789 0.01

Analytical – 9.4219 19.0510 22.2738 24.7632 26.7775
50 Present DTM/%Err. 15 9.4265−1.70 20.5705 0.74 24.5450 0.07 27.9880 0.10 30.8850−0.18

TCM/%Err. 25 9.5900 0.00 20.4210 0.01 24.5305 0.01 27.9616 0.01 30.9441 0.01
Analytical – 9.5898 20.4197 24.5288 27.9597 30.9416

2.0 5 Present DTM/%Err. 21 11.6520 0.37 13.8598 0.27 14.4964 0.16 14.9477 0.10 15.2933 0.06
TCM/%Err. 25 11.6092 0.00 13.8229 0.00 14.4727 0.00 14.9333 0.00 15.2847 0.00

Analytical – 11.6089 13.8229 14.4727 14.9333 15.2847
20 Present DTM/%Err. 19 16.3940 0.46 23.3000 0.21 26.2455 0.18 28.7151 0.18 30.8502 0.22

TCM/%Err. 25 16.3198 0.01 23.2521 0.00 26.1978 0.00 28.6630 0.00 30.7814 0.00
Analytical – 16.3187 23.2516 26.1972 28.6627 30.7812

50 Present DTM/%Err. 15 16.8825 0.36 24.6202−0.10 28.2062 0.03 31.3150 0.02 34.1000−0.01
TCM/%Err. 25 16.8221 0.00 24.6442 0.00 28.1982 0.00 31.3105 0.00 34.1033 0.00

Analytical – 16.8218 24.6437 28.1975 31.3099 34.1026

Fig. 2 Multi-span plate (thickness not shown) consisting of (n−1) internal supports

Table 10 Frequency ω̄ = ω a2
h

√
ρ/E2 for a three-span plate with a

b = 3.0, a
h = 10 and E1

E2
= 5

Method CPT FSDT HSDT RPT

N̄ ω̄ N̄ ω̄ N̄ ω̄ N̄ ω̄

DTM 7 8.6465 9 7.5464 6 7.6435 7 9.5287
9 8.1837 11 7.6452 8 7.7756 9 7.7513
11 8.2887 13 7.8102 10 7.8248 11 7.8415
12 8.2887 14 7.8202 11 7.8284 12 7.8415

TCM 6 8.3017 5 7.8096 5 7.8240 6 7.8521
8 8.2783 7 7.8316 7 7.8343 8 7.8322

10 8.2788 9 7.8309 9 7.8342 10 7.8327
11 8.2788 10 7.8309 10 7.8342 11 7.8327
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Fig. 3 A two-span plate (thickness not shown) with end rotational springs of stiffness k̄s

Table 11 Frequency ω̄ = ω a2
h

√
ρ/E2 for a two-span plate and plate with stepped thickness and end rotational springs: a

b = 3.0,
a
h = 10 and E1

E2
= 5

Plate type k̄s Method CPT FSDT HSDT RPT

N̄ ω̄ N̄ ω̄ N̄ ω̄ N̄ ω̄

Two span (Fig. 3) 0 DTM 11 11.2056 12 10.4024 14 10.4047 13 10.4034
TCM 10 11.1869 10 10.4050 9 10.4042 10 10.4035

5 DTM 11 13.4678 12 12.4133 11 12.4218 12 12.4533
TCM 12 13.7681 9 12.4211 11 12.4200 10 12.4221

Plate with two thickness steps 0 DTM 19 9.9732 23 8.8001 21 8.7432 23 8.8001
TCM 20 10.0185 23 8.7446 23 8.7511 23 8.7831

5 DTM 21 16.5312 23 15.2061 25 15.2210 23 15.2356
TCM 22 16.2456 24 15.2112 23 15.2300 24 15.2420

Fig. 4 Plate with stepped thickness (“n” segments) and end rotational springs of stiffness k̄s

the moment boundary conditions at the two edges (i.e., at x = 0 and x = a) in the case of plates with rotational
springs needs to be modified. These modifications are given by Eqs. (67) and (68) and are applied to both the
two-span plate with end springs and the plate with stepped thickness and end springs above.

It is clear in all the three problems presented in this section that the RPT-based DTM and TCM predicts
the frequency factors that agree closely with the HSDT with marginal differences on the conservative side,
whereas the CPT overestimates these factors. It is interesting to note that since TCM is fully numerical, it turns
out to be more flexible than DTM which is semi-analytical in nature. As a result, the former can be applied
(but with different formulation from the one presented in this work) to handle non-classic (non-canonic) plate
shapes, while the applicability of the latter for such cases needs to be established by further research.

(wb)i = (wb)i+1 (59)

(ws)i = (ws)i+1 (60)(
w′
b

)
i = (w′

b

)
i+1 (61)(

w′
s

)
i = (w′

s

)
i+1 (62)(−D11w

′′
b + D12β

2wb
)
i = (−D11w

′′
b + D12β

2wb
)
i+1 (63)(− (1/84)

(
D11w

′′
s − D12β

2ws
))

i = (− (1/84)
(
D11w

′′
s − D12β

2ws
))

i+1 (64)
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(−D11w
′′′
b + ((D12 + 4D66) β2 − I2ω

2
n

)
w′
b

)
i = (−D11w

′′′
b + ((D12 + 4D66) β2 − I2ω

2
n

)
w′
b

)
i+1

(65)(−D11w
′′′
s + ((D12 + 4D66) β2 − I2ω

2
n + 84A55

)
w′
s

)
i = (−D11w

′′′
s + ((D12 + 4D66) β2

−I2ω
2
n + 84A55

)
w′
s

)
i+1 (66)

−D11w
′′
b + D12β

2wb = k̄sw
′
b (67)

− (1/84)
(
D11w

′′
s − D12β

2ws
) = k̄sw

′
s (68)

6 Conclusions

In this paper, free vibration analysis of orthotropic plates has been carried out using the differential transform
method (DTM) and Taylor collocation method (TCM) based on the two-variable refined plate theory. Detailed
formulations of the methods have been given, followed by their implementation on plates having different end
conditions. The results have been verified using the analytical solution in cases of SS, SC and SF plates based
on the same theory, and consequently, various factors ranging from geometric to material parameters have been
studied. Cases of multi-span plates and plates with stepped thickness and end rotational springs were also stud-
ied in order to show the capability of the proposed methods and the plate theory, the RPT, in solving problems
whose analytical solutions are not readily available. Comparison have also been made with the results based on
other plate theories, such as the classical plate theory, the first-order shear deformation theory and the high-order
shear deformation theory. In light of the outcome of the analyses, the following conclusions can be drawn.

1. Although the classical plate theory is the simplest and most appealing compared to other shear deformation
theories, and since it cannot be relied upon in all situations, the two-variable refined plate theory serves as
a good alternative since its formulation is relatively simple and resembles that of the classical plate theory,
and yet it takes into account the effect of shear deformation. In addition, the resulting system of equations
are easier to solve than those of other higher order theories.

2. Contrary to the case of some shear deformation theories, the present theory does not require any shear
correction factor and it results in quadratic distribution of the shear stress satisfying zero-traction boundary
condition at the top and bottom surfaces of the plate.

3. Compared to the present theory, the classical plate theory overestimates the natural frequencies.
4. Capability of DTM and TCM to analyze orthotropic plates has been proven, and good agreement exists

between the results achieved and the analytical ones for SS, SC and SF plates on the one hand, and the FSDT
and HSDT for multi-span plates and plates with stepped thickness and end rotational springs on the other.

5. In cases of SS, SC and SF plates based on CPT, accuracy level of both DTM and TCM is the same. How-
ever, based on RPT, results obtained from TCM are, in few cases, better (though not significantly different
from the DTM). On the other hand, the DTM requires less computer memory in its solution because the
final size of the system matrix is much smaller than that needed to be handled in the TCM. For example,
while solution for SF, SS and SC plates using the DTM requires dealing with just a 4× 4 matrix, the TCM
requires one to deal with a 2

(
N̄ + 1

)× 2
(
N̄ + 1

)
matrix for the same plates.

6. The effect of increasing the aspect ratio and thickness ratio is to cause a corresponding increase in the
fundamental natural frequency parameter, hence, increase in the fundamental natural frequency for all the
plate types studied.

7. The effect of increasing the modular ratio causes an increase in the fundamental natural frequency parame-
ter for the SS and SC plates. On the other hand, no such effect is observed in the case of SF plate because
of its free end which lowers the plate’s stiffness.

8. Denoting the fundamental natural frequency parameters for the SF, SS and SC plates as ω̄SF , ω̄SS and
ω̄SC , it can be seen that under the same condition (same thickness ratio, aspect ratio and modular ratio),
values of the fundamental natural frequency parameters have magnitudes in the order ω̄SC > ω̄SS > ω̄SF .
Similar finding is confirmed in [73].

9. Both the two numerical methods, DTM and TCM, adopted in obtaining these solutions do not require
iterations as is the case with the analytical results reported in [35].

10. Unlike other element-based numerical techniques, the DTM and TCM can be used to present solutions in
symbolic forms which warrants the possibility of obtaining other secondary variables by differentiation,
integration, etc.
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11. The obvious advantage of eliminating the need for method calibration as required in other meshless meth-
ods, such as the Kansa method and method of fundamental solutions, adds to the appealing nature of the
presented methods.

Acknowledgements The author would like to acknowledge the support of King Fahd University of Petroleum & Minerals
(KFUPM).

Appendix

Coefficients ai j , {i, j = 1, 2, 3, 4} appearing in the DTM-based system matrix given in Eq. (33).

SC—Plate:

a11 =
(

1∑N
k=3 Coeff. [Wb (k) , ζb]

+ 1

)
, a1 j = 1, j = 2, 3, 4

a22 =
(

1∑N
k=3 Coeff. [Ws (k) , ηb]

+ 1

)
, a2 j = 1, j = 1, 3, 4

a33 =
(

1∑N
k=3 Coeff. [Wb (k) , ζs]

+ 1

)
, a3 j =

N∑
k=1

k, j = 1, 2, 4

a44 =
(

1∑N
k=3 Coeff. [Ws (k) , ηs]

+ 1

)
, a4 j =

N∑
k=1

k, j = 1, 2, 3

SS—Plate:

a1 j = 1, j = 1, 2, 3, 4

a2 j = 1, j = 1, 2, 3, 4

a31 = D12β
2∑N

k=2 Coeff. [Wb (k) , ζb]
+
(

−D11

N∑
k=2

k (k − 1) + D12β
2

)

a3 j = −D11

N∑
k=2

k (k − 1) + D12β
2, j = 2, 3, 4

a41 = −
(

1

84

)[ −D12β
2∑N

k=2 Coeff. [Ws (k) , ζb]
+
(
D11

N∑
k=2

k (k − 1) − D12β
2

)]

a4 j = −
(

1

84

)(
D11

N∑
k=2

k (k − 1) − D12β
2

)
, j = 2, 3, 4

SF—Plate:

a11 =
(

D12β
2∑N

k=3 Wb (k)
+ D12β

2 − D11

N∑
k=3

k (k − 1)

)
,

a1 j = D12β
2 − D11

N∑
k=3

k (k − 1) , j = 2, 3, 4

a23 = −
(

1

84

)(
− D12β

2∑N
k=3 Ws (k)

− D12β
2 + D11

N∑
k=3

k (k − 1)

)
,
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a2 j = −
(

1

84

)(
−D12β

2 + D11

N∑
k=3

k (k − 1)

)
, j = 1, 2, 4

a31 =
[(

(D12 + 4D66) β2 − I2ω
2
n

) ( 1∑N
k=3 Wb (k)

+
N∑

k=3

k

)
− D11
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k=3

k (k − 1) (k − 2)

]

a3 j =
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(D12 + 4D66) β2 − I2ω
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n
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k=3

k
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− D11
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k=3

k (k − 1) (k − 2)
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, j = 2, 3, 4

a41 =
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n + 84A55
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