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Abstract In this work, the Maxwell stresses arising due to an electric and a magnetic field both at the crack
faces and infinity are taken into account to determine and analyse some main fracture parameters for a periodic
system of cracks in a magneto-electro-elastic material. A plane strain problem is formulated and analysed.
At the crack faces, the limited permeable electromagnetic boundary conditions are assumed. The material
is subjected to a relatively weak mechanical and a strong electric and magnetic loading applied at infinity.
The solution of the problem is obtained in a closed form using a complex function theory. Formulas for
stresses, magnetic induction and electric displacement vector, elastic displacements, magnetic and electric
potential jumps at the interface as well as the intensity factors at the crack tips are presented as relatively
simple analytical expressions. The system of two cubic equations is obtained for the electric displacement and
magnetic induction in the crack regions. A case of a single limited permeable crack in amagneto-electro-elastic
medium is studied as well, and the results related to this case and to the periodic crack set are compared.

Keywords Magneto-electro-elastic material · Periodic limited permeable crack · Analytical solutions ·
Maxwell stresses

1 Introduction

Multi-physics materials are often used in modern technologies such as smart structures, active control and
others. They include piezoelectricmaterials,magneto-electro-elasticmaterials, shapememory alloys, dielectric
elastomers and hydrogels (e.g. [1,21]). These materials have the capability to serve as sensors, actuators,
transducers, vibration absorber and so on. Some of these materials are very brittle and can have single or
multiple cracks sensitive to different physical fields. For example, in magneto-electro-elastic materials, a
premature failure can be caused by mechanical stresses coupled with an electrical or/and magnetic fields.
Usually, appearing and developing of cracks is initiated by the initial imperfect bonding or during the service
life. Therefore, it is very important to study cracks in such active materials under coupled action of mechanical
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stresses, electric and magnetic fields. Among the important aspects of studying cracks in such multi-physics
materials are the electric and magnetic boundary conditions on the crack faces and infinity. These factors
have already attracted attention in the scientific literature. The crack face conditions taking into account the
properties of the crack medium (air, water and so on) were suggested by Parton and Kudryavtsev [18] and Hao
and Shen [7]. They were analysed and further developed in papers by McMeeking [17], Gruebner et al. [6],
Wang and May [26] and others.

Studies of systems of cracks and periodic sets of cracks in piezoelectric and magneto-electro-elastic solids
with different boundary condition along the crack faces were performed by, for example, Gao et al. [5], Zhou
et al [31], Wang and Mai [27], Zhong [32], Kozinov et al. [11], Bhargava and Jangaid [2], Viun et al. [25] and
others.

The overwhelming majority of previous investigations were based on the traditional assumption that the
crack surfaces are traction-free. However, if the adjacent bodies (e.g. a crack face and a crack filler) exhibit
different physical properties, then the electric fields induce forces at the interfaces. In electrostatics, these forces
are called as Coulomb forces [20] while within the framework of a continuum field theory the term “Maxwell
stresses” is frequently used [29]. Since the associated forces are called “Maxwell stresses” in magneto statics
as well, this term will be used in the present paper.

In Landis [12], themagnitude of theCoulomb traction in piezoelectricmaterialswas evaluated. In thiswork,
the energetically consistent boundary conditions are applied to the Griffith crack problem in a piezoelectric
solid. After that, a crack in piezoelectric ceramic under the nontraction-free condition was studied in Li and
Chen [14], Ricoeur and Kuna [20] and axisymmetric problem of a penny-shaped crack was studied in Li et
al. [16]. The limited permeable electric condition with an account of electric traction for the crack moving
along the interface of a piezoelectric bi-material is studied by Lapusta et al. [13]. Coulomb traction for a
semi-permeable interface crack between dielectric and piezoelectric material is considered in Li and Chen
[15]. The effects of Maxwell stresses on the stress and electric displacement intensity factors are studied in
Zhang andWang [29] for the crack in piezoelectric material. In this work, theMaxwell stress on the crack faces
and on the infinity was used. The results are presented for the case, when the crack and the surrounding space
at infinity are filled with different dielectric medium. In Hasebe [9], an infinite thin plate with an elliptical hole
in magneto-elastic material is considered and Maxwell stress induced by the magnetic field is introduced.

In an “infinite”magneto-electro-elasticmaterial subjected to a simultaneous action ofmechanical,magnetic
and electric loads, theMaxwell stresses due to both electric andmagnetic fields will appear at the crack surfaces
and “infinity”. These stresses can have an important effect on the fracture behaviour of crackedmagneto-electro-
elastic bodies, as mentioned in some of the above citations. However, such an analysis of a periodic system
of interacting cracks has not been considered neither in the recent authors’ paper [25] related to this subject
nor in any other paper. Therefore, in the present paper, we account for these Maxwell stresses induced by both
electric and magnetic fields in a problem for a periodic set of limited electrically and magnetically permeable
cracks in a magneto-electro-elastic material. Also, the Maxwell stresses at infinity are accounted for and a
particular case of single crack is analysed as well.

2 Formulation of the problem

Consider an infinite magneto-electro-elastic medium with a periodic set of cracks. The cracks have a length
2a and a period h, as depicted in Fig. 1. At the crack faces, limited permeable electric and magnetic boundary
conditions are assumed. Also, a mechanical stress σ33 = σ∞, a magnetic induction B3 = B∞ and an electric
displacement D3 = D∞ are applied at infinity.

Similarly to the works of Hao and Shen [7] and Wang and Mai [27] for a single crack in a homogeneous
piezoelectric material and in magneto-electro-elastic material, respectively, we assume that the electric flux
and magnetic induction at the crack regions (−a, a) have a constant but unknown values D0 and B0.

The Maxwell stress σ M
0 caused by an electric displacement and a magnetic induction on the crack has the

following form ([9,20,23]):

σ M
0 = 1

2

D2
0

εa

(
1 − εa

ε33

)
+ 1

2

B2
0

γa

(
1 − γa

γ33

)
(1)

where εa and γa are the electric and magnetic permeability of the crack medium, respectively; ε33 and γ33 are
the electric and magnetic permeability of the material in the direction x3, respectively. Note that this equation
for Maxwell stress includes the unknown values of electric displacement D0 and magnetic induction B0 in the
crack regions.
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Fig. 1 Periodic set of cracks in magneto-electro-elastic space

For a strip |x1| ∈ (−h, h) in case of limited permeable cracks |x1| ∈ (−a, a) in a homogeneous magneto-
electro-elastic medium, we get the following formulation:

σ13 (x1, 0) = 0, |x1| < a; (2)

σ33 (x1, 0) = σ M
0 , D3 (x1, 0) = D0, B3 (x1, 0) = B0, |x1| < a, (3)

Here, as mentioned before, D0 and B0 are unknown electric and magnetic fluxes through the crack regions.
The Maxwell stress σ M∞ at infinity (for x3 → ∞) caused by external electric and magnetic fields can be

presented in the following form:

σ M∞ = 1

2

(D∞)2

εsp

(
1 − εsp

ε33

)
+ 1

2

(B∞)2

γsp

(
1 − γsp

γ33

)
(4)

where εsp and μsp are electric and magnetic permeability of the surrounding space. It should be noted that
the load σ M∞ can be found directly from Eq. (4). At the same time, σ M

0 is coupled with known external
loads (σ∞, D∞, B∞), known external Maxwell stress σ M∞ and unknown constants D0 and B0 (electric and
magnetic fluxes through the crack regions).

The conditions of mechanical, magnetic and electric continuity have the following form:

σ+
i3 (x1, 0) = σ−

i3 (x1, 0) , u+
i (x1, 0) = u−

i (x1, 0) , (5a)

D+
3 (x1, 0) = D−

3 (x1, 0) , φ+ (x1, 0) = φ− (x1, 0) , (5b)

B+
3 (x1, 0) = B−

3 (x1, 0) , ψ+ (x1, 0) = ψ− (x1, 0) (5c)

for x1 /∈ (−a, a) , i = 1, 3 where uk, ψ, φ, σi j , Di and Bi are elastic displacements, magnetic potential,
electric potential, stresses, electric displacements and magnetic induction components, respectively.
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3 Problem solution

Similarly to Viun et al. [25], the electro-magneto-mechanical quantities are introduced in the form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ33 (x1, 0) = G33
[
W+

3 (x1) + W−
3 (x1)

] + G34
[
W+

4 (x1) + W−
4 (x1)

] + G35
[
W+

5 (x1) + W−
5 (x1)

]
D3 (x1, 0) = G43

[
W+

3 (x1) + W−
3 (x1)

] + G44
[
W+

4 (x1) + W−
4 (x1)

] + G45
[
W+

5 (x1) + W−
5 (x1)

]
B3 (x1, 0) = G53

[
W+

3 (x1) + W−
3 (x1)

] + G54
[
W+

4 (x1) + W−
4 (x1)

] + G55
[
W+

5 (x1) + W−
5 (x1)

] ,

(6)⎧⎪⎪⎨
⎪⎪⎩

〈
u′
3 (x1, 0)

〉 = W+
3 (x1) − W−

3 (x1)〈
φ′ (x1, 0)

〉 = W+
4 (x1) − W−

4 (x1)〈
ψ ′ (x1, 0)

〉 = W+
5 (x1) − W−

5 (x1)

, (7)

where G = [
Gi j

]∣∣
i, j=3,4,5 is a material characteristics matrix 〈 f (x1)〉 = f + (x1) − f − (x1) is the jump of

the function f (x1) across x1-axis.Wi (z) i = 3, 4, 5 are functions, which under the conditions (5) are analytic
in the whole plane with a cut along the crack segment.

Satisfying the boundary conditions (2), (3) by means of (6), (7), one gets the problem of linear relationship
for electro-magneto-mechanical fields:

⎧⎨
⎩
G33

[
W+

3 (x1) + W−
3 (x1)

] + G34
[
W+

4 (x1) + W−
4 (x1)

] + G35
[
W+

5 (x1) + W−
5 (x1)

] = σ M
0 ,

G43
[
W+

3 (x1) + W−
3 (x1)

] + G44
[
W+

4 (x1) + W−
4 (x1)

] + G45
[
W+

5 (x1) + W−
5 (x1)

] = D0,

G53
[
W+

3 (x1) + W−
3 (x1)

] + G54
[
W+

4 (x1) + W−
4 (x1)

] + G55
[
W+

5 (x1) + W−
5 (x1)

] = B0.

|x1| ≤ a,

(8)
Taking into consideration the Maxwell stress at the interface between the magneto-electro-elastic media and
another dielectric medium at infinity, defined by means of Eqs. (4) and using (6) for x1 → ∞, the conditions
at infinity attain the following form:

[
W+

i+2 (x1) + W−
i+2 (x1)

]∣∣
x1→∞ = 0.5

3∑
n=1

�inF
∞
n , i = 1, 2, 3, (9)

where F∞ = [
σ∞ + σ M∞, D∞, B∞]T

,� = G−1.
The conditions of the single valuedness of the mechanical displacement and the absence of the total electric

and magnetic charges in the crack regions are:

∫ a

−a

[
W+

i (x1) − W−
i (x1)

]
dx1 = 0, i = 3, 4, 5. (10)

Solving the problem of linear relationship (8) (Gakhov [4]) with the additional conditions (9) and (10), we
obtain:

Wi+2 (z) =
0.5

[∑3
n=1 �in

(
F∞
n − Fn

)]
sin

(
π z

h

)
√
sin

(
π z−a

h

)
sin

(
π z+a

h

) + 0.5
3∑

n=1

�inFn, i = 1, 2, 3 (11)

where F = [
σ M
0 , D0, B0

]T
.

Using Eqs. (6) and (11), we get the following expressions for electro-magneto-mechanical fields on x1 /∈
(−a, a): ⎧⎨

⎩
σ33 (x1, 0) = (

σ∞ + σ M∞ − σ M
0

)
H (x1) + σ M

0 ,

D3 (x1, 0) = (D∞ − D0) H (x1) + D0,
B3 (x1, 0) = (B∞ − B0) H (x1) + B0,

(12)

where H (x1) = sin
(
π x1

h

) [
sin

(
π x1−a

h

)
sin

(
π x1+a

h

)]−0.5
.
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Introducing the intensity factors (IFs) vector of electro-magneto-mechanical quantities:

K1 = lim
x1→a+0

√
2π (x1 − a)σ33 (x1, 0)

K4 = lim
x1→a+0

√
2π (x1 − a)D3 (x1, 0) ,

K5 = lim
x1→a+0

√
2π (x1 − a)B3 (x1, 0)

one gets the expression:

K = (
F∞ − F

)√
h tan

(
π
a

h

)
, (13)

where K = [K1, K4, K5]T .
Using the electro-magneto-mechanical quantities in the form (6) and the equations of linear relationship in

the form (8), the jumps of the normal mechanical displacement, electrical and magnetic potentials on |x1| ≤ a
can be presented in the form:⎧⎨

⎩
〈
u′
3 (x1, 0)

〉 = 4
∑3

n=1 	1n
(
F∞
n − Fn

)
H (x1)〈

φ′ (x1, 0)
〉 = 4

∑3
n=1 	2n

(
F∞
n − Fn

)
H (x1)〈

ψ ′ (x1, 0)
〉 = 4

∑3
n=1 	3n

(
F∞
n − Fn

)
H (x1)

, |x1| ≤ a,

where � = iG−1/4. Performing the integration of the last equation, we arrive at the formula⎧⎨
⎩

〈u3 (x1, 0)〉 = 4
∑3

n=1 	1n
(
F∞
n − Fn

)
H1 (x1)

〈φ (x1, 0)〉 = 4
∑3

n=1 	2n
(
F∞
n − Fn

)
H1 (x1)

〈ψ (x1, 0)〉 = 4
∑3

n=1 	3n
(
F∞
n − Fn

)
H1 (x1)

, |x1| ≤ a, (14)

where H1 (x1) = h
π
ln

[
cos

(
π x1

h

) +
√
sin2

(
π a

h

) − sin2
(
π x1

h

)] − h
π
ln

[
cos

(
π a

h

)]
.

The electric and magnetic conditions in the crack region |x1| ≤ a are defined in the form of Hao and Shen
[7], Wang and Mai [27]

D0 = −εa
〈φ (x1, 0)〉
〈u3 (x1, 0)〉 , B0 = −γa

〈ψ (x1, 0)〉
〈u3 (x1, 0)〉 (15)

By using the crack opening 〈u3 (x1, 0)〉, electric 〈φ (x1, 0)〉 and magnetic 〈ψ (x1, 0)〉 potential jumps in the
form (14), Eqs. (15) can be presented in the form:

D0 = −εa

∑3
n=1 	2n

(
F∞
n − Fn

)
∑3

n=1 	1n
(
F∞
n − Fn

) , B0 = −γa

∑3
n=1 	3n

(
F∞
n − Fn

)
∑3

n=1 	1n
(
F∞
n − Fn

) . (16)

Equations (16) provide a system of two transcendental equations with respect to the electric displacement
D0 and magnetic induction B0 in the crack region which can be solved numerically. The electro-magneto-
mechanical parameters (12)–(14) can be defined only after solution of this system. After determining of D0
and B0, the Maxwell stress σ M

0 can be found by using of Eqs. (1). Note that, in the model neglecting Maxwell
stresses (see, e.g. [25]), Eqs. (16) are second-degree equations since the function 
 (D0, B0) is equal to zero.
In the present work, in the contrast to [25], the electric displacement D0 and magnetic induction B0 in the
crack region are presented by cubic Eqs. (16):

D0 = −εa
	21

[
σ∞ + 0.5
(D0, B0)

] + 	22 (D∞ − D0) + 	23 (B∞ − B0)

	11 [σ∞0.5
(D0, B0)] + 	12 (D∞ − D0) + 	13 (B∞ − B0)
,

B0 = −γa
	31

[
σ∞ + 0.5
(D0, B0)

] + 	32 (D∞ − D0) + 	33 (B∞ − B0)

	11 [σ∞0.5
(D0, B0)] + 	12 (D∞ − D0) + 	13 (B∞ − B0)
;

where


 (D0, B0) = (
D∞)2 (

1 − εsp/ε33
)
ε−1
sp + (

B∞)2 (
1 − γsp/γ33

)
γ −1
sp

−D2
0 (1 − εa/ε33) ε−1

a − B2
0 (1 − γa/γ33) γ −1

a .
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The energy release rate (ERR)G at the crack tips can be obtained by using the crack closure integral. According
to Wang and Mai [27], the total ERR is the sum of mechanical, electric and magnetic components and can be
expressed as:

G = lim
�l→0

1

2�l

∫ a+�l

a
σ33(x1, 0) 〈u3 (x1 − �l, 0)〉dx1

+ lim
�l→0

1

2�l

∫ a+�l

a
D3(x1, 0) 〈φ (x1 − �l, 0)〉dx1

+ lim
�l→0

1

2�l

∫ a+�l

a
B3(x1, 0) 〈ψ (x1 − �l, 0)〉dx1. (17)

This expression can be written in the following vector form:

G = lim
�l→0

1

2�l

∫ a+�l

a
FT (x1) U (x1 − �l)dx1. (18)

Performing the integration (18), one gets
G = KT�K , (19)

In a similar way, using the presentations of electro-magneto-mechanical quantities (6), (7), the solution for a
single electrically and magnetically limited permeable crack in magneto-electro-elastic material can be found.
The jumps of mechanical displacement, electric and magnetic potentials as well as the IFs can be written in
the form: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

〈u3 (x1, 0)〉 = 4
∑3

n=1 	3n
(
F∞
n − Fn

)√
a2 − x21

〈φ (x1, 0)〉 = 4
∑3

n=1 	4n
(
F∞
n − Fn

)√
a2 − x21

〈ψ (x1, 0)〉 = 4
∑3

n=1 	5n
(
F∞
n − Fn

)√
a2 − x21

, (20)

K = (
F∞ − F

)√
πa. (21)

Using Eqs. (15) and (20), it is easy to show that the set of equations for definition of electric displacement D0
and magnetic induction B0 on the cracks |x1| ≤ a in this case coincides with (16).

4 Numerical results

Using the obtained analytical solutions, let us analyse the influence of the external mechanical, magnetic and
electric fields on the mechanical stress, magneto-electric fluxes and on their intensity factors for different
electric and magnetic permeability values. In calculations, we consider BaTiO3−CoFe2O4 material whose
effective properties for different volume fractions Vf of the piezoelectric material BaTiO3 are presented in
Table 2 of Appendix.

Table 1 Mechanical stress in the crack regions (|x1| < a), calculated for different external electromagnetic loads

10-5( 0
Mσ ), Pa

Crack filled by water Crack filled by air

B∞ D∞ 0.001 0.005 0.01 0.001 0.005 0.01
-0.500 1.064 1.137 1.374 1.412 13.704 55.139
-0.357 0.571 0.644 0.881 0.919 13.212 54.651
-0.167 0.231 0.304 0.541 0.579 12.873 54.318
-0.024 0.043 0.116 0.353 0.391 12.687 54.143
0.024 0.007 0.080 0.317 0.355 12.654 54.124
0.167 0.124 0.197 0.434 0.472 12.774 54.262
0.357 0.393 0.466 0.703 0.741 13.047 54.556
0.500 0.814 0.887 1.124 1.162 13.474 55.006
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Fig. 2 Maxwell stress, calculated for different electro-mechanical load and different environments of crack and space
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Fig. 3 Stress intensity factor K1, calculated for different environments of crack and space

First, we consider the dependence of the constant mechanical stress σ M
0 in the crack region on the crack

filler parameters. The results presented in Table 1 were obtained for Vf = 0.1, σ∞ = 10 MPa and Eq. (1) was
used. It was assumed that the space was surrounded by water (εsp = 81ε0 N/V 2, γsp = 0.99992γ0 N/A2)

and the crack was filled by water or air (εa = ε0 ≡ 8.85 × 10−12 N/V 2, γa = γ0 ≡ 4π × 10−7 N/A2).
The results demonstrate that the Maxwell stress for the case of the crack filled by water is smaller than for the
case of the crack filled by air.

It should be noted that σ M
0 is coupled with known external loads (σ∞, D∞, B∞), known external Maxwell

stress σ M∞ and with unknown electric and magnetic fluxes through the crack regions (D0, B0). In Fig. 2, the
coefficient σ M

0 /σ∞ is drawn for a case of the water-filled cracks and the air-surrounded space. The results
were obtained for Vf = 0.1, B∞ = 0.3T, D∞ was equal 0.001, 0.005 and 0.01 C/m2, and the stress σ∞ varied
from 0.001 to 0.1 MPa. We observe that when the applied mechanical stress σ∞ is small, the normalized
Maxwell stress is larger than σ∞. Also, increasing of D∞ leads to increasing of σ M

0 and the intersection point
of σ M

0 /σ∞ with line σ M
0 /σ∞ = 1 moves to the right.

Figure 3 presents the values of the stress intensities factor K1 at the crack tip. One can see that for the cracks
filled bywater the SIF for the air-surrounded space is larger than for thewater-surrounded space. In calculations,
Eq. (13) was used and the results were obtained for σ∞ = 0.1 MPa, D∞ = 0.0051 C/m2, B∞ = 0.3 T. The
solid line corresponds to thewater-filled cracks and thewater-surrounded space, and the dashed line corresponds
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Fig. 4 Electric displacement intensity factor K4, calculated for different surroundings of the space and the crack filled with water.
a For water-filled cracks and the air-surrounded space. b For water-filled cracks and water-surrounded space
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Fig. 5 Magnetic induction intensity factor K5 calculated for different surrounding of the space and the crack filled with water.
a For water-filled cracks and the air-surrounded space. b For water-filled cracks and water-surrounded space

to the water-filled cracks and the air-surrounded space. Note that according to Eq. (13), the stress intensity
factor K1 depends only on the length of cracks a, the external mechanical load σ∞ and the period h.

The intensity factors for different values Vf are presented in Figs. 4a and 5a in a case of the water-filled
cracks and the air-surrounded space, and in Figs. 4b and 5b in a water-filled cracks and water-surrounded
space case. From these figures, one can see that decreasing of the crack length 2a with respect to the period h
leads to decreasing of analysed intensity factors and tending them to the associated quantities for a single crack.
Besides, the increasing of volume fraction Vf leads to decreasing of the magnetic intensity factors K5 and
increasing of the electric intensity factors K4. From Figs. 4 and 5, one can see that results for the water-filled
cracks and water-surrounded space case are much smaller than the associated results for the water-filled cracks
and air-surrounded space case.

The results in Fig. 6 show the variation of the maximum crack opening in its centre for different values of
Vf and D∞ for h/a = 2.28. The cracks are filled with water, and the space is surrounded by air. To underline
the effect of Maxwell stresses, let us compare some results obtained in the present work and in [25]. Figure 6a
shows some results without the effect of Maxwell stresses obtained according to Viun et al. [25]. Figures 6b,
c show different possibilities of accounting for Maxwell stresses. First, these stresses were taken into account
only on the crack faces (Fig. 6b) and, then, on the crack faces and at infinity (Fig. 6c). From the presented
results, one can see that the influence of Maxwell stresses on the crack opening 〈u3(0, 0)〉 is rather important
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Fig. 6 Crack opening < u3(0, 0) > obtained for different electric load D∞. a Without accounting for Maxwell stresses.
b Maxwell stresses on the crack faces. c Maxwell stresses on the crack faces and infinity
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Fig. 7 ERR obtained for the case of Maxwell stresses taking into account on the crack faces (a) and Maxwell stresses taking into
account on the crack faces and infinity (b)

for the considered cases of cracks that are filled with water and the space that is surrounded by air. Also we
note that different ways of accounting for the Maxwell stresses lead to different character of dependencies of
the crack opening on the electric field D∞:

1. When Maxwell stresses are taken into account on the crack faces and infinity the crack opening 〈u3 (0, 0)〉
increases with increasing of electric field D∞ (by module);

2. When Maxwell stresses are taken into account only on the crack faces, the crack opening decreases with
increasing of electric field D∞ (by module);

3. Without accounting for Maxwell stresses at all the crack opening increases linearly with increasing of
electric field D∞.

The dependency of the energy release rate on D∞ is illustrated in Fig. 7 for two cases, when Maxwell
stresses are taken into account on the crack faces and infinity (b), and when Maxwell stresses are taken into
account on the crack faces only (a); the cracks are filled by water, and the space is surrounded by air. The results
are obtained for Vf = 0.1, 0.9 and σ∞ = 0.1 MPa, B∞ = 0.3 T. The lines with shaded markers corresponded
to the results for a single crack. It can be seen from the results in Fig. 7 that an increase in the external electric
load in absolute value leads to a decrease in ERR when the Maxwell stresses are accounted for only on the
crack faces (Fig. 7 a) and it leads to an opposite effect, i.e. to an increase in ERRwhen theMaxwell stresses are
accounted for on the crack faces and infinity (see Fig. 7b). These results demonstrate that accounting for the
Maxwell stresses is an important issue in predicting fracture behaviour of magneto-electro-elastic materials.
Figure 7a also presents, for comparison, a dashed line presenting results obtained without Maxwell stresses
(model [25]). It is clearly seen that the Maxwell stresses influence significantly the results, and therefore, it is
important to take them into account.

5 Conclusion

In this work, an infinite magneto-electro-elastic space with a periodic set of cracks is considered under a uni-
formly distributed relatively weak tensile stress as well as under a strongmagnetic induction and an electric dis-
placement.At the crack faces, the limited permeable electric andmagnetic conditions are adopted. TheMaxwell
stresses on the crack faces and on the infinity are taken into account. The plane strain conditions in plane per-
pendicular to the crack fronts are considered. TheMaxwell stresses on the crack faces σ M

0 are coupledwith pre-
scribed external stresses σ∞, σ M∞, electromagnetic fluxes D∞, B∞ at infinity and also with electric andmag-
netic fluxes D0, B0, which are constant in the crack regions. The magnitudes of the normalized Maxwell stress
also depend on the permeability of the magneto-electro-elastic material (Eq. 1) or surrounding space (Eq. 4).

Between important outcomes following from the obtained results, we especially emphasize that the mag-
nitude of the Maxwell stresses on the crack surfaces demonstrates a nonlinear dependence on the applied
electromagnetic loading. It can be explained by the fact that the traction is determined from the cubic Eq. (16)
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and the quadratic Eq. (1). The growth of the applied electric loading leads to increase in the Maxwell stresses
(seeTable 1)while the increasing of themagnetic load leads to decreasing of theMaxwell stresses.Also, one can
see that the mechanical stress in the crack regions for the air-filled crack is larger than for the water-filled crack,
and with increasing of the electric load the distinctions of the results obtained for two crack fillers increase.

When the appliedmechanical loading is small, theMaxwell stresses are relatively large and should be taken
into consideration (see Fig. 2). But, when the applied tensile loading becomes larger, the Maxwell stresses
become small with respect to this loading, and it could be neglected in a reasonable way. Also, the increasing
of the electric load leads to the increasing of the Maxwell stress in the crack areas. The significance of consid-
eration of the surrounded materials property is presented in Fig. 2, where one can see the difference between
the results related to air- and water-surrounded spaces.

The dependence of the stress intensity factor on the electromagnetic properties of a surrounding space
is presented in Fig. 3. The intensity factors versus the period and the crack length h/a for different volume
fractions of piezoelectric BaTiO3 are presented in Figs. 3, 4 and 5. It was established that the decreasing of
the crack length with respect to the crack period leads to decreasing of the analysed intensity factors (K4, K5)
and tending them to the results for a single crack. In the same time, the increasing of volume fraction Vf leads
to decreasing of the magnetic intensity factors K5 and increasing of the electric intensity factors K4. In Figs. 4
and 5, one can see that these intensity factors for the water-filled cracks and water-surrounded space case are
much smaller than the associated results for the water-filled cracks and air-surrounded space case.

A comparison of results presented in Fig. 6a–c shows that the Maxwell stresses can significantly affect the
values of the crack opening for relatively weak mechanical and strong electric and magnetic loadings. Also,
the crack opening more substantially depends on the electric load with accounting of Maxwell stresses than
for the Maxwell stresses-free case.

The value of the ERR for different external electric loads is drawn in Fig. 7. One can see that increasing
of D∞ in absolute magnitudes leads to decreasing of ERR for the case when Maxwell stresses are taken into
account on the crack faces and to increasing of ERR when Maxwell stresses are taken into account on both the
crack faces and infinity.Also, this figure represents theERR for theMaxwell stresses-free case demonstrating its
significant difference from theprevious results and emphasizing the importanceofMaxwell stresses accounting.
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7 Appendix

Table 2 Effective properties of BaTiO3 – CoFe2O4 material for different Vf (Sih and Song [22])

Properties Vf

0.1 0.3 0.5 0.7 0.9

c11 (GPa) 274 250.0 226.0 202.0 178.0
c13 (GPa) 161 142.7 124 105.7 87.2
c33 (GPa) 259 237.3 216 194.2 172.8
c44 (GPa) 45 44.6 44 43.7 43.2
e31(C/m2) −4.4 −1.32 −2.2 −3.08 −3.96
e33( C/m2) 1.86 5.58 9.3 13.02 16.74
e15(C/m2) 1.16 3.48 5.8 8.12 10.44
α11(×10−10 C2/Nm2) 11.9 34.2 56.4 78.6 100.9
α33(×10−10 C2/Nm2) 13.4 38.5 63.5 88.5 113.5
h31 (N/Am) 522.3 406.2 290.2 174.1 58.03
h33 (N/Am) 629.7 489.8 350.0 209.9 69.97
h15 (N/Am) 495.0 385.0 275.0 165.0 55.00
d11(×10−6 Ns2/C2) 531.5 414.5 297.0 180.5 63.5
d33(×10−6 Ns2/C2) 142.3 112.9 83.5 541.0 24.7
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