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Abstract With extending the Rayleigh–Ritz procedure to study the hub-plate system, the characteristics of
global analytical modes are addressed for a typical rigid–flexible coupling dynamic system, i.e., a three-
axis attitude stabilized spacecraft installed with a pair of solar arrays. The displacement field of the solar
arrays is expressed as a series of admissible functions which is a set of characteristic orthogonal polynomials
generated directly by employing Gram–Schmidt process. The rigid body motion of spacecraft is represented
by the product of constant and generalized coordinate. Then, through Rayleigh–Ritz procedure, the eigenvalue
equation of the three-axis attitude stabilized spacecraft installed with a pair of solar arrays is derived. Solving
this eigenvalue equation, the frequencies and analytical expressions of global modes for the flexible spacecraft
are obtained. To validate the present analysis, comparisons between the results of the present method and
ANSYS software are performed and very good agreement is achieved. The convergence studies demonstrate
the high accuracy, excellent convergence and high efficiency of the present approach. Finally, the method is
applied to study the characteristics of global modes of the flexible spacecraft.

Keywords Flexible spacecraft · Rigid–flexible coupling system · Modal characteristic · Orthogonal
polynomial · Rayleigh–Ritz method

1 Introduction

Large-span solar arrays are used to provide sufficient power to achieve various functions of modern spacecraft
employed for communications, remote sensing or other applications [1,2]. As a result, those spacecraft are
extremely flexible and have low-frequency vibration modes which interact with the spacecraft attitude motion
and might be excited by orbital operations such as attitude maneuver or quick tracking [3]. Hence, obtaining
the global rigid–flexible coupling modes of the spacecraft installed with solar arrays and investigating its
dynamic behaviors are of practical importance to design efficient controllers to suppress the induced vibrations
effectively during orbital operations.

The flexible spacecraft studied in this research consists of a central rigid hub and a pair of solar arrays
(see Fig. 1). The flexible solar panels are distributed parameter system; however, numerous controllers for
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attitude motion of spacecraft and vibration of solar arrays are designed by using discretized dynamic model
of the system. Thus, deformations of solar panels should be discretized with finite element method (FEM) [4]
or modal approach using mode shapes [5–8]. The FEM model is not convenient for designing control system,
because its degree of freedom is usually too large [9]. On the contrary, the modal approach can reduce the
number of degrees of freedom for the system and thus increases computational efficiency [10]. The quality
of results obtained with this approach depends on the quality of the mode shapes used in the simulations that
is on how accurate the mode shapes can represent the real deformations. The research conducted by Pan and
Liu [11] demonstrated that the mode functions with statically determinate boundary conditions, such as free–
free, cantilevered-free and simply supported boundaries, are suitable for modeling flexible multibody system;
however, the use of modes with statically indeterminate boundary conditions may lead to significant error. In
Ref. [12], the authors pointed out that the use of suitable quasi-comparison functions obtained by combining
eigenfunctions and static deformation modes of flexible body can improve the convergence of the simulation.
It should be pointed out that the modes used in Refs. [5–8,11,12] are modes for a particular flexible body,
such as beam functions [8] or other admissible basis functions satisfying the geometric boundary conditions
of flexible structures [5,7], not for the whole system. In other words, those modes of particular appendages
are used to assume the global modes of the system and thus called ‘assumed modes.’ In fact, the elastic modes
of flexible solar arrays are inevitably influenced by the rigid hub [13]. However, either modes of free–free,
cantilevered-free or simply supported beam cannot represent the modes of the whole system, i.e., the global
modes.

Using the continuummodal analysis approach, the characteristics of global modes of flexible spacecraft are
investigated in great detail byHughes [14–16] andHablani [17–20]. In their researches, the global and assumed
modes are denoted as unconstrained and constrained modes. For a general flexible spacecraft, they derived the
orthogonality conditions of the global modes, studied the momentum interaction between different parts of
the spacecraft (the flexible appendages and rigid hub, for instance), proposed modal identities methods such
as frequencies, modal momentum coefficients and the modal angular-momentum coefficients, and developed
modal truncation criterion for constructing a discrete model using global modes obtained from finite element
model. A general conclusion is made from their studies that: though the assumed and global modal expansions
are mathematically equivalent if an infinite number of terms are taken in each of the two expansions, the
global modal expansions will be more accurate than the assumed ones because only a finite number of terms
are included in the sum in practical applications. It should be noted that the studies in Ref. [14–20] are only
focused on the modal analysis for the general flexible spacecraft by using the continuum approach and no
specific analytical expressions of global mode shapes are given for a certain type of flexible spacecraft, such
as spacecraft installed with a pair of solar arrays considered in this paper.

There are quite a few researches focused on obtaining the global modes and studying modal characteristics
of spacecraft installed with solar arrays (a typical rigid–flexible coupling dynamic system). Hablani [18] and
Zhang andWang [21] used the finite elementmethod to obtain the globalmode shapes of flexible spacecraft and
got low-ordermodal expansions by employing some particular truncation criterions such as completeness index
[18]. This approach is too tedious and inconvenient to model the spacecraft because those modal expansions
are numerical rather than analytical expressions. Also, the global modes of the spacecraft can be obtained by
using component mode synthesis [22] and the Craig–Bampton method is the most representative one [23].
However, the global modes of the spacecraft given by this method are approximate and their expressions may
be complex. Johnston and Thornton [13] investigated the effects of varying rigid-hub mass moment of inertia
on the frequencies of a flexible spacecraft which are simplified as a hub-beam system. By applying numerical
studies and experimental tests, Yang et al. [24] studied the modal characteristics of a rigid–flexible coupling
system consisting of a rigid hub and a flexible beam with tip mass. They concluded that the frequencies of the
beam in this system are quite different from those of the single beam, and the frequencies of the flexible beam
increase as the ratio of the beam inertia to the rigid-hub inertia increases.

In the authors’ previous work [25], a preliminary global modal analysis was conducted for a flexible
spacecraft similar to that considered in this paper (see Fig. 1). The solar array with small width-to-length ratio
is modeled by flexible beam, and the spacecraft is simplified as a hub-beam system. The analytical expressions
of global modes of this system can be directly solved from the dynamic equations (a set of integrodifferential
equations) and corresponding boundary conditions which are derived by using Hamiltonian principle [25–28].
If the width-to-length ratio of solar panel is not small, i.e., the solar panel is relatively short, one has to model
it as plate and simplify the spacecraft as hub-plate system to reveal the coupling effect between the three-
dimensional vibration of solar panel and the rigid body motion (three-axis attitude motion and translation) of
the spacecraft. In this case, the method in Refs. [25–28] is not proper to be used to obtain the system’s global
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mode shapes, because it is a difficult work to solve the partial differential equation describing the vibration
of rectangular plate (solar panel) if the boundary of this plate is not simply supported at four edges. Hence,
the modal characteristic studies of flexible spacecraft based on the planar rotating hub-beam system [13,24–
26] may be not proper for a spacecraft installed with a pair of solar arrays. Also, the analytical expressions
of global modes of hub-beam system cannot be employed in the discretization procedure to obtain a high-
precision discretized dynamic model with low degree of freedom and in the design of efficient controller of
attitude maneuver and vibration suppression.

In this paper, a novel method is proposed to obtain the global analytical modes and analyze the modal
characteristics of a three-axis attitude stabilized spacecraft installed with a pair of solar arrays by extending
the Rayleigh–Ritz procedure to study the hub-plate system. Rayleigh–Ritz method, known as one kind of
energy methods, is widely used to study the modal characteristics of elastic structures, such as plates and
shells, with a variety of boundary conditions [29–31], due to its simplicity in implementation and capability to
provide satisfactory results. In the present study, Rayleigh–Ritz method is extended to investigate the modal
characteristics of a rigid–flexible coupling system. Each solar array whose main structure is a honeycomb
sandwich panel is modeled by an equivalent isotropic plate. Its displacement formulations are assumed by
characteristic orthogonal polynomial series, which are generated directly by using a Gram–Schmidt process
[29]. The rigid body motion of spacecraft is represented by the product of constant and generalized coordinate.
By using the Rayleigh–Ritz method, the eigenvalue equation of the three-axis attitude stabilized flexible
spacecraft can be derived. Also, a finite element model is established using ANSYS software to verify the
present research. Furthermore, the influences of flexible spacecraft parameters, such as the moment of inertia
of rigid hub and the length of solar arrays, on the modal characteristics of the system are studied.

After this introduction, there are other three sections in this paper. Section 2 presents the procedure of
extended Rayleigh–Ritz method to derive the eigenvalue equation of the flexible spacecraft. Section 3 presents
numerical results and discussions to validate the method proposed in Sect. 2 and conduct parameter studies on
modal characteristics of the rigid–flexible coupling dynamic system. Finally, the paper is concluded in Sect. 4.

2 Theoretical formulation

Figure 1a shows a typical model of three-axis attitude stabilized spacecraft installed with a pair of solar arrays.
The tripods connecting the solar panels and the rigid body of spacecraft are assumed to be rigid. There are
several ways to enlarge the rigidity of tripods, such as using composite material with relatively higher elastic
modular, reinforcing the tripod structure, or embedding tension elements in the tripods. Therefore, the flexible
spacecraft is modeled as a cubic rigid hub fixed with a pair of plates (hub-plate system, see Fig. 1b). Point o is
the center of rigid hub. Coordinate system o0 − x0y0z0 is defined as the inertial frame. o − x1y1z1 is parallel
with o0 − x0y0z0. o − xyz is defined as the body frame fixed on the central rigid hub, and it is obtained by
rotating o − x1y1z1 around axis z1 with θz , then around axis x2 with θx , and finally around axis y3 with θy , as
shown in Fig. 1. The transformation matrix from o − xyz to o0 − x0y0z0 is expressed as follows

A =
⎡
⎣
cos θz − sin θz 0
sin θz cos θz 0
0 0 1

⎤
⎦

⎡
⎣
1 0 0
0 cos θx − sin θx
0 sin θx cos θx

⎤
⎦

⎡
⎣
cos θy 0 sin θy
0 1 0
− sin θy 0 cos θy

⎤
⎦ . (1)

oP1 − xP1 yP1zP1 and oP2 − xP2 yP2 zP2 illustrated in Fig. 2 are coordinate frames attached on the two solar
panels. The transformation matrices from those two frames to o − xyz are given by

AP1 =
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ , AP2 =

⎡
⎣

−1 0 0
0 −1 0
0 0 1

⎤
⎦ . (2)

As illustrated in Fig. 3, the solar array consists of a back board made from honeycomb sandwich panel,
on which solar cells are installed and covered by glass fiber sheets. In this research, only honeycomb panel
is considered since it is the main structure of solar array. The honeycomb core and face sheet are both made
of aluminum. E0, G0 and ρ0 are the elastic and shear modulus and mass density of aluminum, respectively.
The heights of the honeycomb core, face sheet and the whole honeycomb panel are denoted by 2hc, h f and
2h. lc and δc are cell size and thickness of the cell of honeycomb core. The subscripts c and f represent the
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Fig. 1 Model of the three-axis attitude stabilized spacecraft installedwith a pair of solar arrays: a sketch of spacecraft,b coordinate
systems

Fig. 2 Coordinate frames attached on solar panels (top view)

Fig. 3 Solar array model: a section view of solar array, b the cell of honeycomb core

Fig. 4 Equivalent isotropic model for the honeycomb sandwich panel

honeycomb core and face sheet, respectively. The average mass density of honeycomb core can be expressed
as [32]

ρc = 8

3

δc

lc
ρ0. (3)

The honeycomb sandwich panel is replaced by an equivalent isotropic plate in the following formulation, as
shown in Fig. 4. The thickness teq and material properties of the equivalent plate are given by [32]

teq =
√
12h2c + 12hch f + 4h2f , E = 2h f E f /teq,

G = 2h f G f /teq, ρ = (2h f ρ f + 2hcρc)/teq, (4)
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Fig. 5 Deformation of the right solar panel

where E f (=E0),G f (=G0) and ρ f (=ρ0) are the elastic and shear modulus and the mass density of face sheet,
respectively. The other geometric constants of the flexible spacecraft studied in this research are r0 (the half
of side length of the cubic rigid hub), L and 2b (the length and width of each equivalent plate), as shown in
Figs. 2 and 4. In the following formulations, teq is replaced by another symbol ‘2H’ for convenience.

2.1 Expressions of the flexible spacecraft’s energy

As illustrated in Fig. 5, the position vector of the hub mass center o in inertial frame o0 − x0y0z0 is expressed
as

ro = xoi0 + yoj0 + zoz0, (5)

where xo, yo and zo are the coordinates of hub mass center o in o0 − x0y0z0. i0, j0 and z0 are unit vectors of
o0 − x0y0z0 in x0, y0 and z0 directions. Point P0, whose coordinates in oP1 − xP1 yP1zP1 are (x, y, z), is the
initial position of an arbitrary point P on the right solar panel. r(1)

P0
and r01 are initial and deformed position

vectors of point P in the body frame o − xyz, respectively. And r(1)
P is the relative position vector of point P

in oP1 − xP1 yP1zP1 . Then r01 can be written as

r01 = r(1)
P0

+ AP1r
(1)
P , (6)

where r(1)
P0

and r(1)
P are expressed in corresponding coordinate systems as

r(1)
P0

=
⎡
⎣
r0 + x
y
z

⎤
⎦ , r(1)

P =
⎡
⎣
u1
v1
w1

⎤
⎦ , (7)

where u1, v1 and w1 represent the displacements of point P(x, y, z) on the right solar panel in xP1 , yP1 and
zP1 directions, respectively.

The rotation velocity of flexible spacecraft, i.e., the attitude angular velocity, is very small, even for those
so-called agile spacecraft. For instance, the largest angular velocity of the first satellite of the Pléiades system
[33], an agile satellite launched by France, reaches values up to 3.4◦/s (0.06 rad/s) during the maneuvers, which
is far less than the angular velocity at which the dynamic stiffening effect [34] should be taken into account.
Hence, it is not necessary to consider the effect of dynamic stiffening during the modeling process of flexible
spacecraft, and the ZOAC models [5–7] are sufficiently precise to reveal the system’s dynamic characteristics.
So, u1, v1 and w1 may be written as

u1 = −z
∂w1(x, y, t)

∂x
, v1 = −z

∂w1(x, y, t)

∂y
, w1 = w1(x, y, t). (8)

Then, the position and velocity vectors of point P on the right solar panel in inertial frame o0−x0y0z0, denoted
by r1 and v1, respectively, can be expressed as

r1 = ro + Ar01, v1 = ṙ1 = ṙo + Ȧr01 + Aṙ01, (9)
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where (�̇) denotes the time derivative. Similarly, the position and velocity vectors of any point on the left solar
panel in o0 − x0y0z0 are given by

r2 = ro + Ar02, v2 = ṙ2 = ṙo + Ȧr02 + Aṙ02, (10)

where r02 can be defined by the following expressions

r02 = r(2)
P0

+ AP2r
(2)
P , r(2)

P0
=

⎡
⎣

−r0 − x
y
z

⎤
⎦ , r(2)

P =
⎡
⎣
u2
v2
w2

⎤
⎦ . (11)

The symbols in expression (11) are similar to those associated with the right solar panel.
The three axes of o − xyz are the central principal axes of inertia of the cubic rigid hub, and its central

principle moment matrix of inertia is J = diag(Jz, Jx , Jy). The angular velocity vector of spacecraft with
respect to the inertial frame o0 − x0y0z0 is

ω =
⎡
⎣

ωz
ωx
ωy

⎤
⎦ =

⎡
⎣
cos θx cos θy sin θy 0
− cos θx sin θy cos θy 0
sin θx 0 1

⎤
⎦

⎡
⎣

θ̇z
θ̇x
θ̇y

⎤
⎦ . (12)

For modal analysis, the attitude angles θx , θy and θz are assumed to be small. Then, the following first-order
approximate expressions can be obtained by using Taylor formula

sin θq = θq , cos θq = 1, q = x, y, z. (13)

The kinetic energy of the flexible spacecraft can be expressed as

T = 1

2
ρ

∫
VR

v1 · v1dV + 1

2
ρ

∫
VL

v2 · v2dV + 1

2
mR(ẋ2o + ẏ2o + ż2o) + 1

2
ωTJω, (14)

where VR and VL are the volumes of the right and left solar panels, and mR is the mass of rigid hub.
The expression of strain energy for the flexible spacecraft is given as follows

U = 1

2

∫
VR+VL

(σxεx + σyεy + τxyγxy)dV , (15)

where σx , σy , τxy , εx , εy and γxy are stresses and strains at point P(x, y, z). The strains are defined as following

εx = ∂u

∂x
, εy = ∂v

∂y
, γxy = ∂u

∂y
+ ∂v

∂x
. (16)

The stress–strain relationship of an isotropic plate is given by
⎡
⎣

σx
σy
τxy

⎤
⎦ =

⎡
⎣
Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤
⎦

⎡
⎣

εx
εy
γxy

⎤
⎦ , Q11 = Q22 = E

1 − μ2 , Q12 = μE

1 − μ2 , Q66 = G, (17)

where μ is Poisson’s ratio.
Substituting relative terms in Eqs. (14) and (15), the expanded expressions of kinetic and strain energy of

the spacecraft installed with a pair of solar arrays can be written as

T = 1

2
ρ

∫
VR

{
z2

(
∂ẇ1

∂x

)2

+ z2
(

∂ẇ1

∂y

)2

+ ẇ2
1 + (x + r0)

2
(
θ̇2z + θ̇2y

)
+ y2

(
θ̇2x + θ̇2z

) + z2

×
(
θ̇2y + θ̇2x

)
+ ẋ2o + ẏ2o + ż2o + 2żo

[
ẇ1 − (x + r0) θ̇y + yθ̇x

] + 2 (x + r0) θ̇z ẏo − 2yθ̇z ẋo

−2

[
(x + r0) ẇ1 + z2

∂ẇ1

∂x

]
θ̇y + 2

(
yẇ1 + z2

∂ẇ1

∂y

)
θ̇x − 2 (x + r0) yθ̇x θ̇y

}
dV

+1

2
ρ

∫
VL

�T dV + 1

2
mR

(
ẋ2o + ẏ2o + ż2o

) + 1

2

(
Jz θ̇

2
z + Jx θ̇

2
x + Jy θ̇

2
y

)
, (18)
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U = 1

2

∫
VR

z2
[
Q11

(
∂2w1

∂x2

)2

+ 2Q12
∂2w1

∂x2
∂2w1

∂y2
+ Q22

(
∂2w1

∂y2

)2

+ 4Q66

(
∂2w1

∂x∂y

)2
]
dV

+ 1

2

∫
VL

�UdV . (19)

In Eq. (18), the expression of �T can be obtained from the first integral expression by replacing r0 and w1
with −r0 and w2. Also, in Eq. (19), �U can be obtained from the first integral expression by replacing w1 with
w2. It should be pointed out that the third- and higher-order coupling terms involving products of w1, w2, θx ,
θy , θz , xo, yo and zo and/or the partial derivatives respect to time t , x and/or y are neglected in the expression
of the kinetic energy.

2.2 Approximation of the displacement field for solar panels

The transverse displacement functions for the two solar panels, w1 and w2, undergoing free vibration can be
written as

wi (x, y, t) = Wi (x, y) sinωt, i = 1, 2, (20)

where ω represents the circular frequency of the flexible spacecraft. Wi (x, y) is modal shape and can be
expressed in terms of basis functions which should be determined according to specific boundary conditions.
So and Leissa [35] employed simple algebraic polynomials as basis functions to describe the axial displacement
of a hollow circular cylinder and conducted modal analysis for the system. Simple algebraic polynomials can
be constructed easily, but large number of terms should be included to predict more frequencies andmodes with
satisfactory accuracy. Zhou et al. [36] also studied the same problem by taking theChebyshev polynomial series
multiplied by a boundary function to satisfy the geometric boundary conditions as the admissible functions.
Compared with simple algebraic polynomials, this kind of admissible functions can derive higher accuracy
with less number of terms. However, these functions which satisfy geometric boundary conditions cannot
be constructed directly. The beam functions can also be used as basis functions [37]. Those beam functions
are hyperbolic and/or trigonometric forms. The integral and differential operations for the products of those
functions are difficult to be calculated. As a result, the computation process of Rayleigh–Ritz method may be
time-consuming. In our paper, characteristic orthogonal polynomials firstly employed by Bhat [29] to obtain
natural frequencies of rectangular plates are used as basis functions to describe the displacements of solar
panels. This set of characteristic orthogonal polynomials is generated by using a Gram–Schimidt process and
can be constructed directly to satisfy given boundary conditions. Good convergence and high accuracy of using
characteristic orthogonal polynomials in Rayleigh–Ritz method are shown in the studies of Sun et al. [30] and
Liu et al. [31].

Wi (x, y) can be expressed in terms of characteristic orthogonal polynomials in the x and y directions as

Wi (x, y) =
mt∑
m=1

nt∑
n=1

A(i)
mnϕ

(i)
m (x)ϕ(i)

n (y), i = 1, 2, (21)

where ϕ
(i)
m (x) and ϕ

(i)
n (y) are characteristic orthogonal polynomials in x and y directions for the right (i = 1)

and left (i = 2) solar panels, respectively.mt and nt are the numbers of terms truncated in practical calculation.
A(i)
mn is unknown coefficient.
Given a polynomial ψ

(i)
1 (ξ)(i = 1, 2), an orthogonal set of polynomials in the interval a1 ≤ ξ ≤ a2 can

be constructed according to the following Gram–Schmidt recursive formulas [29]

ψ
(i)
2 (ξ) = (ξ − B(i)

1 )ψ
(i)
1 (ξ),

ψ
(i)
k+1(ξ) = (ξ − B(i)

k )ψ
(i)
k (ξ) − C (i)

k ψ
(i)
k−1(ξ), k ≥ 2, (22)

where

B(i)
k =

∫ a2
a1

ξ [ψ(i)
k (ξ)]2dξ

∫ a2
a1

[ψ(i)
k (ξ)]2dξ

, C (i)
k =

∫ a2
a1

ξψ
(i)
k−1(ξ) ψ

(i)
k (ξ)dξ

∫ a2
a1

[ψ(i)
k−1(ξ)]2dξ

. (23)
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Table 1 Integral intervals and boundary conditions for characteristic orthogonal polynomials

Orthogonal polynomials Integral interval Boundary conditions

ϕ
(1)
m (x) 0 ≤ x ≤ L x = 0 : clamped; x = L: free

ϕ
(2)
m (x) −L ≤ x ≤ 0 x = 0 : clamped; x = −L: free

ϕ
(1)
n (y), ϕ(2)

n (y) −b ≤ y ≤ b x = −b : free; x = b: free

Then, the characteristic orthogonal polynomials are normalized according to the following formula

ϕ
(i)
k (ξ) = ψ

(i)
k (ξ)√∫ a2

a1
[ψ(i)

k (ξ)]2dξ
, i = 1, 2; k = 1, 2, . . . (24)

If the first member of polynomials ϕ
(i)
k (ξ)(i = 1, 2; k = 1, 2, . . .) satisfies the geometric boundary conditions,

it can be easily checked that other polynomials also satisfy the geometric boundary conditions. The relationship
between any two members of the set of orthogonal polynomials is given by

∫ a2

a1

[
ϕ

(i)
k1

(ξ)ϕ
(i)
k2

(ξ)
]
dξ =

{
0 k1 �= k2
1 k1 = k2

, i = 1, 2; k1, k2 = 1, 2, . . . (25)

In this paper, the integral intervals and boundary conditions for ϕ
(i)
m (x) and ϕ

(i)
n (y) are listed in Table 1.

The procedure for constructing the corresponding first member ψ
(i)
1 (ξ)(i = 1, 2) is displayed in Ref. [29].

2.3 Rayleigh–Ritz procedure

The vibrations of solar panel are coupled with the rigid body motion of the spacecraft. That means the
translations and attitude angles of spacecraft can also be written as products of a constant and a term varying
with time. Then, the following expressions can be obtained

qo = So sinωt, θq = θ
(q)
0 sinωt, q = x, y, z, S = X, Y, Z , (26)

where So and θ
(q)
0 are unknown coefficients.

Substituting displacement field (20) and Eq. (26) in the kinetic and strain energy expressions, Eqs. (18)
and (19), and minimizing the Rayleigh quotient with respect to the coefficients Xo, Yo, Zo, θ

(x)
0 , θ

(y)
0 , θ

(z)
0 ,

A(1)
mn and A(2)

mn , yield the eigenvalue equation of spacecraft installed with a pair of solar arrays

(K − ω2M)X = 0, (27)

in which X is a column vector which is composed of the unknown coefficients as follows

X = [Xo, Yo, Zo, θ
(x)
0 , θ

(y)
0 , θ

(z)
0 , A(1)

11 , A(1)
12 , . . . , A(1)

mtnt , A
(2)
11 , A(2)

12 , . . . , A(2)
mtnt ]T. (28)

K is a (6 + 2mtnt ) × (6 + 2mtnt ) matrix given by

K =
⎡
⎣
06×6 06×mtnt 06×mtnt
0mtnt×6 K77 0mtnt×mtnt
0mtnt×6 0mtnt×mtnt K88

⎤
⎦ , (29)

where K77 and K88 are block matrices of K, and their size is mtnt × mtnt . The elements of K77 and K88 are
given as

(K77)i j = 2

3
H3

∫ L

0

∫ b

−b

{
2Q11

∂2ϕ
(1)
mi

∂x2
ϕ(1)
ni

∂2ϕ
(1)
m j

∂x2
ϕ(1)
n j

+ 2Q12

[
ϕ(1)
mi

∂2ϕ
(1)
ni

∂y2
∂2ϕ

(1)
m j

∂x2
ϕ(1)
n j

+ ∂2ϕ
(1)
mi

∂x2
ϕ(1)
ni
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×ϕ(1)
m j

∂2ϕ
(1)
n j

∂y2

]
+ 2Q22ϕ

(1)
mi

∂2ϕ
(1)
ni

∂y2
ϕ(1)
m j

∂2ϕ
(1)
n j

∂y2
+ 8Q66

∂ϕ
(1)
mi

∂x

∂ϕ
(1)
ni

∂y

∂ϕ
(1)
m j

∂x

∂ϕ
(1)
n j

∂y

}
dydx, (30)

(K88)i j = 2

3
H3

∫ 0

−L

∫ b

−b

{
2Q11

∂2ϕ
(2)
mi

∂x2
ϕ(2)
ni

∂2ϕ
(2)
m j

∂x2
ϕ(2)
n j

+ 2Q12

[
ϕ(2)
mi

∂2ϕ
(2)
ni

∂y2
∂2ϕ

(2)
m j

∂x2
ϕ(2)
n j

+ ∂2ϕ
(2)
mi

∂x2
ϕ(2)
ni

×ϕ(2)
m j

∂2ϕ
(2)
n j

∂y2

]
+ 2Q22ϕ

(2)
mi

∂2ϕ
(2)
ni

∂y2
ϕ(2)
m j

∂2ϕ
(2)
n j

∂y2
+ 8Q66

∂ϕ
(2)
mi

∂x

∂ϕ
(2)
ni

∂y

∂ϕ
(2)
m j

∂x

∂ϕ
(2)
n j

∂y

}
dydx, (31)

where mi ,m j = 1, 2, . . . ,mt and ni , n j = 1, 2, . . . , nt . M is a (6 + 2mtnt ) × (6 + 2mtnt ) matrix given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 0 0 0 0 M16 0 0
0 M22 0 0 0 M26 0 0
0 0 M33 M34 M35 0 M37 M38
0 0 M43 M44 0 0 M47 M48
0 0 M53 0 M55 0 M57 M58
M61 M62 0 0 0 M66 0 0
0 0 M73 M74 M75 0 M77 0
0 0 M83 M84 M85 0 0 M88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

where

M11 = 16ρLbH + 2mR, M22 = M11, M33 = M11,

M16 = −ρ

∫ L

0

∫ b

−b
4Hydydx − ρ

∫ 0

−L

∫ b

−b
4Hydydx, M61 = M16,

M26 = ρ

∫ L

0

∫ b

−b
4H (x + r0) dydx + ρ

∫ 0

−L

∫ b

−b
4H (x − r0) dydx, M62 = M26,

M34 = −M16, M35 = −M26, M43 = M34, M53 = M35.

M44 = ρ

∫ L

0

∫ b

−b

(
4Hy2 + 4

3
H3

)
dydx + ρ

∫ 0

−L

∫ b

−b

(
4Hy2 + 4

3
H3

)
dydx + 2Jx ,

M55 = ρ

∫ L

0

∫ b

−b

[
4H(x + r0)

2 + 4

3
H3

]
dydx + ρ

∫ 0

−L

∫ b

−b

[
4H(x − r0)

2 + 4

3
H3

]
dydx + 2Jy,

M66 = ρ

∫ L

0

∫ b

−b

[
4H(x + r0)

2 + 4Hy2
]
dydx + ρ

∫ 0

−L

∫ b

−b

[
4H(x − r0)

2 + 4Hy2
]
dydx + 2Jz .

(33)

M37, M38, M47, M48, M57 and M58 are 1×mtnt row vectors. Their elements are given as follows

(M37)i = ρ

∫ L

0

∫ b

−b
4Hϕ(1)

mi
ϕ(1)
ni dydx,

(M38)i = ρ

∫ 0

−L

∫ b

−b
4Hϕ(2)

mi
ϕ(2)
ni dydx,

(M47)i = ρ

∫ L

0

∫ b

−b

[
4Hyϕ(1)

mi
ϕ(1)
ni + 4

3
H3ϕ(1)

mi

∂ϕ
(1)
ni

∂y

]
dydx,

(M48)i = ρ

∫ 0

−L

∫ b

−b

[
4Hyϕ(2)

mi
ϕ(2)
ni + 4

3
H3ϕ(2)

mi

∂ϕ
(2)
ni

∂y

]
dydx,

(M57)i = ρ

∫ L

0

∫ b

−b

[
−4H(x + r0)ϕ

(1)
mi

ϕ(1)
ni − 4

3
H3 ∂ϕ

(1)
mi

∂x
ϕ(1)
ni

]
dydx,

(M58)i = ρ

∫ 0

−L

∫ b

−b

[
−4H(x − r0)ϕ

(2)
mi

ϕ(2)
ni − 4

3
H3 ∂ϕ

(2)
mi

∂x
ϕ(2)
ni

]
dydx . (34)
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M73, M83, M74, M84, M75 and M85 are mtnt × 1 column vectors and given by

M73 = MT
37, M83 = MT

38, M74 = MT
47, M84 = MT

48, M75 = MT
57, M85 = MT

58. (35)

M77 and M88 are mtnt × mtnt matrices, and their elements are given as

(M77)i j = ρ

∫ L

0

∫ b

−b

[
4

3
H3 ∂ϕ

(1)
mi

∂x
ϕ(1)
ni

∂ϕ
(1)
m j

∂x
ϕ(1)
n j

+ 4

3
H3ϕ(1)

mi

∂ϕ
(1)
ni

∂y
ϕ(1)
m j

∂ϕ
(1)
n j

∂y
+ 4Hϕ(1)

mi
ϕ(1)
ni ϕ(1)

m j
ϕ(1)
n j

]
dydx,

(36)

(M88)i j = ρ

∫ 0

−L

∫ b

−b

[
4

3
H3 ∂ϕ

(2)
mi

∂x
ϕ(2)
ni

∂ϕ
(2)
m j

∂x
ϕ(2)
n j

+ 4

3
H3ϕ(2)

mi

∂ϕ
(2)
ni

∂y
ϕ(2)
m j

∂ϕ
(2)
n j

∂y
+ 4Hϕ(2)

mi
ϕ(2)
ni ϕ(2)

m j
ϕ(2)
n j

]
dydx .

(37)

The frequencies and the analytical expressions of mode shapes for the flexible spacecraft can be yielded
by solving the eigenvalue equation (27). It should be pointed out that the first six frequencies are zero and
relative to rigid body translations (xo, yo and zo) and rotations (θx , θy and θz) of the whole flexible spacecraft.
In this situation, the solar panels are undeformed. Hence, those zero frequencies are neglected in the following
analyses.

3 Numerical results and discussions

3.1 Validation and convergence studies

The geometric and material properties of the spacecraft installed with a pair of solar arrays studied in this paper
are listed in Table 2. To check the accuracy of present method, comparisons are made with results obtained
from the commercial finite element software ANSYS. Figure 6 is the finite element model of the spacecraft
installed with a pair of solar arrays in ANSYS. The rigid hub is modeled using solid elements, and the solar
panels are discretized by employing shell elements. The multi-point constrains (MPCs) are used to model
the constraints of solar panels imposed by the rigid hub. The rigid body motion of the spacecraft has three
translational and three rotational degrees of freedom.

Table 3 shows the first eight frequencies for the flexible spacecraft (L = 8 m) calculated by using ANSYS
and the present approach. It can be seen that, at mt = 11 and nt = 7, the absolute values of relative tolerances
between the present results and frequencies obtained from ANSYS are <0.21%. That means very excellent
agreement can be achieved provided that enough number of terms for characteristic orthogonal polynomials
is truncated in practical calculation. Further investigations are conducted in Table 4. The comparison carried
out in this table also shows good agreement for a wide variety of modes of flexible spacecraft with other solar
panel length.

Table 2 Geometric and material parameters of the flexible spacecraft

Components Parameters Values

Solar panels Length L (m) 8.0
Width 2b (m) 2.0
Height of honeycomb panel 2h (m) 0.02
Height of honeycomb core 2hc (m) 0.0197
Height of face sheet h f (m) 0.15 × 10−3

Cell size of honeycomb lc (m) 6.35 × 10−3

Thickness of honeycomb wall δc (m) 0.0254 × 10−3

Elastic modulus of aluminum E0 (Pa) 6.89 × 1010

Mass density of aluminum ρ0 (kg m−3) 2.8 × 103

Poisson ratio μ 0.33
The rigid hub Size of the hub r0 (m) 1.0

Inertial moment of the hub Jx , Jy, Jz (kg m2) 100, 100, 100
Mass of the hub mR (kg) 150
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Fig. 6 Finite element model of the flexible spacecraft in ANSYS

Table 3 Comparison of the first eight frequencies for a flexible spacecraft f (Hz)(L = 8m)

Frequency order ANSYS Present results Relative tolerance (%)

mt = 5 mt = 7 mt = 9 mt = 11 mt = 11 mt = 11
nt = 3 nt = 3 nt = 3 nt = 3 nt = 5 nt = 7

1 0.363 0.365 0.364 0.364 0.364 0.363 0.363 0
2 0.912 0.915 0.914 0.913 0.913 0.912 0.912 0
3 2.161 2.168 2.165 2.164 2.164 2.160 2.160 −0.05
4 2.653 2.668 2.660 2.659 2.659 2.652 2.652 −0.04
5 2.676 2.686 2.683 2.683 2.683 2.683 2.681 0.19
6 2.823 2.833 2.830 2.830 2.830 2.830 2.829 0.21
7 5.973 6.113 5.980 5.978 5.978 5.966 5.966 −0.12
8 6.264 6.417 6.274 6.272 6.272 6.258 6.257 −0.11

Table 4 First eight frequencies for spacecraft with different solar panel length f (Hz)

Frequency order L = 1 m L = 4 m L = 20 m L = 32 m

ANSYS Equation (27) ANSYS Equation (27) ANSYS Equation (27) ANSYS Equation (27)

1 22.596 22.456 1.420 1.420 0.062 0.062 0.025 0.025
2 23.454 23.299 2.246 2.244 0.205 0.205 0.085 0.085
3 33.790 33.682 5.775 5.781 0.354 0.354 0.141 0.142
4 33.996 33.884 5.931 5.937 0.630 0.629 0.270 0.270
5 64.910 63.948 8.672 8.592 0.957 0.957 0.377 0.377
6 64.913 63.950 9.148 9.063 1.027 1.029 0.551 0.551
7 127.070 123.368 18.950 18.863 1.161 1.163 0.636 0.637
8 127.090 123.390 19.021 18.934 1.245 1.244 0.728 0.728

Figures 7 and 8 show the further convergence investigations. Without loss of generality, frequencies cor-
responding to the second and eighth modes are studied. In order to investigate the convergence of the present
method conveniently, the relative tolerance is defined as follows

Rt = fmt nt − fexact
fexact

× 100%, (38)

where fmt nt represents the frequency with respect to polynomial terms of mt and nt , and fexact denotes the
exact value of the frequency which is derived by using relatively larger number of terms of modal function
Wi (x, y)(i = 1, 2).As observed fromTable 3, usingpolynomial termsofmt = 11 andnt = 7 forWi (x, y)(i =
1, 2) is adequate for convergent results. Therefore, the results yielded by using 13 terms of characteristic
orthogonal polynomials (mt = 13 and nt = 13) can be used as exact values. From Figs. 7 and 8, it can be seen
that the trends of the variation of relative tolerance surfaces of the system frequencies with respect to mt and
nt for flexible spacecraft with different solar panel length are similar. All the relative tolerances of the system
frequencies decrease gradually as the number of terms for characteristic orthogonal polynomials truncated in
practical calculations increases, and maintain at a steady level close to zero. That means the obtained system
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Fig. 7 Variation of relative tolerances of the frequencies with respect to the number of terms for orthogonal polynomials truncated
in practical calculation (L = 2 m): a the 2nd frequency, b the 8th frequency

Fig. 8 Variation of relative tolerances of the frequencies with respect to the number of terms for orthogonal polynomials truncated
in practical calculation (L = 8 m): a the 2nd frequency, b the 8th frequency

frequencies converge at exact values. For lower-order frequency, as shown in Figs. 7a and 8a, both the relative
tolerances for spacecraft with short (L = 2 m) and long (L = 8 m) solar panels are below 1% with 3 terms of
orthogonal polynomials, i.e., mt = nt = 3. For higher-order frequency illustrated in Figs. 7b and 8b, although
the relative tolerances are very high when mt = nt = 3, they decrease sharply to a level <1% as mt and nt
grow. In a word, terms of polynomialsmt = 11 and nt = 7 are enough to obtain favorable results for spacecraft
installed with a pair of solar panels. It may indicate that the present method has excellent convergence and
high efficiency.

3.2 Global analytical modes

In this section, an analysis is presented for the characteristics of global analytical modes of spacecraft installed
with a pair of solar panels.

There are two approaches to obtain the global modes of the spacecraft in this paper. One is using ANSYS,
and the other is using the extended Rayleigh–Ritz method proposed in this research. The modes from ANSYS
are numerical and not convenient to be used in the discretization of the deformation of solar panels and in
the design of controllers for both the attitude maneuver and vibration suppression. However, the analytical
expressions of modes given by the method presented in this paper can be easily used to do so. Solving
the eigenvalue equation (27), the frequencies and corresponding eigenvectors can be obtained. The first six
frequencies and eigenvectors are relative to the six rigid body motions (xo, yo, zo, θx , θy and θz), and those
six frequencies are zero and neglected in the following analyses. The first six elements of each eigenvector
corresponding to nonzero frequencies represent the amplitudes of xo, yo, zo, θx , θy and θz , respectively, and
can be used to determine whether the deformation of solar panel is coupled with rigid body motion of the
spacecraft as shown in Table 5 and Fig. 10. The other elements are values of those unknown coefficients
A(i)
mn (i = 1, 2) of the modal shape Wi (x, y) shown in expression (21), then the analytical expression of each

order global mode can be obtained and the mode shapes are plotted as illustrated in Fig. 10. In order to vividly
display the coupling between the solar deformation and the spacecraft rigid body motion, the first eight mode
shapes obtained from ANSYS are given in Fig. 9 for a flexible spacecraft with solar panel length L = 8 m.
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Fig. 9 First eight global mode shapes of the flexible spacecraft (L = 8 m): a the 1st mode, S(1, 1); b the 2nd mode, AS(1, 1);
c the 3rd mode, S(2, 1); d the 4th mode, AS(2, 1); e the 5th mode, AS(1, 2); f the 6th mode, S(1, 2); g the 7th mode, S(3, 1); h
the 8th mode, AS(3, 1). The rigid body motion of spacecraft is exaggerated

Table 5 Model numbers (m, n) and corresponding rigid body motion (xo, yo, zo, θx , θy and θz) for different solar array length
of flexible spacecraft

Frequency order L = 1 m L = 4 m L = 8 m L = 20 m L = 32 m

1 S(1, 1) zo S(1, 1) zo S(1, 1) zo S(1, 1) zo S(1, 1) zo
2 AS(1, 1) θy AS(1, 1) θy AS(1, 1) θy AS(1, 1) θy AS(1, 1) θy
3 AS(1, 2) – AS(1, 2) – S(2, 1) zo S(2, 1) zo S(2, 1) zo
4 S(1, 2) θx S(1, 2) θx AS(2, 1) θy AS(2, 1) θy AS(2, 1) θy
5 S(1, 3) zo S(2, 1) zo AS(1, 2) – S(3, 1) zo S(3, 1) zo
6 AS(1, 3) θy AS(2, 1) θy S(1, 2) θx AS(1, 2) – AS(3, 1) θy
7 AS(1, 4) – AS(2, 2) – S(3, 1) zo S(1, 2) θx AS(1, 2) –
8 S(1, 4) θx S(2, 2) θx AS(3, 1) θy AS(3, 1) θy S(4, 1) zo

As shown in Fig. 9, there are two kinds of global modes for the same mode number (m, n) of solar panel.
Here, m and n are corresponding to x and y directions, respectively. For example, when (m, n) = (2, 1),
the mode shapes illustrated by Fig. 9c is associated with the third system frequency, while that shown in
Fig. 9d is the fourth mode shape. The former one is denoted as S(2, 1) because the two solar panels vibrate
symmetrically. In this case, there is no rotation of the whole spacecraft but translation zo. That means the
elastic vibration of solar panels is coupled with spacecraft translation. The latter one is represented by AS(2,
1) because the deformation of the two solar panels is antisymmetric. For this mode, the spacecraft rotates with
attitude θy , which implies that the mode of solar panel is coupled with spacecraft attitude motion. On the other
hand, the global modes with mode number (m, n) = (1, 2), i.e., AS(1, 2) and S(1, 2), shown in Fig. 9e, f
have different characteristics. The solar panels’ deformation of AS(1, 2) is not coupled with any rigid body
motion of the spacecraft, however, that of S(1, 2) coupled with spacecraft attitude motion θx . Table 5 shows
the model numbers and corresponding rigid body motion of the first eight global modes of spacecraft with
other solar panel length. The mode shapes for those global modes are displayed in Figs. 9 and 10. Combining
Table 5 and Figs. 9 and 10, a useful conclusion can be made: If the mode number n is an odd number, the
S(m, n) global modes are coupled with translation zo of the whole spacecraft, and AS(m, n) global modes with
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spacecraft attitude motion θy ; if the mode number n is an even number, the S(m, n) global modes are coupled
with spacecraft attitude motion θx , and AS(m, n) global modes are not coupled with any rigid body motion.

Table 6 displays the comparison between frequencies of spacecraft global modes and the first four frequen-
cies of a cantilever solar panel (L = 8 m). The frequency of AS(1, 2) mode underlined in Table 6 is the same
as that of the (1, 2) mode of cantilever solar panel since AS(1, 2) mode is not coupled with any rigid body

Fig. 10 Mode shapes of flexible spacecraft for different solar panel length: a–d L = 1 m; e and f L = 4 m; g L = 32 m
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Fig. 10 continued

Table 6 Comparison between frequencies of spacecraft global modes and those of the first four modes of cantilever solar panel
(L = 8 m)

Mode number (m, n) Cantilever solar panel Symmetric mode (S) Antisymmetric mode (AS)

(1, 1) 0.336 0.363 (8.04%) 0.912 (171.43%)
(2, 1) 2.104 2.160 (2.66%) 2.652 (26.05%)
(1, 2) 2.681 2.829 (5.52%) 2.681 (0%)
(3, 1) 5.909 5.966 (0.96%) 6.257 (5.89%)

motion of the spacecraft. The frequencies of other global modes coupled with rigid body motion of spacecraft
are higher than those of corresponding modes of cantilever solar panel. Another conclusion can be drawn that
when mode number n is an odd number, the frequency increase rate of modes coupled with spacecraft attitude
motion θy , such as AS(1, 1), AS(2, 1) and AS(3, 1), is much higher than that of modes coupled with spacecraft
translation zo, i.e., S(1, 1), S(2, 1) and S(3, 1). Moreover, the assumed modes used in many researches are
the modes of cantilever solar panel, i.e., the rigid body motion of the spacecraft hub is fully limited, which
results in failure in reflecting the effects of spacecraft rigid body motion and rigid hub on the elastic modes
of solar panels. So, one can conclude that the discretized models derived by using assumed modes may be
not accurate for a flexible spacecraft, and the global analytical modes [expression (21)] obtained by using the
present method should be adopted in the discretization of dynamic equations of the system.
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3.3 Parameter studies

Using the method presented in this paper, some parameter studies are conducted to investigate the influence
of varying rigid-hub mass moment of inertia JR(Jx = Jy = Jz = JR) and solar array length L on the global
modes of the flexible spacecraft.

Figures 11 and 12 depict the variation of the first eight frequencies with respect to the moment of inertia
of the hub for the spacecraft installed with a pair of solar arrays (L = 8 m). As illustrated in the figures,
the frequency of each global mode coupled with spacecraft translation, such as S(1, 1), S(2, 1) or S(3, 1),
decreases rapidly with JR and then converges to a certain value. Meanwhile, the frequencies of modes coupled
with attitude motion θy , i.e., AS(1, 1), AS(2, 1) and AS(3, 1), reduce gradually when JR is growing, and

Fig. 11 Variation of the 1st, 2nd, 7th and 8th frequencies with respect to the moment of inertia of the hub JR for spacecraft
installed with solar panels (L = 8 m)

Fig. 12 Variation of the 3rd through 6th frequencies with respect to the moment of inertia of the hub JR for spacecraft installed
with solar panels (L = 8 m): a the full view, b enlarged views at No. 1 to No. 4 areas
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Fig. 13 Variation of the first eight frequencies with respect to the solar array length L of a flexible spacecraft (JR = 100 kg m2):
a full view for 4 m ≤ L ≤ 14 m, b enlarged views at area I and area II in a, c full view for 14 m ≤ L ≤ 32 m

converge to the frequencies of corresponding symmetric modes, S(1, 1), S(2, 1) and S(3, 1). Because AS(1,
2) is not coupled with the rigid body motion of spacecraft, the frequency of this mode is unchanged as JR
increases. However, its corresponding symmetric mode S(1, 2) is coupled with spacecraft attitude motion θx ,
and thus, the frequency of S(1, 2) decreases with JR and tends to that of AS(1, 2). What is more, there are
big differences between the frequencies of S(m, n) mode and AS(m, n) mode for lower-order global modes or
small JR (i.e., the spacecraft is very flexible).

As JR increases, the frequency veering phenomena among the 3rd to the 6th modes are also observed in
Fig. 12 when the adjacent natural frequencies are close to each other. The interesting mode shift phenomenon
occurs with the frequency veering phenomenon. Take the frequency variation between AS(2, 1) and S(1, 2)
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as an example. When 0 < JR ≤ 10 kg m2, the 5th and 6th modes in Fig. 12 are dominated by AS(2, 1) and
S(1, 2), respectively; when JR is in the range 10–53kgm2, the 5th and 6th modes are dominated by S(1, 2)
and AS(2, 1), respectively. Similar frequency veering phenomenon between S(1, 2) and AS(2, 1) occurs again
when JR ≈ 54 kg m2. Another two frequency veering phenomena happen between AS(1, 2) and S(2, 1) at
NO.1 area, AS(1, 2) and AS(2, 1) at NO.4 area, as shown in Fig. 12.

The simulation results for different solar panel length are shown in Table 5, Figs. 10 and 13. It can be
observed from Table 5 that the mode shapes of solar panel are dominated by deformation in the direction of
width (y direction in this paper) for small L . Meanwhile, some lower-order coupled modes, such as S(1, 2),
are coupled with attitude motion θx , and other modes with attitude motion θy . Therefore, the spacecraft is
three-axis attitude stabilized. In this case, the solar array should be modeled by plate to describe this feature of
the system. As the length of solar array increases, the deformation in the direction of length (x direction in this
paper) gradually becomes the main part of mode shapes, and the order of coupled modes coupled with θx raises
progressively. The low-order modes of solar panel are coupled with θy . Then, it is appropriate to model long
solar panel with flexible beam which can only describe planar deformation in the direction of length which is
coupled with θy .

Figure 13 illustrates the variation of the first eight frequencies with respect to the length of solar panel L
for a flexible spacecraft. It can be seen that the frequencies gradually decrease as L increases. Also, frequency
veering phenomena occur between different global modes as shown in Fig. 13b, c. In addition, the high-order
global modes dominated by deformation in the direction of width (y direction in this paper) disappear among
the first eight modes of flexible spacecraft and are replaced by high-order modes dominated by deformation
in the direction of length (x direction in this paper). AS(2, 2) and S(2, 2) illustrated in area I of Fig. 13b, for
example, are the 7th and 8th modes of the system when L < 5.5 m and then are displaced by S(3, 1) and AS(3,
1) when L exceeds 5.5 m. Similar mode replacement happens again near L = 30.8 m, as shown in Fig. 13c.

4 Conclusions

The Rayleigh–Ritz method has been successfully extended to obtain the global analytical modes and analyze
the modal characteristics of a typical rigid–flexible coupling dynamic system (hub-plate system), i.e., a three-
axis attitude stabilized spacecraft installed with a pair of solar arrays. Also the method in this paper can be
used to study modal features of other rigid–flexible coupling systems such as hub-beam system. Validation
of this method has been checked by comparisons with results obtained from ANSYS software. The method
presented can efficiently calculate high-precision frequencies of the flexible spacecraft and makes it possible
to obtain the analytical expressions of the global modes, which can be conveniently used in the discretization
of the dynamic equations of flexible spacecraft and in the design of controllers for both the attitude maneuver
and vibration suppression. However, the FEM such as ANSYS can only obtain numerical modes which are
not easy to be used to do so. What is more, different from FEM, the frequencies and mode shapes derived in
this paper are based on analytical formulations, so effect of given system parameters on modal characteristics
of the flexible spacecraft can be studied easily and more insight into the modal characteristics can be provided.
To sum up, the method presented in this paper is a relative convenient, efficient and exact method dealing with
global mode analysis of flexible spacecraft in engineering applications.

Moreover, using the method presented in this paper, the characteristics of global modes of the spacecraft
installed with a pair of solar arrays have been investigated. Some main conclusions are summarized as follows:

(1) For the samemode number (m, n) of solar panel: (1) if themode number n is an odd number, the symmetric
(m, n) global modes are coupled with spacecraft translation zo, and antisymmetric (m, n) global modes
with spacecraft attitude motion θy ; (2) if the mode number n is an even number, the antisymmetric (m, n)
global modes are not coupled with any rigid bodymotion, and symmetric (m, n) global modes are coupled
with spacecraft attitude motion θx . In both two cases, frequencies of latter modes are higher than those
of former ones, and converge to the former frequencies as the hub inertial moment increases.

(2) The frequencies of global modes coupled with rigid body motion of spacecraft are higher than those of
corresponding modes of cantilever solar panel which are used as assumed modes in many researches.
That means the assumed modes fail to reflect the effects of spacecraft rigid body motion and rigid hub
on the elastic modes of solar panels. So, the global analytical modes rather than assumed ones should be
adopted in the discretization of dynamic equations of the system.

(3) For small solar array length, the solar panel should be modeled by plate to describe the three-axis attitude
stability of the spacecraft. However, it is appropriate to model long solar array with flexible beam which
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can only describe planar deformations in the direction of solar length. In addition, the interesting frequency
veering and mode shift phenomena have also been observed during the parameter studies on rigid-hub
mass moment of inertia and solar panel length.
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