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Abstract The generalized Euler’s case (rigid body rotation over the fixed point) is discussed here: The center
of masses of non-symmetric rigid body is assumed to be located at the equatorial plane on axis Oy which
is perpendicular to the main principal axis Ox of inertia at the fixed point. Such a case was presented in the
rotating coordinate system, in a frame of reference fixed in the rotating body for the case of rotation over the
fixed point (at given initial conditions). In our derivation, we have represented the generalized Euler’s case
in the fixed Cartesian coordinate system; so, the motivation of our ansatz is to elegantly transform the proper
components of the previously presented solution from one (rotating) coordinate system to another (fixed)
Cartesian coordinates. Besides, we have obtained an elegantly analytical case of general type of rotations;
also, we have presented it in the fixed Cartesian coordinate system via Euler’s angles.

Keywords Euler’s equations (rigid body dynamics) · Poinsot’s equations · Euler’s angles · Principal
moments of inertia

Mathematics Subject Classification 70E40 (Integrable cases of motion)

1 Introduction, equations of motion

Euler’s equations (dynamics of a rigid body rotation) are known to be one of the famous problems in classical
mechanics; a lot of great scientists have been trying to solve such a problem during last 300years.

Despite the fact that initial system of ODE has a simple presentation, only a few exact solutions have been
obtained until up to now [1–5], in a frame of reference fixed in the rotating body:

– the case of symmetric rigid rotor {two principal moments of inertia are equal to each other} [1–3]: (1)
Lagrange’s case, or (2) Kovalevskaya’s case;

– the Euler’s case [4]: all the applied torques equal to zero (torque-free precession of the rotation axis of
rigid rotor); the center of mass of rigid body coincides to the fixed point;

– the generalized Euler’s case [5]: (1) the center of masses of non-symmetric rigid body is assumed to be
located at the meridional plane which is perpendicular to the main principal axis Ox of inertia at the fixed
point (besides, the principal moments of inertia satisfy the simple algebraic equality); (2) the center of
masses of non-symmetric rigid body is assumed to be located at the equatorial plane on axis Oy which is
perpendicular to the main principal axis Ox of inertia at the fixed point.

– other well-known but particular cases [6], where the existence of particular solutions depends on the
choosing of the appropriate initial conditions.
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The generalizedEuler’s case [5]was recently published, at the beginning of the year 2014. In our derivation,
we should represent such a case in the fixed Cartesian coordinate system; so, the motivation of our ansatz is to
elegantly transform the proper components of the previously presented solution from one (rotating) coordinate
system to another (fixed) Cartesian coordinates.

Thus, finally we should answer how looks the motion in the fixed Cartesian coordinate system if we obtain
the appropriate expressions for the components of solution in a frame of reference fixed in the rotating body.

Also, we should note that the type (1) of the reported above [5] generalized Euler’s case is proved to be one
of the particular cases. Indeed, two important constants of such a solution (associated with two integrals of
motions) are assumed to be mutually dependent one to each other. It means the proper restriction at choosing
of one of the initial angular velocities at given initial positions of the rotating body in the fixed Cartesian
coordinate system.

So, we should determine the appropriate structure of the solution in Euler’s angles (which describe the
proper motion in the fixed Cartesian coordinate system) only for the type (2) of the generalized Euler’s case.

Let us remember the results of [5], concerning the type (2) of the generalized Euler’s case. In accordance
with [1–3], Euler’s equations describe the rotation of a rigid body in a frame of reference fixed in the rotating
body for the case of rotation over the fixed point as below (at given initial conditions):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I1
dΩ1
dt

+ (I3 − I2) · Ω2 · Ω3 = P (γ2c − γ3b) ,

I2
dΩ2
dt

+ (I1 − I3) · Ω3 · Ω1 = P (γ3a − γ1c) ,

I3
dΩ3
dt

+ (I2 − I1) · Ω1 · Ω2 = P (γ1b − γ2a) ,

(1.1)

where Ii �= 0 are the principal moments of inertia (i = 1, 2, 3) and Ωi are the components of the angular
velocity vector along the proper principal axis; γi are the components of the weight of mass P and a, b, c are
the appropriate coordinates of the center of masses in a frame of reference fixed in the rotating body (in regard
to the absolute system of coordinates X , Y , Z).

Poinsot’s equations for the components of the weight in a frame of reference fixed in the rotating body (in
regard to the absolute system of coordinates X , Y , Z) should be presented as below [1–3]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dγ1
dt

= Ω3γ2 − Ω2γ3,

dγ2
dt

= Ω1γ3 − Ω3γ1,

dγ3
dt

= Ω2γ1 − Ω1γ2,

(1.2)

besides, we should present the invariants of motion (first integrals of motion) as below

⎧
⎨

⎩

γ 2
1 + γ 2

2 + γ 2
3 = 1,

I1 · Ω1 · γ1 + I2 · Ω2 · γ2 + I3 · Ω3 · γ3 = const = C0,

1
2

(
I1 · Ω2

1 + I2 · Ω2
2 + I3 · Ω2

3

) + P(aγ1 + bγ2 + cγ3) = const = C1.

(1.3)

So, system of Eqs. (1.1)–(1.2) is proved to be equivalent to the system of Eqs. (1.1), (1.3). It means that we
could obtain the exact solutions of system (1.1), using the invariants (1.3).

2 Exact solution, a = c = 0 (in a frame of reference fixed in the rotating body)

Having chosen the additional invariant of motion (square of the vector of angular momentum) in [5], we
supposed it to be valid for the system of Eqs. (1.1)–(1.2) as below (C0 �= 0, a = c = 0, I1 �= I3):

I 21 · Ω2
1 + I 22 · Ω2

2 + I 23 · Ω2
3 = C2

0

In such a case, we could obtain from the system of Eqs. (1.1), (1.3):

γ3 = I3 · Ω3

C0
, γ2 = I2 · Ω2

C0
, γ1 = I1 · Ω1

C0
(2.1)
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where [5]:

Ω 2
3 =

{
C2 · C3 + (I2 − I1) · I2 · Ω2

2 − b · I2 · C3 · Ω2

(I1 − I3) · I3

}

C2 = C0 ·
(

C1

P
− C 2

0

2 P · I1

)

, C3 =
(
2 P · I1

C0

)

, (2.2)

but the proper component of solution for Ω2(t) in (2.2) is given by the re-inversed quasi-periodic function
from the appropriate elliptic integral [7]:

∫
dΩ2

√

f1(Ω2, Ω
2
2 ) ·

√

f2(Ω2, Ω
2
2 )

=
∫

dt, (2.3)

where (I1 �= I3)

f1 =
({

2I1C1 − C2
0

I3 · I2

}

− 2P · I1 · b

C0 · I3
· Ω2 + (I2 − I1) · Ω2

2

I3

)

,

f2 =
({

C2
0 − 2I3 · C1

I1 · I2

}

+ 2P · I3 · b

C0 · I1
· Ω2 − (I2 − I3)

I1
· Ω2

2

)

,

f1(Ω2, Ω
2
2 ) · f2 (Ω2, Ω

2
2 ) > 0.

Besides, the appropriate component of solution for Ω1(t) should be presented as below [5]:

Ω2
1 =

{
C2
0 − 2I3 · C1

I1 · (I1 − I3)

}

+ 2P · I3 · b · I2
C0 · I1 · (I1 − I3)

· Ω2 − I2
I1

· (I2 − I3)

(I1 − I3)
· Ω2

2 (2.4)

3 Presentation of exact solution (a = c = 0), via Euler’s angles

In accordance with [1–3], Euler’s kinematic equations, which describe the rotation of a rigid body over the
fixed point in regard to the fixed Cartesian coordinate system, should be presented as below (at given initial
conditions):

⎧
⎨

⎩

Ω1 = ψ̇ · γ1 + θ̇ · cosϕ,

Ω 2 = ψ̇ · γ2 − θ̇ · sin ϕ,

Ω3 = ψ̇ · γ3 + ϕ̇,

(3.1)

⎧
⎨

⎩

γ1 = sin θ · sin ϕ,
γ2 = sin θ · cosϕ,
γ3 = cos θ

(3.2)

where ψ , θ , ϕ are the appropriate angles, describing the positions of the reference fixed in the rotating body
(in regard to the absolute system of coordinates X , Y , Z), as shown in Fig. 1:

Equations (3.2) and (2.1) let us obtain as below:

{
ϕ = arctan(γ1/γ2),
θ = arccos γ3

⇒
⎧
⎨

⎩

ϕ = arctan
(

I1Ω1
I2Ω2

)
,

θ = arccos
(

I3Ω3
C0

)
,

(3.3)

Then, the appropriate expression for the meaning of angle ψ could be obtained from one of the Eqs. (3.1):

ψ̇ = Ω3 − ϕ̇

γ3
⇒ ψ̇ = C0

I3
·
(

1 − ϕ̇

Ω3

)

(3.4)

Thus, formulae (3.3)–(3.4) are proved to describe the appropriate dynamics of rigid body rotation in regard to
the absolute system of coordinates X , Y , Z , via Euler’s angles.
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Fig. 1 Presentation of Euler’s angles

4 Analytical partial case of exact solution (a = c = 0), via Euler’s angles

Let us assume that the proper simplifications are valid for expression (2.3) (α = const):

I1 = I2, C2
0 − 2I3 · C1 = 0, I1 > I3,

{
2 I1C1 − C2

0

I 21

}

= α
2P · b

C0
,
2P · b

C0
= α

(I1 − I3)

I3
,

f1 =
({

2I1C1 − C2
0

I3 · I1

}

− 2P · I1 · b

C0 · I3
· Ω2

)

, f2 =
(
2P · I3 · b

C0 · I1
· Ω2 − (I1 − I3)

I1
· Ω2

2

)

,

f1(Ω2, Ω
2
2 ) · f2(Ω2, Ω

2
2 )

= I1
I3

·
({

2I1C1 − C2
0

I 21

}

− 2P · b

C0
· Ω2

)

· I3
I1

·
(
2P · b

C0
− (I1 − I3)

I3
· Ω2

)

· Ω2

=
(
2P · b

C0
· Ω2 −

{
2I1C1 − C2

0

I 21

})

·
(

(I1 − I3)

I3
· Ω2 − 2P · b

C0

)

· Ω2 > 0. (4.1)

So, we should consider one of particular types of solutions of the generalized Euler’s case [5] for the
symmetric rotating rigid body (I1 = I2). It means the proper restriction at choosing of (one of) the initial
angular velocities at given initial positions of the rotating body in the fixed Cartesian coordinate system.

Besides, in such a case the proper component of solution for Ω2(t) in (4.1) could be obtained according to
(2.3) as below:

∫
dΩ2

√

f1(Ω2,Ω
2
2 ) ·

√

f2(Ω2, Ω
2
2 )

=
∫

dt,

where (I1 > I3)

C2
0 = 2I3 · C1, α =

√
√
√
√2C1 ·

(
I3
I 21

)

, b =
(

C1

P

)

· (I1 − I3)

I1
,
2Pb

C0
=

(
2C1√
2I3 · C1

)

· (I1 − I3)

I1
,

∫
dΩ2

√
2P·b
C0

· (Ω2 − α) · (I1−I3)
I3

· (Ω2 − α) · Ω2

=
∫

dt,⇒
⎛

⎜
⎝A =

√
√
√
√

(√
2C1

I3

)

· (I1 − I3)2

I1 · I3
, u = √

Ω2

⎞

⎟
⎠

⇒ 2
∫

du

α − u2 = −A ·
∫

dt, (0 ≤ u <
√

α) ⇒
(

2

2
√

α

)

· ln
∣
∣
∣
∣

√
α + u√
α − u

∣
∣
∣
∣ = −A · t,
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⇒
√

α + u√
α − u

= exp
(−(A

√
α) · t

)
, u (t) =

(
exp

(−(A
√

α) · t
) − 1

exp
(−(A

√
α) · t

) + 1

)

· √
α ⇒ Ω2(t) = u2 (4.2)

Using (4.2), we could obtain from (2.4) the appropriate expression for Ω1(I1 = I2):

Ω1 =
√

(√
2 · I3 · C1

I1

)

· Ω2 − Ω2
2 , Ω2 <

√
√
√
√2C1 ·

(
I3
I 21

)

(4.3)

but, in addition to this, Eqs. (2.2) and (4.1)–(4.2) yield (I1 = I2):

Ω3 =
√
2C1

I3
·
(

1 − I1√
2I3 · C1

· Ω2

)

, Ω2 <

√
2I3 · C1

I1
, Ω2 = u2 (4.4)

Thus, we have obtained the analytical expressions for all the components of angular velocities (4.2)–(4.4)
in case I1 = I2; also, we could obtain from (3.3) the appropriate expressions for the Euler’s angles ϕ, θ

⎧
⎪⎨

⎪⎩

ϕ = arctan

(√(√
2 · I3·C1

I1

)
·
(

1
u2

)
− 1

)

, u(t) = √
Ω2

θ = arccos
(√

1 − I1√
2I3· C1

· u2
)

, u(t) = √
Ω2

(4.5)

As for the dynamics of Euler’s angleψ , we should solve the ordinary differential equation of the first order
[8] as below, according to (3.4):

ψ̇ =
√
2I3 · C1

I3
·
(

1 − ϕ̇

Ω3

)

⇒ ψ̇ =
√

I1√
2 · I3 · C1

·
(√(√

2·I3·C1
I1

)
· 2C1

I3
+ Ω̇2

2
√

Ω2·
(

1− I1√
2 I3· C1

· Ω2

)

)

⇒
∫

dψ =
√

I1√
2 · I3 · C1

·
((√(√

2·I3·C1
I1

)
· 2C1

I3

)

· t +
∫

dΩ2

2
√

Ω2 ·
(
1 − I1√

2I3·C1
· Ω2

)

)

ψ =
√

I1√
2 · I3 · C1

·
((√(√

2·I3·C1
I1

)
· 2C1

I3

)

· t +
∫

du
(
1 − I1√

2I3·C1
· u2

)

) ⎛

⎝0 ≤ u <

√√
2 · I3 · C1

I1

⎞

⎠ ⇒

ψ =
(

I1
I3

)

α · t + 1

2
ln

((√
α
) + u

(√
α
) − u

)

, α =
√
√
√
√2C1 ·

(
I3
I 21

)

, u(t) = √
Ω2 (4.6)

5 Discussion

We discuss here the generalized Euler’s case [5], which was recently published: The center of masses of
non-symmetric rigid body is assumed to be located at the equatorial plane on axis Oy which is perpendicular to
the main principal axis Ox of inertia at the fixed point. Such a case was presented [5] in the rotating coordinate
system, in a frame of reference fixed in the rotating body for the case of rotation over the fixed point (at given
initial conditions).

In our derivation, we have represented the generalized Euler’s case [5] (2.2)–(2.4) in the fixed Cartesian
coordinate system (3.3)–(3.4); so, the motivation of our ansatz is to elegantly transform the proper compo-
nents of the previously presented solution from one (rotating) coordinate system to another (fixed) Cartesian
coordinates.

Besides, we have obtained an elegantly analytical case (4.2)–(4.4) of general type of solutions (rotations);
also, we have presented it in the fixed Cartesian coordinate system (4.5)–(4.6) via Euler’s angles.

Thus, finally we should answer how the motion looks in the fixed Cartesian coordinate system if we obtain
the appropriate expressions for the components of solution in a frame of reference fixed in the rotating body
(see the next section).

Also, we should note that the case above of the generalized Euler’s solution [5] is assumed to be one of
the particular cases. Indeed, two of important constants of such a solution (associated with two integrals of
motions) are assumed to be mutually dependent one to each other. It means the proper restriction at choosing
of one of the initial angular velocities at given initial positions of the rotating body in the fixed Cartesian
coordinate system.
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6 Conclusion, final presentation of solution

We have obtained absolutely new presentation (4.2)–(4.4) of exact solutions of the generalized Euler’s case
[5], which have been presented in the fixed Cartesian coordinate system (4.5)–(4.6) via Euler’s angles.

We schematically imagine at Figs. 2, 3, 4, 5, 6 the dynamics of the components of solution (4.5)–(4.6) as
presented below:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ = arctan

(√(
α
u2

)
− 1

)

, α =
√

2C1 ·
(

I3
I 21

)

θ = arccos

(√

1 − u2
α

)

, u(t) = √
Ω2

(6.1)

u(t) =
(
exp

(−(A
√

α) · t
) − 1

exp
(−(A

√
α) · t

) + 1

)

· √
α, A =

√

α · (I1 − I3)2

I 23
,

Fig. 2 Ordinate axis is the function ϕ(t): A =5, α = 1, see Eqs. (6.1); abscissa axis is the time parameter t

Fig. 3 Ordinate axis is the function θ(t): A = 5, α = 1, see Eqs. (6.1); abscissa axis is the time parameter t
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Fig. 4 Ordinate axis is the function ψ(t): (I1/I3) = 5, A = 1, α = 1, see Eqs. (6.2); abscissa axis is the time parameter t

Fig. 5 Ordinate axis is the function ψ(t): (I1/I3) = 5, A = 9, αα = 1, see Eqs. (6.2); abscissa axis is the time parameter t

Fig. 6 Ordinate axis is the function ψ(t): (I1/I3) = 5, A = 10, α = 1, see Eqs. (6.2); abscissa axis is the time parameter t
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ψ =
(

I1
I3

)

α · t + 1

2
ln

((√
α
) + u

(√
α
) − u

)

, α =
√
√
√
√2C1 ·

(
I3
I 21

)

, u(t) = √
Ω2 (6.2)

Let us choose in Eqs. (6.1)–(6.2): α = 1, just for simplicity of presentations.
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