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Abstract Cable’s non-planar coupled dynamics under asynchronous out-of-plane support motions is inves-
tigated in this paper. The moving boundary difficulty is coped by transforming the small support motions
into two resonant boundary modulation terms, and cable’s one-to-one resonant coupled non-planar dynamics
is reduced through attacking directly the continuous dynamic equations by the multiple scale method. Two
boundary dynamic coefficients are derived, characterizing the boundary modulation effects, which are equal
for symmetric out-of-plane modes, while opposite for asymmetric ones. Both cable’s frequency and amplitude
(of support deflection) response diagrams, with phase lags between supports, are constructed using numerical
continuation algorithms, and the steady-state solutions’ stability and bifurcation properties are determined,
based upon which the phase lags’ effects on dynamic responses, or travelling wave effects, are thoroughly
investigated, through varying the phase lags.

Keywords Cable dynamics · Asynchronous support excitations · Travelling wave effect · Multiple scale
method

1 Introduction

Elastic cables, as long-span structure members, are widely used in structure engineering [1–7], such as long-
span suspension or stay-cable bridges, cross-sea or cross-valley power transmission lines. Furthermore, due
to increasing usage of CFRP (carbon fibre-reinforced polymers) [8], the cable’s span is extended to over 1000
(m) and is still soaring significantly in the recent years.

Cable’s dynamic behaviours are complicated and extensive investigations have been conducted by many
researchers in the past few decades [1–7]. Irvine and Caughey [3,4] proposed a linear cable model and gave
linear modal results, and Triantafyllou [5] focused on dynamics of mooring cables. Using single-degree-of-
freedom (sdof) cable models, Hagedorn and Schäfer [9], Luongo et al. [10], Benedettini and Rega [11] studied
nonlinear oscillations of elastic cables.

Support motions-induced boundary excitation is one of the main excitation sources for engineering cables.
Using Galerkin discretization and the multiple scale method, Perkins [12], Benedettini et al. [13] studied cable
dynamics under support motions. Note that themain difficulty associatedwithmoving supports is cable’s linear
mode analysis with moving boundary conditions. In this respect, Perkins [12] used the classical cable modes
under fixed supports, and Benedettini et al. [13] introduced a quasi-static mode assumption and decomposed
the cable’smode into two components, i.e. the linear quasi-static component caused by themoving support, and
the small oscillating component under fixed supports. Although this quasi-static mode concept is approximate
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or empirical, the method and similar strategies thereafter are regarded pragmatic and are widely used for
studying cable dynamics caused by moving decks/towers [14–21].

A boundary modulation approach, formulated by the authors in Ref. [22], can be used to cope with cable’s
dynamic boundary difficulty under support excitations. The basic idea is rather simple, i.e. the support motion’s
order/scale is assumed to be smaller than that of the cable, and themoving supports can be treated as perturbation
terms. Thus, through attacking directly the continuous dynamic equations using the multiple scale method,
the resonant support motions are transformed into boundary modulation terms for cable’s reduced (slow)
dynamics. This key idea, i.e. regarding small boundary/support motions as perturbations and transforming
them into modulation terms on the main structure, was also used by Shaw and Pierre [23], Nayfeh [24],
Pakdemirli and Boyaci [25].

For multiple support excitations, the situation would be more complex. A peculiar and important factor,
especially for long or super-long cables, is the asynchronous support excitations caused by seismic loadings.
Explicitly, the time taken for seismic waves travelling across cable’s two widely spaced supports, say l/v, is
finite and thus not negligible [17,26]. This is also called a travelling wave effect. In other words, the multiple
support excitations would be asynchronous and the phase lag/shift between the support motions is not zero.
Therefore, the phase lag’s effect on long-cable’s dynamics should be carefully modelled and analysed.

Based upon the basic boundary modulation formulation established in Ref. [22], this paper focuses on
cable’s non-planar coupled dynamics under asynchronous out-of-plane support motions. In this respect, with
damping neglected, Ref. [17] proposed a Galerkin discretized model for non-resonant coupled dynamics and
used the empirical quasi-static motion assumption mentioned above. As pointed out in references [27–29],
directly reduced models obtained through directly attacking cable’s continuous dynamic equations by the
multiple scale method would be more appropriate than the Galerkin discretized models [29].

Thus, our paper’s first aim would be to establish a boundary modulation formulation for long-cable’s
dynamic modelling and analysis under multiple asynchronous support motions, thus extending the boundary
modulation formulation in Ref. [22] to multiple support cases. The second aim would be to analyse the phase
lag’s effects on cable’s non-planar coupled dynamic responses, and we would mainly focus on one-to-one
in-plane and out-of-plane resonant coupled interactions.

2 Problem statement

Ahomogenous, elastic cable, is horizontally hanged at oscillating supports O and A (for example, bridge decks
or towers in suspension/stay-cable bridge systems), as depicted in Fig. 1. The cable stretches in a quasi-static
manner, i.e, the longitudinal dynamic time scale is much smaller (thus fast) than the vertical one [30], we
present the dimensionless governing equations for cable’s non-planar motions [27,28]:

ẅ + 2cẇ − w′′ − α
(
w′′ + y′′)

∫ 1

0

(
y′w′ + 1

2
w′2 + 1

2
v′2

)
dx = 0 (1)

v (x,t)

u (x,t)Z0 cos( t- 0)

Z0 cos( t0)

seismic loading

AO

seismic loading

phase lag: 0= t= l cos /c

l

b

w (x,t)

sei

mic loading

wave’ s travelling velocity: c

Fig. 1 Cable’s non-planar coupled motions under asynchronous out-of-plane support excitations: travelling wave effect and the
phase lag θ0
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v̈ + 2cv̇ − v′′ − αv′′
∫ 1

0

(
y′w′ + 1

2
w′2 + 1

2
v′2

)
dx = 0 (2)

Here cable’s in-plane vertical displacements, and out-plane displacements, are denoted by w(x, t) and v(x, t),
respectively. The longitudinal displacement u(x, t) has been kinetically condensed in Eqs. (1) and (2) (the effect
of the kinetic condensation is explored in Ref. [31]). The cable’s initial parabolic shape is y(x) = 4 f x(1− x),
where f = b/ l is cable’s sag-to-span ratio, with the initial sag and span denoted by b and l, respectively. The
dimensionless stiffness is α = 8bE A/mgl2. The dimensionless time t and spatial coordinate x are defined as
t = t1/T , and x = x1/L , respectively. Here T 2 = 8b/g, and the original time(spatial) coordinate is denoted
by t1(x1). Note that the overdot and prime above denote differentiation with respect dimensionless time t and
spatial coordinate x , respectively. Further details can be found in Ref. [22].

The in-plane and out-of-plane boundary conditions are

w (x, t) = 0, at x = 0, 1
v (x, t) = Z0 cos (�t − ��t) = Z0 cos (�t − θ0) , at x = 0
v (x, t) = z (t) = Z0 cos�t, at x = 1

(3)

We note that the out-of-plane boundary conditions at x = 0 and x = 1 are asynchronous, and the phase lag
due to the travelling wave effect is θ0 = � �t , where � and �t are seismic wave’s frequency and travelling
time between supports. The main aim of this study is to understand the phase lag’s effect on cable’s coupled
dynamics through establishing an extended (thus more general) boundary modulation formulation.

3 Reduced modelling by the multiple scale method

For the sake of simplicity, we rewrite Eq. (1) in a first-order state space form

ẇ − p = 0, ṗ + 2cp + Lw (w) − N2 (w, v) − N3 (w, v) = 0
v̇ − q = 0, q̇ + 2cq + Lv (v) − Ñ2 (w, v) − Ñ3 (w, v) = 0

(4)

where the linear operators Lw and Lv for in-plane and out-of-plane dynamics are

Lw (w) = −w′′ − αy′′
∫ 1

0

(
y′w′)dx, Lv (v) = −v′′ (5)

And the quadratic and cubic nonlinear terms are defined as

N2 (w, v) = αw′′
∫ 1

0

(
y′w′)dx + αy′′

2

∫ 1

0

(
w′2 + v′2)dx, N3 (w, v) = αw′′

2

∫ 1
0

(
w′2 + v′2)dx

Ñ2 (w, v) = αv′′
∫ 1

0

(
y′w′) dx, Ñ3 (w, v) = αv′′

2

∫ 1
0

(
w′2 + v′2) dx

(6)

The multiple moving boundary conditions are

w (x, t) = p (x, t) = 0, v (x, t) = z (t − �t) , q (x, t) = ż (t − �t) at x = 0
w (x, t) = p (x, t) = 0, v (x, t) = z (t) , q (x, t) = ż (t) at x = 1 (7)

3.1 One-to-one resonant coupled dynamics under asynchronous support motions: multi-scale expansions

Consider one-to-one resonant interaction between in-plane and out-of-plane cable modes for the coupling
system in Eqs. (4)–(7). In this case, the cubic nonlinearity due to longitudinal stretching is dominant. We seek
uniform asymptotic expansions of w, v as

w (x, t) = εw1 (x, T0, T2) + ε2w2 (x, T0, T2) + ε3w3 (x, T0, T2) · · ·
v (x, t) = εv1 (x, T0, T2) + ε2v2 (x, T0, T2) + ε3v3 (x, T0, T2) · · · (8)

where Ti = εit . As no resonance occurs on the time scale T1, the above asymptotic expansion is independent
of T1. To make the damping, nonlinearity and the non-homogenous boundary condition in Eq. (7) balance at



1650 T. Guo et al.

the same order, ε3, we reorder/rescale the damping c and the support motion as c → ε2c, z (t) → ε3z (t).
Substituting Eq. (8) into Eq. (4), equating coefficients of like powers of ε, we obtain
Order ε:

D0w1 − p1 = 0, D0 p1 + Lw (w1) = 0
D0v1 − q1 = 0, D0q1 + Lv (v1) = 0 (9)

with the homogenous boundary conditions

w1 = p1 = 0, v1 = q1 = 0 at x = 0, 1 (10)

Order ε2:
D0w2 − p2 = 0, D0 p2 + Lw (w2) = N2 (w1, v1)

D0v2 − q2 = 0, D0q2 + Lv (w2) = Ñ2 (w1, v1)
(11)

with the homogenous boundary conditions

w2 = p2 = 0, v2 = q2 = 0 at x = 0, 1 (12)

Order ε3:
D0w3 − p3 = −D2w1
D0 p3 + Lw (w3) = −D2 p1 − 2cp1 + N 11

3 + N 12
3

D0v3 − q3 = −D2v1

D0q3 + Lv (v3) = −D2q1 − 2cq1 + Ñ 11
3 + Ñ 12

3

(13)

with non-homogeneous 3rd-order boundary conditions/excitations

w3 = p3 = 0, at x = 0, 1

v3 (x, t) = Z0

2
ei�T0e−iθ0 + cc., q3 (x, t) = i�v3 at x = 0

v3 (x, t) = Z0

2
ei�T0 + cc., q3 (x, t) = i�v3 at x = 1

(14)

Note that the cubic nonlinearities on the order ε3, for both in-plane and out-of-plane dynamics, consist of two
distinct terms. For the in-plane case, they are

N 11
3 = αw′′

1

2

∫ 1

0

(
w

′2
1 + v

′2
1

)
dx,

N 12
3 = αw′′

1

∫ 1

0

(
y′w′

2

)
dx + αw′′

2

∫ 1

0

(
y′w′

1

)
dx + αy′′

∫ 1

0

(
w′
1 · w′

2 + v′
1 · v′

2

)
dx

(15)

For the out-of-plane case, they are

Ñ 11
3 = αv′′

1

2

∫ 1

0

(
w

′2
1 + v

′2
1

)
dx, Ñ 12

3 = αv′′
1

∫ 1

0

(
y′w′

2

)
dx + αv′′

2

∫ 1

0

(
y′w′

1

)
dx (16)

It is noted that the cubic nonlinearity terms N 11
3 and Ñ 11

3 are caused by the self-interactions of the 1st-order
solutions, and they are associatedwith the original cubic nonlinearity, i.e. N3 (w, v) and Ñ3 (w, v), respectively.
The new cubic terms N 12

3 and Ñ 12
3 , essentially, are caused by the quadratic/mutual interaction between the

1st-order and the 2nd-order solutions, and they are rooted in cable’s quadratic nonlinearity N2 (w, v) and
Ñ2 (w, v).

The solutions of the first-order problem in Eq. (9) are assumed as

w1 = An (T2) φn (x) eiω
(in)
n T0 + cc., p1 = iω(in)

n An (T2) φn (x) eiω
(in)
n T0 + cc.

v1 = Bm (T2) ϕm (x) eiω
(out)
m T0 + cc., q1 = iω(out)

m Bm (T2) ϕm (x) eiω
(out)
m T0 + cc.

(17)

where φn (x) and ϕm (x) are cable’s n-th in-plane and m-th out-of-plane vibration modes, with the associ-
ated characteristic frequencies ω

(in)
n , ω

(out)
m . Further information for cable’s linear mode analysis is cited in

“Appendix 1”.
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Substituting the 1st-order solutions in Eq. (17) into the 2nd-order perturbation equations (11), we obtain
the 2nd-order in-plane equations

D0w2 − p2 = 0

D0 p2 + Lw (w2) = A2
ne

i2ω(in)
n T0Π1 (x) + An ĀnΠ2 (x)

+ B2
me

i2ω(out)
m T0Π3 (x) + Bm B̄mΠ4 (x) + cc.

(18)

and the 2nd-order out-of-plane equations

D0v2 − q2 = 0

D0q2 + Lv (v2) = AnBme
i
(
ω

(in)
n +ω

(out)
m

)
T0

Π5 (x) + An B̄me
i
(
ω

(in)
n −ω

(out)
m

)
T0

Π6 (x) + cc.
(19)

where the coefficients Πk(x), k = 1, 2, . . . , 6, are presented in “Appendix 2”.
As no resonance occurs on the order ε2, we write the 2nd-order solutions for Eq. (19) as

w2 = A2
ne

i2ω(in)
n T0Ψ1 (x) + An ĀnΨ2 (x) + B2

me
i2ω(out)

m T0Ψ3 (x) + Bm B̄mΨ4 (x) + cc.

v2 = AnBme
i
(
ω

(in)
n +ω

(out)
m

)
T0

Ψ5 (x) + An B̄me
i
(
ω

(in)
n −ω

(out)
m

)
T0

Ψ6 (x) + cc.
(20)

where the in-plane shape functions Ψk (x), k = 1, 2, 3, 4 and out-of-plane ones Ψk (x), k = 5, 6, are governed
by the linear boundary value problems (BVPs)

−4
(
ω(in)
n

)2
Ψ1 (x) + Lw (Ψ1 (x)) = Π1 (x) (21)

Lw (Ψ2 (x)) = Π2 (x) (22)

−4
(
ω(out)
m

)2
Ψ3 (x) + Lw (Ψ3 (x)) = Π3 (x) (23)

Lw (Ψ4 (x)) = Π4 (x) (24)

−
(
ω(in)
n + ω(out)

m

)2
Ψ5 (x) + Lv (Ψ5 (x)) = Π5 (x) (25)

−
(
ω(in)
n − ω(out)

m

)2
Ψ6 (x) + Lv (Ψ6 (x)) = Π6 (x) (26)

Here the linear differential (integral) operators Lw, Lv are defined in Eq. (5). These linear BVPs can be solved
by the standard method for linear integral-differential or differential equations [30], and illustrations of typical
shape functions Ψi (x) are presented in “Appendix 3”.

Consider one-to-one resonant interaction/coupling between the in-plane mode and out-of-plane mode, and
assume out-of-plane primary resonant boundary/support excitation

ω(in)
n = ω(out)

m + ε2σ1, � = ω(out)
m + ε2σ2 (27)

where σ1 and σ2 are two detuning parameters. Thus the non-homogeneous 3rd-order resonant boundary
conditions in Eq. (14) are rewritten as

v3 (x, t) = eiω
(out)
m T0e−iθ0 Z0eiσ2T2

2
+ cc., q3 (x, t) = i�v3 at x = 0

v3 (x, t) = eiω
(out)
m T0 Z0eiσ2T2

2
+ cc., q3 (x, t) = i�v3 at x = 1

(28)

Substituting the 1st-order solutions in Eq. (17) and 2nd-order solutions in Eq. (20) into the 3rd-order equations
in Eq. (13), using Eq. (27), we obtain the 3rd-order in-plane equations

D0w3 − p3 = −D2Anφneiω
(in)
n T0 + cc.

D0 p3 + Lw (w3) = −iωn (D2An + 2cAn) φneiω
(in)
n T0 + An |An|2 χ1 (x) eiω

(in)
n T0

+ An |Bm |2 χ2 (x) eiω
(in)
n T0 + Ān B2

mχ3 (x) e
i
(
2ω(out)

m −ω
(in)
n

)
T0 + NST3. + cc.

(29)
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and the 3rd-order out-of-plane equations

D0v3 − q3 = −D2Bmϕmeiω
(out)
m T0 + cc.

D0q3 + Lv (v3) = −iωm (D2Bm + 2cBm) ϕmeiω
(out)
m T0 + Bm |Bm |2 χ4 (x) eiω

(out)
m T0

+ Bm |An|2 χ5 (x) eiω
(out)
m T0 + B̄m A2

nχ6 (x) e
i
(
2ω(in)

n −ω
(out)
m

)
T0 + NST4. + cc.

(30)

where the coefficients χk(x), k = 1, 2, . . ., 6, are presented in “Appendix 2”, and NST3 and NST4 denote the
non-secular terms.

3.2 Solvability conditions: multiple resonant boundary modulations

The above multiple scale expansion is similar to the cable dynamics under in-plane distributed excitations
with fixed supports [32,33]. We point out that the main difficulty lies in the solvability conditions for Eqs. (29)
and (30), noting the two resonant boundary conditions in Eqs. (28). In most references, the approach used to
derive the solvability conditions is designed for resonant distributed external excitations(with fixed supports),
which is not suitable for the present localized boundary excitations (with moving supports). To tackle the
two non-homogeneous resonant boundary conditions in Eq. (28), we try to extend the boundary modulation
approach formulated by the authors in Ref. [22].

Multiply the right-hand sides of Eqs. (29) and (30) by the adjoint solutions [33] q†w =
[
iω(in)

k , 1
]
φk (x)

e−iω(in)
k T0 and q†v =

[
iω(out)

k , 1
]
ϕk (x) e−iω(out)

k T0 , respectively, and then integrate in the domain [0, 1]×[0, τ0],
where τ0 is the period of w3 and v3 with respect to T0. We thus obtain the right-hand sides (RHS) as

RHS(in) =
{
−2iω(in)

n (D2An + μn An) + �1An |An|2 + �2An |Bm |2 + �3 Ān B
2
me

−2iσ1T2
}

τ0δnk (31)

RHS(out) =
{
−2iω(out)

m (D2Bm + μn Bm) + �4Bm |Bm |2 + �5Bm |An|2 + �6 B̄m A2
ne

2iσ1T2
}

τ0δmk (32)

where the Kronecker delta δnk = 1, n = k; δnk = 0, n �= k and the (3rd-order) nonlinear interaction
coefficient �n, �nm, �m, �mn are

�k = 〈φn, χk (x)〉 , k = 1, 2, 3, μn = 〈
c (x) , φ2

n

〉

�k = 〈ϕm, χk (x)〉 , k = 4, 5, 6, μm = 〈
c (x) , ϕ2

m

〉 (33)

if introducing an inner product for any two smooth functions ψ1(x) and ψ2(x)

〈ψ1, ψ2〉 =
∫ 1

0
ψ̄1 (x) ψ2 (x) dx (34)

To use the boundary modulation approach formulated in Ref. [22], the followings are key steps. Multiplying

the left-hand sides of Eqs. (29) and (30) by the adjoint solutions q†w =
[
iω(in)

k , 1
]
φk (x) e−iω(in)

k T0 and q†v =
[
iω(out)

k , 1
]
ϕk (x) e−iω(out)

k T0 , and then integrating in the domain [0, 1] × [0, τ0], we obtain the left-hand sides
(LHS), explicitly

LHS(in) = 0 (35)

LHS(out) =
∫ τ0

0

∫ 1

0

{
iω(out)

k ϕke
−iω(out)

k T0 (D0v3 − q3) + ϕke
−iω(out)

k T0(D0q3 + Lv (v3))
}
dxdT0

= −
∫ τ0

0

∫ 1

0

[
D0

(
ϕk (x) eiω

(out)
k T0

)
− iωkϕk (x) eiω

(out)
k T0

]

︸ ︷︷ ︸
=0

·q3dxdT0

+
∫ τ0

0

∫ 1

0

[
D0

(
iω(out)

k ϕk (x) eiω
(out)
k T0

)
+ Lv

[
ϕk (x) eiω

(out)
k T0

]]

︸ ︷︷ ︸
=0

·v3dxdT0+BT

= BT �= 0

(36)
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where the nonzero “boundary terms” (BT) are caused by the 3rd-order resonant boundary conditions denoted
by Eq. (28), which are due to the out-of-plane support motions. There are no boundary terms for the in-plane
dynamics. Integration by parts is used, and the over-bar means complex conjugate manipulations. The integrals
marked by the brace are equal to zero as they are actually the 1st-order linear dynamics denoted by Eq. (9).

The above nonzero boundary terms BT for the out-of-plane motions are derived in the following. Noting
the linear differential operator Lv (v) = −v′′ in Eq. (5) and using integration by parts, we obtain

∫ τ0

0

∫ 1

0
ϕk (x) e−iω(out)

k T0Lv (v3)dxdT0

=
∫ τ0

0

(
ϕ′
k (x) v3

)∣∣1
0 e

−iω(out)
k T0dT0 −

∫ τ0

0

∫ 1

0

(
ϕke

−iω(out)
k T0

)′′ ·v3dxdT0
= − e−iθ0ϕ′

k (0)
Z0

2
eiσ2T2τ0δmk

︸ ︷︷ ︸
BT0

+ ϕ′
k (1)

Z0

2
eiσ2T2τ0δmk

︸ ︷︷ ︸
BT1

+
∫ τ0

0

∫ 1

0
Lv

(
ϕk (x) e−iω(out)

k T0
)

v3dxdT0

(37)

where BT0+BT1 = BT are the nonzero boundary terms caused by the twomoving supports, and theKronecker
δmk = 1 form = k, otherwise δmk = 0. The resonant boundary conditions due to support motions, i.e. Eq. (28),
are used in the last equality above. One notes that the phase lag between support motions, i.e. θ0, is naturally
included in the above boundary modulation terms.

Thus, the dynamic effects caused by the moving supports can be characterized by two boundary dynamic
coefficients �k0, �k1

�k0 = −ϕ′
k (0) , �k1 = ϕ′

k (1) (38)

Therefore, the nonzero boundary terms BT caused by the resonant support motions are written as

LHS(out) = BT = (
e−iθ0�k0 + �k1

) Z0

2
eiσ2T1τ0δmk (39)

Letting LHS=RHS (in-plane and out-of-plane, respectively), we obtain cable’s modulation equations for
one-to-one resonant coupled dynamics under asynchronous support motions

D2An = −μn An − i

2ω(in)
n

(
�1An |An|2 + �2An |Bm |2 + �3 Ān B

2
me

−2iσ1T2
)

(40)

D2Bm = −μmBm − i
2ω(out)

m

(
�4Bm |Bm |2 + �5Bm |An|2 + �6 B̄m A2

ne
2iσ1T2

)

+ i e
−iθ0�k0+�k1

4ω(out)
m

Z0eiσ2T2δmk
(41)

We point out that for the symmetric out-of-plane modes, i.e. φk(x), k is odd, the two boundary dynamic
coefficients defined in Eq. (38) are exactly equal to each other. For asymmetric modes, however, they are
opposite.

4 Dynamic analysis and nonlinear responses

4.1 Modulation equations in a polar form

For further dynamic analysis, we introduce the following transformations [24]

An (T2) = 1

2
an (T2) e

iαn(T2), Bm (T2) = 1

2
bm (T2) e

iβm(T2) (42)

and substitute them into Eqs. (40) and (41). Noting �k0 = �k1 = �m for symmetric out-of-plane modes, we
obtain the amplitude equations

a′
n = −μnan + 1

8ω(in)
n

�3anb
2
m sin (γ1) (43)
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Table 1 Cable’s boundary dynamic coefficients and nonlinear interaction coefficients: 1:1 resonant coupled dynamics (α =
434.286, f = 0.004, 0.009, � = ωm + ε2σ2)

Coefficients λ = 0.2π(σ1 = 0.0505) λ = 0.5π(σ1 = 0.3026)

�m −√
2π −√

2π
�1 −53,693.8 −10,248.9
�2 −38,383.5 −20,988.8
�3 −21,874.0 −25,667.2
�4 −62,321.3 −57,650.4
�5 −37,458.5 −14,903.0
�6 −20,471.4 −16,038.4

(a)

(b)

Fig. 2 Cable’s typical frequency responses under asynchronous support excitations: σ1 = 0.0505, Z0 = 0.001, θ0 = 0.2π

b′
m = −μmbm − 1

8ω(out)
m

�6bma
2
n sin (γ1) − �m

ω
(out)
m

Z0 cos

(
θ0

2

)
sin

(
γ2 − θ0

2

)
(44)

and the (relative) phase equations

γ ′
1 = −2σ1 + �1a2n+�2b2m+�3b2m cos(γ1)

4ω(in)
n

−�4b2m+�5a2n+�6a2n cos(γ1)

4ω(out)
m

+ 2�m Z0

ω
(out)
m bm

cos
(

θ0
2

)
cos

(
γ2 − θ0

2

) (45)

γ ′
2 = σ2 + �4b2m + �5a2n + �6a2n cos (γ1)

8ω(out)
m

− �m Z0

ω
(out)
m bm

cos

(
θ0

2

)
cos

(
γ2 − θ0

2

)
(46)



Cable’s non-planar coupled vibrations 1655

(a)

(b)

Fig. 3 Cable’s typical frequency responses under asynchronous support excitations with varying phase lags: σ1 = 0.0505,
Z0 = 0.001, θ0 = 0, 0.2π , 0.5π , 0.7π

where γ1 = 2βm − 2αn − 2σ1T2, and γ2 = σ2T2 − βm . Thus, solving Eqs. (43), (44), (45), and (46), we
obtain cable’s 2nd-order non-planar coupled responses as

w (x, t) = εan cos
(
�t − γ1

2 − γ2
)
φn (x) + 1

2ε
2
{
a2n cos (2�t − γ1 − 2γ2) Ψ1 (x)

+ a2nΨ2 (x) + b2m cos (2�t − 2γ2) Ψ3 (x) + b2mΨ4 (x)
} · · · ,

(47)

v (x, t) = εbm cos (�t − γ2) ϕm (x) + 1
2ε

2anbm
{
cos

(
2�t − γ1

2 − 2γ2
)
Ψ5 (x)

+ cos
(− γ1

2

)
Ψ6 (x)

} + · · · ,
(48)

We note that the cable’s steady periodic oscillations correspond to steady-state solutions of the modulation
equations/reduced dynamics. Thus, the steady-state solutions of Eqs. (43)–(46) would be fully investigated in
the following. Setting a′

n = b′
m = γ ′

1 = γ ′
2 = 0 in the modulation equations, we obtain

0 = −μnan + 1

8ω(in)
n

�3anb
2
m sin (γ1) (49)

0 = −μmbm − 1

8ω(out)
m

�6bma
2
n sin (γ1) − �m

ω
(out)
m

Z0 cos

(
θ0

2

)
sin

(
γ2 − θ0

2

)
(50)

0 = −2σ1 + �1a2n + �2b2m + �3b2m cos (γ1)

4ω(in)
n

−�4b2m + �5a2n + �6a2n cos (γ1)

4ω(out)
m

+ 2�m Z0

ω
(out)
m bm

cos

(
θ0

2

)
cos

(
γ2 − θ0

2

)
(51)
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(a)

(b)

Fig. 4 Cable’s typical amplitude (of support deflection) responses under asynchronous support excitations:σ1 = 0.0505,σ2 = 0.5,
θ0 = 0.2π

0 = σ2 + �4b2m + �5a2n + �6a2n cos (γ1)

8ω(out)
m

− �m Z0

ω
(out)
m bm

cos

(
θ0

2

)
cos

(
γ2 − θ0

2

)
(52)

Therefore, the steady-state solutions would be obtained by solving roots of the above equations, i.e. Eqs. (49)–
(52).

4.2 Steady-state solutions and bifurcation analysis

For the followed numerical study, we calculate the boundary dynamic coefficients�m and 1:1 resonant coupled
coefficients �k for two typical cable models: one is strongly coupled model with σ1 = 0.0505, and the other
one is a weakly coupled model with σ1 = 0.3026. The corresponding results are presented in Table 1 (the
shape functions Ψk(x) are presented in “Appendix 3”).

Using the Newton–Raphson algorithm (combined with the homotopic algorithm to reduce the sensitivity to
initial guesses) for solving the roots of Eqs. (49)–(52), we obtain the steady-state solutions, which correspond to
cable’s steady periodic oscillations. These steady-state solutions are then used as initial values for the pseudo
arc-length method [34], a numerical continuation algorithm, and the frequency or amplitude (of support
deflection) response diagrams are constructed by sweeping the excitation frequency � or the amplitude Z0.
In the following, solid lines denote stable steady-state solutions and dotted lines denote unstable ones, and
this is determined by checking the eigenvalues of the modulation equations’ Jacobi matrix [24]. SN and HB
are short for saddle-node bifurcations and Hopf bifurcations, respectively. Note that only non-planar coupled
steady-state solutions are depicted.
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(a)

(b)

Fig. 5 Cable’s typical amplitude responses under asynchronous support excitations with varying phase lags: σ1 = 0.0505, σ2 =,
θ0 = 0, 0.2π , 0.5π , 0.7π

For cable’s non-planar coupled motions under asynchronous support excitations, the typical frequency
response diagrams are depicted in Fig. 2 and the phase lag is θ0 = 0.2π . With a fixed detuning parameter
σ1 = 0.0505, the in-plane and out-of-plane components are presented in subplots (a) and (b), respectively. As
the detuning parameter σ2 is swept forward, the stable coupled steady-state solutions, initiated at σ2 = 0.1182,
turn unstable through a saddle-node bifurcation at SN1 and then become stable at the saddle-node bifurcation
point SN2 with σ2 reversely swept. Furthermore, the steady-state solutions lose stability through a Hopf
bifurcation at HB1 and regain stability through a reverse Hopf bifurcation at HB2, before finally ending at
σ2 = 1.8960.

For a further understanding of phase lag’s effect on coupled responses, we present four typical frequency
response diagrams by varying the phase lag θ0, i.e. θ0 = 0, 0.2π , 0.5π , 0.7π . As illustrated in Fig. 3, the
response peaks, i.e. max(a1) andmax(b1), decrease as the phase lag θ0 is increased.We point out that this peak-
reduction effect is mainly due to the excitation reduced factor cos(θ0/2) in Eqs. (44)–(46), which is closely
associated with the fact that the two boundary dynamic coefficients introduced in Eqs. (38) are equal to each
other for symmetric out-of-plane support motions. At the same time, the parameter domains where coupled
responses exist also shrink. Furthermore, we note that, with the phases θ0 increased, all the bifurcations, i.e.
SN1, SN2, HB1, and HB2, occur earlier with smaller detuning parameters σ2 . Roughly, a smaller σ2 means a
more resonant boundary excitation. Thuswe conclude that, to activate the bifurcations,more resonant boundary
excitations are demanded for larger phase lags.

Typical amplitude (of support deflection) response diagrams for cable’s coupled dynamics under asynchro-
nous support motions are presented in Fig. 4, with a phase lag θ0 = 0.2π . As the amplitude of support motions
Z0 decreased, the stable coupled steady-state solutions turn unstable through a saddle-node bifurcation at SN1.
The unstable solutions regain stability at the saddle-node bifurcation point SN2 and become unstable soon
through a Hopf bifurcation at HB1. If Z0 is too small, as illustrated in Fig. 4, coupled solutions vanish.
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(a)

(b)

Fig. 6 Cable’s typical frequency responses under asynchronous support excitations: σ1 = 0.3026, Z0 = 0.001, θ0 = 0.2π

Furthermore, by varying the phase lag θ0, i.e. θ0 = 0, 0.2π , 0.5π , 0.7π , we intend to evaluate the effect
of the phase lag on cable’s coupled dynamics. The results are presented in Fig. 5. Again, the increasing phase
lags θ0 reduce the amplitude(of support deflection) response’s peak magnitudes, as illustrated in Fig. 5. We
also note that, with the phase lag θ0 increased, all the bifurcations, i.e. SN1, SN2 and HB1, are retarded,
meaning that they occur later with larger excitation amplitudes Z0. Roughly, large excitation amplitudes Z0
mean stronger excitations. Thus, equivalent to the frequency response diagrams in Fig. 3, we propose that the
cable systemwith a larger phase lag would demand amore stronger support excitation to activate the associated
bifurcations.

Another cable model with a larger detuning parameter σ1 = 0.3026 is considered in the following. Physi-
cally, this cable is less resonant or more weakly coupled than the first one, i.e. σ1 = 0.0505. Typical frequency
responses for cable’s non-planar coupled dynamics under asynchronous support excitations are presented in
Fig. 6, with a phase lag θ0 = 0.2π . As the detuning parameter σ2 increases from the bottom σ2 = 0.2759,
the stable coupled steady-state solutions turn unstable through a saddle-node bifurcation at SN1 and become
stable at another saddle-node bifurcation point SN2, before losing stability through a Hopf bifurcation at HB1.
The unstable coupled solutions regain stability through a reverse Hopf bifurcation at HB2 and end finally at
σ2 = 1.3010.

Again, as illustrated in Fig. 7, we attempt to vary the phase lag θ0, i.e. θ0 = 0, 0.2π , 0.5π , 0.7π , to
investigate the effect of the phase lag on cable’s coupled frequency responses. The aforementioned peak
magnitude-reduction effect, i.e. the increasing phase lag θ0 tends to reduce the peak amplitude of the stable
coupled responses, is confirmed again in Fig. 7. Besides those, we note two more interesting phenomena in
the present less resonant coupled cable. The first is that the coupled solutions split into two disconnected
branches if the phase lag θ0 is increased from θ0 = 0.2π to θ0 = 0.5π or 0.7π . Even more, for θ0 = 0.7π , as
the associated two branches of the coupled solutions are disconnected/disjoint further, our numerical results
indicate that there is an uncoupled single-mode solution domain in between, i.e. 0.4091 < σ2 < 0.5318. And



Cable’s non-planar coupled vibrations 1659

(a)

(b)

Fig. 7 Cable’s typical frequency responses under asynchronous support excitations with varying phase lags: σ1 = 0.3026,
Z0 = 0.001, θ0 = 0, 0.2π , 0.5π , 0.7π

the other new finding is about the bifurcation characteristics. We note that the saddle-node bifurcation SN1
on the left branches, similar to the strongly coupled cable, would occur with smaller detuning parameters σ2
(or more resonant excitations) if the phase lag θ0 is increased. However, the other bifurcations, falling on or
approaching the right branches, tend to be activated by a larger σ2 (or less resonant excitations) if the phase
lag θ0 increases.

Typical amplitude(of support deflection) response diagrams for the more weakly coupled cable model
(σ1 = 0.3026) are depicted in Fig. 8, with a phase lag θ0 = 0.2π . In contrast to the first cable model
(σ1 = 0.0505) with the same phase lag, one difference is notable. Explicitly, with the excitation amplitude
Z0 decreased, the stable coupled responses, after turning unstable at SN1, regaining stability at SN2, and
becoming unstable at HB1, two more bifurcations occur, i.e. regaining stability through a Hopf bifurcation at
HB2 and finally turning into unstable ones through a saddle-node bifurcation at SN3. In other words, a new
stable solution branch exists in between.

The phase lag’s effect on the amplitude (of support deflection) response diagrams are illustrated in Fig. 9,
with varyingphase lags. For θ0 = 0, 0.2π , 0.5π , the stable response amplitudes are reduced and thebifurcations,
i.e. SN1, SN2 and HB1, occur with larger excitation amplitudes Z0 if the phase lag θ0 is increased. This is
similar to the first strongly coupled cable model with σ1 = 0.0505. For θ0 = 0.7π , however, the situation
totally changes, as illustrated in Fig. 9. Explicitly, the bifurcations HB1, SN2 and SN1 all disappear and the
stable solution branch initiated from SN1 also vanishes. The only stable coupled steady-state solutions exist
between SN3 andHB2.We point out that the reason that the case with θ0 = 0.7π is so distinct from other cases,
lies in the fact that no coupled solution is found with σ2 = 0.5. Recall that, in Fig. 7, the coupled solutions are
split into two disconnected branches for θ0 = 0.7π and there is an uncoupled single-mode domain in between,
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(a)

(b)

Fig. 8 Cable’s typical amplitude (of support deflection) responses under asynchronous support excitations:σ1 = 0.3026,σ2 = 0.5,
θ0 = 0.2π

i.e. 0.4091 < σ2 < 0.5318. Thus, the response diagrams for θ0 = 0, 0.2π, 0.5π are continued from coupled
solutions, while the diagram for θ0 = 0.7π is continued from a single-mode solution.

5 Conclusions

A multi-scale modelling and analysis for cable’s non-planar coupled dynamics under asynchronous out-of-
plane support excitations is finished in this paper. Treating the small supportmotions as boundary perturbations,
we derive cable’s reduced coupled dynamic model, i.e. the modulation equations, through transforming the
resonant supportmotions into boundarymodulation terms by constructing the associated solvability conditions.
Two boundary dynamic coefficients characterizing support’s dynamic effect are derived, which are equal to
each other for symmetric modes, while opposite for asymmetric modes. And the phase lag between supports
is included roughly as a weight factor when summing the boundary effects of each support excitation. Thus
the basic boundary modulation approach is extended to the multiple asynchronous supports.

Using this extended boundary modulation formulation, cable’s non-planar one-to-one resonant coupled
dynamics under multiple out-of-plane support motions with phase lags is fully investigated. The modulation
equations’ steady-state solutions, corresponding to cable’s steady periodic oscillations, are solved and contin-
ued to construct the frequency and amplitude(of support deflection) response diagrams. Both the stability and
bifurcation properties of the steady-state solutions are determined. By varying the phase lags, our numerical
results demonstrate that, for the symmetric out-of-plane modes, the increasing phase lags between supports
would reduce the coupled response’s peak amplitudes and also tend to split one solution branch into two dis-
joint branches, especially for the weakly coupled cable. Furthermore, the cable system with a large phase lag
would demand a more resonant (or stronger) support excitation to activate the associated bifurcations, except
for those solutions being split into two branches.
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(a)

(b)

Fig. 9 Cable’s typical amplitude responses under asynchronous support excitations with varying phase lags: σ1 = 0.3026,
σ2 = 0.5, θ0 = 0, 0.2π , 0.5π , 0.7π
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Appendix 1

The suspended cable’s linear modal analysis can be found in references [3,30]. The in-plane symmetric modes
are given by

φn (x) = cn

[

1 − tan

(
ω

(in)
n

2

)

sinω(in)
n x − cosω(in)

n x

]

, n = 1, 3, 5, . . . (53)

where ci is the normalization constants. And the associated eigenfrequencies are determined by

1

2
ω(in)
n − tan

(
1

2
ω(in)
n

)
− 1

2λ2

(
ω(in)
n

)3 = 0, n = 1, 3, 5, . . . (54)

where λ2 = E A/mgl(8b/ l)3 is the elasto-geometric parameter. The above nonlinear transcendental equations
can be solved by the Newton–Raphson method.
The in-plane anti-symmetric modes are

φn (x) = √
2 sin (nπx) , n = 2, 4, 6, . . . (55)

with the associated eigenfrequencies as

ω(in)
n = nπ, n = 2, 4, 6, . . . (56)
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And the out-of-plane modes are

ϕm (x) = √
2 sin (mπx) , m = 1, 2, 3, . . . (57)

with the associated eigenfrequencies as

ω(out)
m = mπ, m = 1, 2, 3, . . . (58)

Appendix 2

Π1 (x) = α/2
〈
φ′
n, φ

′
n

〉
y′′ + α

〈
y′, φ′

n

〉
φ′′
n , Π3 (x) = α/2

〈
ϕ′
m, ϕ′

m

〉
y′′

Π2 (x) = α/2
〈
φ′
n, φ

′
n

〉
y′′ + α

〈
y′, φ′

n

〉
φ′′
n , Π4 (x) = α/2

〈
ϕ′
m, ϕ′

m

〉
y′′ (59)

Π5 (x) = α
〈
y′, φ′

n

〉
ϕ′′
m, Π6 (x) = α

〈
y′, φ′

n

〉
ϕ′′
m (60)

χ1 (x) = 3α
2 φ′′

n

〈
φ′
n, φ

′
n

〉 + αφ′′
n

〈
y′, Ψ ′

1

〉 + αy′′ 〈φ′
n, Ψ

′
1

〉 + αΨ ′′
1

〈
y′, φ′

n

〉

+2αφ′′
n

〈
y′, Ψ ′

2

〉 + 2αy′′ 〈φ′
n, Ψ

′
2

〉 + 2αΨ ′′
2

〈
y′, φ′

n

〉 (61)

χ2 (x) = αφ′′
n

〈
ϕ′
m, ϕ′

m

〉 + 2αφ′′
n

〈
y′, Ψ ′

4

〉 + 2αy′′ 〈φ′
n, Ψ

′
4

〉 + 2αΨ ′′
4

〈
y′, φ′

n

〉

+αy′′ 〈ϕ′
m, Ψ ′

5

〉 + αy′′ 〈ϕ′
m, Ψ ′

6

〉 (62)

χ3 (x) = α
2φ′′

n

〈
ϕ′
m, ϕ′

m

〉 + αφ′′
n

〈
y′, Ψ ′

3
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χ4 (x) = 3α
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m

〉 + αϕ′′
m

〈
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3 (x)
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χ5 (x) = αϕ′′
m
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n, φ

′
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χ6 (x) = α
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y′, Ψ ′
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6
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y′, φ′
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(66)

Appendix 3

The shape functionsΨk(x) are illustrated in the following, and they are used to calculate the nonlinear resonant
interaction coefficients �k (Fig. 10).

(a)

(b)

Fig. 10 Illustrations of the shape functions Ψk(x), a cable model 1 with σ1 = 0.0505, b cable model 2 with σ1 = 0.3026
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