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Abstract A nonlinear dynamic model of the rod fastening rotor bearing system is established considering
nonlinear oil-film force, unbalanced mass, unbalanced rod pre-tightening force, etc. The motion equation of
the system has been deduced from Lagrange’s equations. The nonlinear dynamic and bifurcation characteristic
is investigated using fourth-order Runge–Kutta method. Bifurcation diagram, vibration waveform, frequency
spectrum, phase trajectory and Poincare map are applied to analyze the nonlinear dynamic phenomena of the
rod fastening rotor. The numerical results indicated that the initial deflection caused by the unbalanced pre-
tightening force, nonlinear oil-film force and rotational speed has a great influence on the nonlinear dynamic
characteristics of the rod fastening rotor bearing system. The corresponding results can provide the guidance
for the fault diagnose of a rod fastening rotor with unbalanced pre-tightening force; meanwhile, the study may
contribute to the further understanding of the nonlinear dynamic characteristics of a rod fastening rotor with
unbalanced pre-tightening force.

Keywords Rod fastening rotor · Unbalanced rod pre-tightening force · Lagrange’s equations · Dynamic
characteristic · Bifurcation

List of symbols

m1 Lumped mass of bearing
m2 Lumped mass of disks
e Eccentric distance of disk
k Shaft stiffness
c1 Damping of bearing
c2 Damping of disk
xi , yi (i = 1, 2) Displacements in x direction and y direction
qi Generalized coordinates
q̇i Generalized velocity
Qqi External forces corresponding to qi
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L Lagrange’s function
V Kinetic energies
U Potential energies
D Dissipation function
ci j Damping force in generalized coordinate qi direction
t Operation time
τ Dimensionless operation time
E Elasticity modulus
I Inertia moments
M Additional bending moment
Fx , Fy Nonlinear film force in x direction and y direction
fx , fy Dimensionless nonlinear film force in x direction and y direction
δ0 Initial deflection
ϕ Angle between initial deflection and unbalance mass
δ Sommerfeld correction coefficient
μ Oil viscosity
L1 Bearing length
R Bearing radius
c Bearing clearance
ω Rotating speed

1 Introduction

A rotor bearing system is one of the key components in rotatingmachines. Its dynamic characteristics affect the
performance, efficiency and service life of the machine directly. Recently, the studies on the nonlinear dynamic
behaviors and stability of the integral rotor bearing have been reported in many literature [1–7]. Wang et al. [1]
built a general model of a rub-impact rotor system supported by oil-film journal bearings. Nonlinear dynamic
characteristics and stability of the system are investigated. Mohammad et al. [2] established the model of a
high-speed rotor bearing system using 3D finite element model and one-dimensional finite element model.
The nature frequencies and mode shapes were investigated, and the results were compared with those obtained
from the modal test. Yang et al. [3] proposed a new nonlinear dynamic analysis method for a rotor system
supported by oil-film journal bearings used mainly to investigate effects of mass eccentricity on dynamic
behaviors of the rotor system. Results showed that the proposed method has universal applicability and can
easily obtain the nonlinear dynamic characteristic of rotor systems. Transverse crack in a rotor shaft acts
just as “breathing” by opens and closed when the rotor rotates at a constant speed. This effect displays the
time-periodic stiffness of the shaft and hence generates a parametrically excited. The instability and severe
vibration under certain operating conditions caused by parametric excitation from time-varying stiffness were
studied by Han et al. [4]. Li et al. [5] proposed a novel nonlinear model of rotor–bearing–seal system based
on the Hamilton principle. Musznyska model and unsteady bearing oil-film force were applied to describe the
nonlinear steam excitation force and oil-film force, the dynamic behavior of the rotor-bearing-seal system was
analyzed by using Runge–Kutta method.

The studies abovemainly focus on the integral rotor bearing system. Rod fastening rotor bearing system has
many advantages, such as light weight, good strength and ease of cooling. The rod fastening rotors are widely
used in high-power gas turbines. The rotor consists of rods and disks, and the disks are connected by rods. The
dynamic behavior of the rod rotor has been studied in various ways. Hei et al. [8,9] established the model of a
rod fastening rotor with the journal bearings support. The nonlinear dynamic characteristics and bifurcation of
the rotor bearing system has been investigated. He et al. [10] studied the variations of the critical speeds of the
rod fastening rotor with rod pre-tightening force through experimental method. Comparison with theoretical
analysis shows that the critical speeds of the simulation are close to experimental results. Li et al. [11,12]
revealed the evolution laws of stress distribution and interface contact states with different pre-tightening force
and operation conditions. Yuan et al. [13] calculated the flexural stiffness of a rod-fastened rotor by using finite
element method (FEM) and then analyzed the dynamic behavior of the rotor system under large unbalance
force by using harmonic balance method.

Rod pre-tightening force has a great influence on the dynamic behavior of the rotor bearing system.
Unsuitable or unbalance pre-tightening force may cause the severe vibration and catastrophe failure. Liu
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Fig. 1 Dynamic model of a rod fastening rotor

et al. [14,15] built the dynamic model of rod fastening rotor bearing system by using Hamilton principle
and obtained the general expressions of the additional stiffness matrix and additional generalized moment
caused by unbalanced rods pre-tightening force. The result shows that unbalanced pre-tightening force has
great influence on nonlinear dynamic and stability of the system. Gao et al. [16] studied the effects of bending
moments and pre-tightening forces on the flexural stiffness of contact interfaces in rod-fastened rotors.

It should be noted that the current researches about the dynamic characteristics of the rod fastening rotors
focus on the contact stiffness, natural characteristics of the rod fastening rotor. In fact, the unbalanced rod
pre-tightening force has a great influence on the nonlinear dynamic characteristics of the rod fastening. In this
paper, a dynamic model of rod fastening rotor bearing system is established, considering the nonlinear oil-film
force, unbalancemass, unbalanced rod pre-tightening force, etc. The fourth-order Runge–Kutta method is used
to get the solution of the nonlinearmodel. Bifurcation diagram, vibrationwaveform, frequency spectrum, phase
trajectory and Poincare map are applied to analyze the nonlinear dynamic phenomena of the rod fastening
rotor.

2 Dynamic modeling of rod fastening rotor

Rod fastening rotor bearing system is complex, in order to analyze the dynamic behavior caused by unbalanced
pre-tightening force, and the system is simplified according to the following assumptions:

(a) Torsional and axial vibration of the rotor is neglected;
(b) Rod pre-tightening force is large enough, ignoring stiffness changes caused by unbalanced single rod

pre-tightening force.

2.1 Equation of motion

As shown in Fig. 1, the rotor is supported by the same journal bearings, the lumped mass in journal bearing
is m1, and the lumped mass in disks is m2. Assuming that rod pre-tightening force is large enough, relative
movement between the disks will not occur, bearing and disks are connected by a massless elastic shaft, the
shaft stiffness is k, c1 and c2 are the damping coefficient in the journal bearing and disks. The displacements
of journal bearing and disks in lateral and vertical direction are expressed by x1, x2 and y1, y2, respectively.

The equation of motion of the rod fastening can be deduced from Lagrange’s equations. The Lagrange’s
equations are described by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+ ∂D

∂q̇i
= Qqi (i = 1, 2, . . . , n) (1)

where qi and q̇i are the generalized coordinates and generalized velocity, L is Lagrange’s function and L =
V −U , V andU are kinetic and potential energies. D is dissipation function, and D = 1

2

∑n
i=1

∑n
j=1 ci j q̇i q̇ j ,

ci j is damping force in generalized coordinate qi direction when the system has generalized unit velocity in
qi direction. Qqi are the external forces corresponding to qi . The symbol “·” refers to the differentiation with
respect to time t .
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The kinetic and potential energies and dissipation function of the rod fastening rotor bearing system can
be expressed as

V = m1 ẋ
2
1 + m1 ẏ

2
1 + 1

2
m2 ẋ

2
O + 1

2
m2 ẏ

2
O (2)

U = 1

2
k(x1 − x2)

2 + 1

2
k(y1 − y2)

2 + m1gy1 + 1

2
k(x2 − x1)

2

+ 1

2
k(y2 − y1)

2 + m2gyO + 1

2

M2L0

E I
(3)

D = 1

2
c1 ẋ

2
1 + 1

2
c1 ẏ

2
1 + 1

2
c2 ẋ

2
2 + 1

2
c2 ẏ

2
2 (4)

where (xO , yO) is the center of mass coordinate of the disk, and xO = x2 + e cosωt , yO = y2 + e sinωt , e
is eccentric distance. M is the additional bending moment caused by the unbalanced rod pre-tightening force,
L0 is the length of the disk, E is elasticity modulus, and I is the inertia moments.

The generalized coordinates of the system are qi = (x1, y1, x2, y2)T , and according to Eq. (1), the
Lagrange’s equations are as follows

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
dt

(
∂L
∂ ẋ1

)
− ∂L

∂x1
+ ∂D

∂ ẋ1
= Qx1

d
dt

(
∂L
∂ ẏ1

)
− ∂L

∂y1
+ ∂D

∂ ẏ1
= Qy1

d
dt

(
∂L
∂ ẋ2

)
− ∂L

∂x2
+ ∂D

∂ ẋ2
= Qx2

d
dt

(
∂L
∂ ẏ2

)
− ∂L

∂y2
+ ∂D

∂ ẏ2
= Qy2

(5)

Submitting Eqs. (2), (3), (4) into Eq. (5), the equation of motion of the rotor bearing system is as follows

⎧⎪⎨
⎪⎩
m1 ẍ1 + c1 ẋ1 + k(x1 − x2) = Fx
m1 ÿ1 + c1 ẏ1 + k(y1 − y2) = Fy − m1g
m2 ẍ2 + c2 ẋ1 + 2k(x2 − x1) = kδ0 cos(ωt + ϕ) + m2eω2 cosωt
m2 ÿ2 + c2 ẏ1 + 2k(y2 − y1) = kδ0 sin(ωt + ϕ) + m2eω2 sinωt − m2g

(6)

where Fx , Fy are the nonlinear film force in x direction and y direction, δ0 is the initial deflection caused by
the unbalanced rod pre-tightening force, ϕ is the angle between initial deflection and unbalance mass.

2.2 Dimensionless equation of motion

In order to simplify the calculation, the dimensionless transformations are given as follows

xi = xi/c, yi = yi/c (i = 1, 2) (7)

Defining the dimensionless time τ , τ = ωt . Through Eq. (7), dimensionless equation of Eq. (6) can be rewritten
as follows ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẍ1 = − c1
m1ω

ẋ1 − k
m1ω2 (x1 − x2) + δP

m1cω2 fx (x1, y1, ẋ1, ẏ1)

ÿ1 = − c1
m1ω

ẏ1 − k
m1ω2 (y1 − y2) + δP

m1cω2 fy(x1, y1, ẋ1, ẏ1) − g
cω2

ẍ2 = − c2
m2ω

ẋ2 − 2k
m2ω2 (x2 − x1) + kδ0

m2cω2 cos(τ + ϕ) + e
c cos(τ )

ÿ2 = − c2
m2ω

ẏ2 − 2k
m2ω2 (y2 − y1) + kδ0

m2cω2 sin(τ + ϕ) + e
c sin(τ ) − g

cω2

(8)

where fx and fy are dimensionless nonlinear film force in x direction and y direction, and fx = Fx
δP , fy = Fy

δP .

δ is Sommerfeld correction coefficient, and δ = μωRL1
P ( Rc )2( L1

2R )2, μ, L1 and R are oil viscosity, bearing
length and bearing radius, respectively, ω is the excitation frequency, and P is the half mass of the disk.
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Equation (8) can be converted to a first-order differential equation form as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x1v
ẋ1v = − c1

m1ω
x1v − k

m1ω2 (x1 − x2) + δP
m1cω2 fx (x1, y1, x1v, y1v)

ẏ1 = y1v
ẏ1v = − c1

m1ω
y1v − k

m1ω2 (y1 − y2) + δP
m1cω2 fy(x1, y1, x1v, y1v) − g

cω2

ẋ2 = x2v
ẋ2v = − c2

m2ω
x2v − 2k

m2ω2 (x2 − x1) + kδ0
m2cω2 cos(τ + ϕ) + e

c cos τ

ẏ2 = y2v
ẏ2v = − c2

m2ω
y2v − 2k

m2ω2 (y2 − y1) + kδ0
m2cω2 cos(τ + ϕ) + e

c sin τ − g
cω2

(9)

2.3 Nonlinear oil-film force

The nonlinear oil-film force can be obtained by solving the Reynolds equation. Based on the theory of the
short bearing [17], Capone nonlinear oil-film force model [18] gives the following assumption: Lubricating
oil is isothermal, laminar flow, lubricant dynamic viscosity is constant, and lubricating oil is incompressible
fluid.

Under short bearing theory assumption, the dimensionless Reynolds equation is expressed as follows
[18,19] (

R

L

)2
∂

∂z

(
h3

∂p

∂z

)
= x sin θ − y cos θ − 2(x ′ cos θ + y′ sin θ) (10)

According to Eq. (10), the dimensionless oil-film pressure is the following

p = 1

2

(
L

D

)2 (
x − 2y′) sin θ − (

y + 2x ′) cos θ

(1 − x cos θ − y sin θ)3
(11)

The dimensionless oil-film force can be obtained with Eq. (11) through integration along the lubricated arc of
bearing {

fx
fy

}
= −[(x − 2 ẏ)2 + (y + 2ẋ)2]1/2

1 − x2 − y2

×
{
3xV (x, y, α) − sin αG(x, y, α) − 2 cosαS(x, y, α)
3yV (x, y, α) + cosαG(x, y, α) − 2 sin αS(x, y, α)

}
(12)

where V (x, y, α), S(x, y, α), G(x, y, α), α are expressed as follows

V (x, y, α) = 2 + (y cosα − x sin α)G(x, y, α)

1 − x2 − y2
(13)

S(x, y, α) = x cosα + y sin α

1 − (x cosα + y sin α)2
(14)

G(x, y, α) = 2

(1 − x2 − y2)1/2

[
π

2
+ arctan

y cosα − x sin α

(1 − x2 − y2)1/2

]
(15)

α = arctan
y + 2ẋ

x − 2 ẏ
− π

2
sign

[
y + 2ẋ

x − 2 ẏ

]
− π

2
sign(y + 2ẋ) (16)

2.4 Initial deflection

The totally number of the rod is 8, as shown in Fig. 2. Rods are uniformly distributed on the circle in which
radius is r . The pre-tightening force of the ith rod is Fi, and the bending moment, in which rod pre-tightening
force acts on the disk center, isMi.

M =
8∑

i=1

Mi =
8∑

i=1

Fi · r (17)
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Fig. 2 Uniform distribution of the rods

Fig. 3 Schematic of rotor deformation

The bending moments, in which rods pre-tightening force acts on the disk center, are sum to zero when rods
pre-tightening forces are equal; otherwise, the diskwill be subjected to the effect of additional bendingmoment.
Assume that the rods pre-tightening force is F, if one rod has unbalanced pre-tightening force F′, defined the
unbalanced level of the rod pre-tightening force 
 and 
 = F−F′

F . The bending moment acting on the disk is
as follows

M =
8∑

i=1

Mi =
8∑

i=1

Fi · r = 
F · r (18)

Figure 3 is the schematic of rotor deformation. The length of the rotor is L , and additional bending moment
M is caused by the unbalanced pre-tightening force. As shown in Fig. 3, according to the definition of bending
stiffness, the θ is expressed by

θ = ML

E I
(19)

where E is elasticity modulus, E = 2.08 × 1011 Pa, and I is the inertia moments.
The initial deflection of the disk under the bending moment M is the following

δ0 = L

θ

(
1 − cos

(
θ

2

))
= E I

M

(
1 − cos

(
θ

2

))
. (20)

3 Solving method

Considering the nonlinear oil-film force, unbalance mass and the initial deflection caused by the unbalanced
pre-tightening force, the establishedmodel of the rotor bearing system has strong nonlinearity, and it is difficult
to solve the model using analytical method. Numerical integration methods play an important role in studying
the dynamic characteristics of strong nonlinear system, and it can calculate the response of the system and
calculate the effect of parameters on the system behavior.

Runge–Kutta method is one of the numerical methods to solve differential equations, and fourth-order
Runge–Kutta method is mostly used and also has high precision relatively.
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Table 1 Parameters of the rotor and bearing

Parameters Values

Lumped mass, m1 (kg) 4.0
Lumped mass, m2 (kg) 32.1
Damp coefficient, c1 (Ns/m) 1050
Damp coefficient, c2 (Ns/m) 2100
Stiffness of the shaft, k (N/m) 2.5 × 107

Unbalance eccentricity, e (mm) 0.05
Bearing radius, R (mm) 25
Axle bearing length, L1 (mm) 12
Clearance, c (mm) 0.11
Lubricant viscosity, μ (Pa s) 0.018

The normal form of the Runge–Kutta method is as follows⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yn+1 = Yn + h
r∑

i=1
ci Ki i = 2, 3, . . . , r

K1 = F(tn, Yn)

Ki = F

(
tn + λi h, Yn + h

i−1∑
j=1

μi j K j

)
λi =

i−1∑
j=1

μi j

(21)

After determining the order number, through Taylor expansion and comparing coefficient of both sides, the
coefficient ci , λi , μi j can be determined.

The fourth-order Runge–Kutta method is expressed as follows⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yn+1 = Yn + h
6 [K1 + 2K2 + 2K3 + K4]

K1 = F(tn, Yn)
K2 = F

(
tn + 1

2h, Yn + h
2 K1

)
K3 = F

(
tn + 1

2h, Yn + h
2 K2

)
K4 = F (tn + h, Yn + hK3)

. (22)

4 Results and discussion

The parameters of the rod fastening rotor and journal bearing are shown in Table 1. The stiffness of the right
journal bearing is the same as that of the left bearing. The critical speed of the system without considering
initial deflection is 710 rad/s approximately as shown in Fig. 4a. The nonlinear dynamic behaviors of the rod
fastening rotor bearing system are performed by using the fourth-order Runge–Kutta method and implemented
in MATLAB. Bifurcation diagram, vibration waveform, frequency spectrum, phase trajectory and Poincare
map are presented to illustrate the nonlinear dynamic phenomena of system.

Unbalanced pre-tightening force of rod will generate additional bending moments acting on disk and initial
deflection. Initial deflection is an important nonlinear factor in the dynamic analysis of the rotor bearing system.
Figure 4 is the curve of the maximum vibration displacement of disk in radial direction changing with speed
under different initial deflections. It can be seen from Fig. 4a that the curve appears one peak near 710 rad/s, and
a small pear near 1130 rad/s. The first critical speed of the system is about 710 rad/s without initial deflection.
Compared with Fig. 4a, the response amplitude of the first critical speed decreases when the initial deflection
is a small value. As shown in Fig. 4c, d, the response amplitude of the first critical speed increased with the
increase in initial deflection.

Figure 5 is the bifurcation diagrams of horizontal displacement at the bearing location for four different
initial deflections δ0 = 0, δ0 = 10µm, δ0 = 30µm, δ0 = 50µm. In Fig. 5a, it can be seen that at a lower speed,
ω � 864 rad/s, the system keeps periodic-1 motion, which is shown as one isolated point in Fig. 6d and one
obvious frequency component in Fig. 6b, at a speed of ω = 731 rad/s the system occurs subcritical bifurcation
and generates a jump, and the systemmay occur multiple attractors near the 731 rad/s. When the speed reaches
near the 864 rad/s, the system turns into a periodic-2 motion. It can be seen from Fig. 7a that the time domain
waveform of the response has two frequency components, which performs as two obvious peaks in Fig. 7b and
two isolated points in Fig. 7d.When the speed is in the range of 946 rad/s � ω � 1039 rad/s, the systembecomes
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Fig. 4 The maximum vibration displacement of disk in radial direction a δ0 = 0, b δ0 = 10µm, c δ0 = 30µm and d δ0 = 50µm

Fig. 5 Bifurcation diagram of rotor with a δ0 = 0, b δ0 = 10µm, c δ0 = 30µm and d δ0 = 50µm

a periodic-4 motion, which is shown as four isolated points in Fig. 8d. When 1039 rad/s � ω � 1369 rad/s, the
system returns into periodic-2 motion again. With the increasing speed, the system response finally presents a
periodic-1 motion.

Figure 5b is the bifurcation diagram of the rod fastening rotor bearing with δ0 = 10µm. It can be
seen from Fig. 5a, b that the bifurcation diagrams of the system have a little difference. The system still
keeps periodic-1 motion at a low speed, ω � 825 rad/s, and the jump phenomenon disappears. Before the
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Fig. 6 Numerical analysis results at ω = 821 rad/s, δ0 = 0. a Time domain waveform, b frequency spectrum, c phase trajectory
and d Poincare map

Fig. 7 Numerical analysis results at ω = 906 rad/s, δ0 = 0. a Time domain waveform, b frequency spectrum, c phase trajectory
and d Poincare map

Fig. 8 Numerical analysis results at ω = 962 rad/s, δ0 = 0. a Time domain waveform, b frequency spectrum, c phase trajectory
and d Poincare map

Fig. 9 Numerical analysis results at ω = 864 rad/s, δ0 = 10µm. a Time domain waveform, b frequency spectrum, c phase
trajectory and d Poincare map

system comes into periodic-2 motion, the system has experienced a transient quasiperiodic process with
825 rad/s < ω < 872 rad/s. As shown in Fig. 9d, the Poincare map of the quasiperiodic motion presents a
closed loop, and the frequency spectrum in Fig. 9b contains presumably incommensurate frequencies. At the
speed ofω = 919 rad/s, the systemoccurs bifurcation, the periodic-2motion turns into periodic-4motion, and at
ω = 1042 rad/s, the system returns to the periodic-2 motion again. Figure 10 is the numerical analysis results
at ω = 1020 rad/s, δ0 = 10µm, the main components in frequency spectrum are the n/4 times excitation
frequency, and the system is in frequency locking. With the increase in speed, the system finally presents
periodic-1 motion when the speed over 1367 rad/s.

It can be seen from Fig. 5c that the system response becomes more complicated under δ0 = 30µm.
Compared with Fig. 5b, the quasiperiodic motion happens earlier and the quasiperiodic region expands with
721 rad/s < ω < 835 rad/s. With the increase in the speed, the periodic-4 motion is destroyed and the system
occurs periodic-6 motion under certain conditions. Figure 11 is the response of the system at ω = 946 rad/s,
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Fig. 10 Numerical analysis results at ω = 1020 rad/s, δ0 = 10µm. a Time domain waveform, b frequency spectrum, c phase
trajectory and d Poincare map

Fig. 11 Numerical analysis results at ω = 946 rad/s, δ0 = 30µm. a Time domain waveform, b frequency spectrum, c phase
trajectory and d Poincare map

and the system presents periodic-6 motion, which is shown as six isolated points in Fig. 11d and six obvious
frequency components in Fig. 11b.

Figure 5d is the bifurcation diagram of the rod fastening rotor bearing with δ0 = 50µm. With the increase
in initial deflection, the quasiperiodic motion disappears. The system keeps a periodic-1 motion at a lower
speed, and near the critical speed, the system occurs jump phenomenon and turns into periodic-2 motion. The
system keeps periodic-4 motion with 901 rad/s < ω < 1120 rad/s, and the trajectory of the bifurcation diagram
intersects at certain points. Continuing to increasing the speed, the system keeps periodic-2 motion, and when
the speed is over 1403 rad/s, the system finally presents a periodic-1 motion.

5 Conclusions

In this paper, a model of a rod fastening rotor bearing system is established based on the Lagrange’s equa-
tions. The nonlinear dynamic and bifurcation characteristics of the rod fastening rotor bearing system under
unbalanced pre-tightening force have been investigated by the fourth-order Runge–Kutta method. Bifurcation
diagram, vibration waveform, frequency spectrum, phase trajectory and Poincare map are presented to illus-
trate the nonlinear dynamic phenomena of system. The following conclusions can be obtained from the above
research.

(1) With the changing of rotational speed and initial deflection, the system status alternates among period-1,
multiperiodic, quasiperiodic motion. Under certain conditions, the system occurs amplitude jump and
frequency locking.

(2) When the initial deflection equals to zero, at a lower speed, the nonlinear oil-film force is small, and the
system keeps period-1 motion. With the increase in speed, the influence of nonlinear oil-film force on the
system response becomes bigger, and the system occurs half frequency oil whirl near the critical speed.

(3) With the increase in initial deflection, the system occurs quasiperiodic motion. When the initial deflection
reaches 50µm the quasiperiodic motion disappears. The system bifurcation for period-2 motion happens
earlier with the increasing of initial deflection.

(4) The critical speed of the system is about 710 rad/s, and the response amplitude of the disk is near the
critical speed changing with initial deflection.

The corresponding results can provide the guidance for the fault diagnose of a rod fastening rotor with unbal-
anced pre-tightening force; meanwhile, the study may contribute to the further understanding of the nonlinear
dynamic characteristics of a rod fastening rotor with unbalanced pre-tightening force.
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The further research work will be concentrated on the modeling of the stability analysis of the rod fastening
rotor with initial deflection caused by the unbalanced pre-tightening force in detail.
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