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Abstract The topic of this paper is the modal identification from non-stationary ambient response data by
applying correlation technique. It is shown theoretically that by assuming the ambient excitation to be non-
stationary white noise in the form of a product model, the non-stationary response signals can be converted into
free vibration data via the correlation technique. Previous studies have showed that the practical problem of
insufficient data samples available for evaluating non-stationary correlation can be approximately resolved by
first extracting the amplitude-modulating function from the response and then transforming the non-stationary
responses into stationary ones. However, the errors involved in the approximate free-decay response would
generally lead to a distortion in the modal identification. In the present paper, we propose that, if the ambient
excitation can be represented by a product model with slowly time-varying function, without any additional
treatment of transforming the original nonstationary responses, the non-stationary responses of the system can
be treated approximately as a stationary random process; then, the nonstationary cross correlation functions
of structural response evaluated at an arbitrary, fixed time instants of structural response are of the same
mathematical form as that of free vibration of a structure, from which modal parameters of the original
system can thus be identified. Numerical simulations, including one example of using the practical earthquake
data served as the excitation input acting on a linear two-dimensional model of one-half of a railway vehicle,
confirm the validity of the proposedmethod for identification ofmodal parameters from non-stationary ambient
response data only.

Keywords Non-stationary ambient vibration · Correlation technique · Modal identification

1 Introduction

Modal parameter identification from ambient vibration data has gained considerable attention in recent years
[1,2]. A variety of methods have been developed for extracting modal parameters from structures undergoing
ambient vibration [3,4], and further applied for structural health monitoring of large-scale structures [5] or
structural safety assessment of infrastructure [6]. James et al. [7] developed the so-called Natural Excitation
Technique (NExT) using the cross-correlation technique coupled with time-domain parameter extraction. It
was shown that the cross-correlation between two response signals of a linear system with classical normal
modes and subject to white-noise (stationary) inputs satisfy the free vibration equation of a system. Chiang and
Cheng [8] further extended the original correlation technique, which is good for identification of real modes,
to identify complex modal parameters of a linear system subjected to stationary ambient excitation. Chiang
and Lin extend the correlation technique to perform the modal identification from nonstationary response
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data only [9] and applied the correlation technique coupled with Eigensystem Realization Algorithm [10]
to identify modal parameters of a system subjected to realistic ambient excitation. Spiridonakos and Fassois
[11,12] introduce appropriate time varying methods to perform the parametric output-only identification [11]
and fault diagnosis [12] of a time-varying structure from nonstationary vibration response data.

Recall that the conventional correlation technique is effective only for a stationary [7,8] or filtered-stationary
process [9]. The objective of this research is the modal identification from non-stationary ambient response
data via correlation technique only, which is presented for general linear systems excited by non-stationary
white noise represented by a product model with slowly time-varying function. It is shown that the non-
stationary correlation functions evaluated at an arbitrary, fixed time instants of structural response are of the
same form as free vibration decay of the structure with certain initial conditions. Therefore, without any
additional treatment of transforming the original nonstationary responses, by treating the sample correlations
of measured response corresponding to some fixed time instants as output from free vibration decay, a time-
domain modal identification method, such as the ITD method [13], can then be employed to extract modal
parameters, including modal frequencies, damping ratios and mode shapes, of the structure with complex
modes.

2 Non-stationary correlation technique

2.1 Conventional correlation technique

James et al. [7] developed the so-called Natural Excitation Technique (NExT) using the correlation technique.
It was shown that the cross-correlation between two response signals of a linear system with classical normal
modes and subjected to white-noise inputs satisfy the system’s free vibration equation. In combination with
a time-domain parameter extraction scheme, such as the ITD method [11], this concept becomes a powerful
tool for the identification analysis of structures under stationary ambient vibration.

When a system is excited by stationary white noise, the cross-correlation function Ri j (τ ) between two
stationary response signals xi (t) and x j (t) can be shown to be [5]:

Ri j (τ ) =
n∑

r=1

φir A jr

mrωdr
exp(−ζrωrτ) sin(ωdrτ + θr ) (1)

where φir denotes the i-th component of the r-th mode shape, A jr is a constant,mr is the r-th modal mass, and
ωdr is the rth natural frequencywith damping. The result above shows that Ri j (τ ) in Eq. (1) is a sumof complex
exponential functions (modal responses), which is of the same mathematical form as the free vibration decay
or the impulse response of the original system. Thus, the cross-correlation functions evaluated from responses
data can be used as free vibration decay or as impulse response in time-domain modal extraction schemes so
that measurement of white-noise inputs can be avoided. It is remarkable that the term φir A jr in Eq. (1) will be
identified as the mode-shape components. In order to eliminate the A jr term and retain the true mode-shape
components φir , all the measured channels are correlated against a common reference channel, say x j . The
identified components then all possess the common A jr component, which can be normalized out to obtain
the desired mode shape φir .

2.2 Correlation technique for nonstationary ambient responses

In the following,we start by considering a discrete linear system subjected to a non-stationary randomexcitation
fk(t) [9]. Define the cross-correlation function Ri jk(t, T ) between two non-stationary response signals xik (t)
and x jk (t) as

Ri jk(t, T ) = E
[
xik(t + T ) · x jk(T )

]
. (2)

where xik (t) is the response at the ith degree of freedom (DOF) due to the input at the kth DOF. Under the
assumption of initial-rest system, and through the evaluation of the Duhamel integral, Eq. (2) can be derived
as follows

Ri jk(t, T ) =
n∑

r=1

n∑

s=1

φirφkrφ jsφks

∫ t

−∞

∫ t+T

−∞
gr (t + T − σ)gs(t − τ)E [ fk(σ ) fk(τ )] dσdτ , (3)
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where gr (t) = 1
mrωdr

exp(−ζrωnr t) sin(ωdr t). Assume that fk(t) is non-stationary white noise in the form of
a product model, i.e.,

fk(t) = �k(t)wk(t), (4)

where �k(t) is a deterministic amplitude-modulating function used to describe the change of amplitude with
time, and wk(t) is stationary white noise. The auto-correlation function of excitation force fk(t) can then be
expressed as

R f f k(τ, σ ) = �k(τ )�k(σ )E [Wk(τ )Wk(σ )] = �k(τ )�k(σ )αkδ(τ − σ),

where αk is a constant and δ(t) is the Dirac delta function. Therefore, Eq. (3) can be evaluated as

Ri jk(t, T ) =
n∑

r=1

n∑

s=1

αkφirφkrφ jsφks ·
∫ t

−∞
�2
k (τ )gr (t + T − τ)gs(t − τ)dτ . (5)

One can, therefore, derive

Ri jk(t, T ) =
n∑

r=1

[
Gi jkr (t) exp(−ζrωnr T ) cos(ωdr T ) + Hi jkr (t) exp(−ζrωnr T ) sin(ωdr T )

]

=
n∑

r=1

exp(−ξrωnr T )√
G2

i jkr (t) + H2
i jkr (t)

[cos(ωdr T ) sin θ(t) + sin(ωdr T ) cos θ(t)]

=
n∑

r=1

exp(−ξrωnr T )√
G2

i jkr (t) + H2
i jkr (t)

sin [ωdr T + θ(t)] (6)

where
[
Gi jkr (t)
Hi jkr (t)

]
= φir

n∑

s=1

αkφkrφ jsφks

mrωdrmsωds
·

×
∫ ∞

0
�2
k (t + τ) exp(−ζrωnr − ζsωns)λ · sin(ωds(t − τ))

[
sin(ωdr (t − τ))
cos(ωdr (t − τ))

]
d(t − τ)

≡ φir

mrωdr

{
G jkr (t)
Hjkr (t)

}
(7)

where Gi jkr (t) and Hi jkr (t) are functions of modal parameters, and independent of T . From Eq. (7), the
following equations can then be derived

Gi jkr (t) =
n∑

s=1

αkφirφkrφ jsφks

mrmsωdr

[
Irs

Jrs2 + Irs2

]

Hi jkr (t) =
n∑

s=1

αkφirφkrφ jsφks

mrmsωdr

[
Jrs

Jrs2 + Irs2

]
(8)

where

Irs = 2ωdr (ζrωnr + ζsωns)

Jrs = (ωds
2 − ωdr

2) + (ζrωnr + ζsωns) (9)

To simplify Eq. (9), we define γrs as

tan(γrs) = Irs
Jrs

(10)
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and Eq. (8) can be rewritten as

Gi jkr (t) = φir

mrωdr

n∑

s=1

β jkrs(J
2
rs + I 2rs)

− 1
2 sin(γrs)

Hi jkr (t) = φir

mrωdr

n∑

s=1

β jkrs(J
2
rs + I 2rs)

− 1
2 cos(γrs) (11)

where β jkrs = αkφkrφ jsφks
ms

. Substituting Eq. (11) into Eq. (6), and summing over all m input locations, we
obtain

Ri j (t, T ) =
m∑

k=1

Ri jk(t, T )

=
n∑

k=1

φir

mrωdr
exp(−ξrωnr T ) ·

m∑

k=1

[G jkr (t) cosωdr T + Hjkr (t) sinωdr T ]

=
n∑

r=1

φir

mrωdr
exp(−ξrωnr T ) ·

m∑

k=1

⎡

⎣ 1√
G jkr

2(t) + Hjkr
2(t)

[sinωdr T + θ jkr (t)]
⎤

⎦ (12)

and Eq. (12) can be further simplified as follows

Ri j (t, T ) =
n∑

r=1

φir A jr (t)

mrωdr
exp(−ξrωnr T ) sin(ωdr T + �r ) (13)

The result above shows that for anyfixed time instant t, Ri j (t, T ) in Eq. (13) is a sumof complex exponential
functions, which is of the same form as the free vibration decay or the impulse response of the original system
[7]. Thus, the cross-correlation functions evaluated at a fixed time instant of responses can be used as free
vibration decay or as impulse response in time-domain modal extraction schemes so that measurement of
non-stationary white-noise inputs can be avoided. It is remarkable that the term A jr (t) φir with fixed t in the
cross-correlation function of Eq. (7) will be identified as the mode-shape component. In order to eliminate
the A jr (t) term and retain the true mode-shape component φir , all the measured channels are correlated
against a common reference channel, say x j . The identified components then all possess the common A jr (t)
component, which can be normalized out to obtain the mode shape φir .

In the following, by considering a discrete linear system subjected to excitation resulted from a single
source w (t), which is assumed to be stationary white noise. The equation of motion can be expressed as

M v̈ (t) + C v̇ (t) + Kv (t) = lw (t) , (14)

where v (t), v̇ (t) and v̈ (t) are the stationary displacement, velocity and acceleration responses, respectively. l
is a vector whose elements are the influence factors for each dof and may be thought of a measure of the extent
to which the w (t) participates in the total excitation on the structure. Multiplying both sides of Eq. (14) by a
slowly time-varying amplitude-modulating function � (t) we can obtain

Mü (t) + Cu̇ (t) + Ku (t) = l f (t) , (15)

where f (t) is a non-stationary white noise as represented by the product model:

f (t) = � (t) w (t) , (16)

and u (t) = � (t) v (t). Note that in deriving Eq. (15), we assumed that � (t) is a slowly time-varying function
(i.e., �̇ (t) ≈ 0,�̈ (t) ≈ 0), and so � (t) v̇ (t) ≈ u̇ (t) and � (t) v̈ (t) ≈ ü (t). Denote the time average of u2i (τ )

as
�
u
2
i (t), which is defined as [9]:

�
u
2
i (t) = 1

T

∫ t+ T
2

t− T
2

u2i (τ )dτ. (17)
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Fig. 1 A Schematic plot of the 6-dof chain system

Recall that we have assumed the � (τ) to be a slowly varying function, then from Eq. (17)
�
u
2
i (t) can be

approximated as:

�
u
2
i (t) = 1

T

∫ t+ T
2

t− T
2

�2 (τ ) v2i (τ )dτ ∼= �2 (t)
1

T

∫ t+ T
2

t− T
2

v2i (τ )dτ, (18)

for T being a short time interval. The temporalmean-square function
�
u
2
i (t) is practically estimated by averaging

over short time intervals of the record. If we assume vi (τ ) is an ergodic process, the integral on the right-hand
side of Eq. (18) is just an approximation to E

[
v2i

]
and so

�
u
2
i (t) ∼= �2 (t) E

[
v2i

]
, (19)
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Fig. 2 A sample function of non-stationary white noise with a slowly varying amplitude-modulating function

Fig. 3 Power spectrum associated with the stationary part of the simulated non-stationary white noise

Then, the temporal root-mean-square function denoted as
�

� i (t) can be evaluated by time-averaging over a
single sample record as

�

� i (t) =
[

�
u
2
i (t)

] 1
2 ∼= � (t)Ci , (20)

where Ci = (
E

[
v2i

]) 1
2 . Note that the temporal root-mean-square function

�

� i (t) of each dof is proportional
to the same envelope function of time, � (t).

The above result indicates that the temporal root-mean-square functions
�

� i (t) of the response histories
describe the same slowly time-varying variation through interval average as given by the envelope function
� (t). This suggests that if the original non-stationary data could be represented by the product model with
a slowly time-varying envelope function, the temporal root-mean-square functions of the data through time
average also have the same non-stationary trend as that of the original data. In the relatively short time intervals
of the nonstationary sample in the form of the product model with slowly time-varying envelope function �(t),
the variation of amplitude with time of �(t) is very small, i.e., �(t) can not significantly describe the time-
varying amplitude (variance) in the short time intervals of the aforementioned nonstationary sample process.
The short time intervals of the nonstationary sample in the form of the productmodel with�(t) can be treated as
a quasi stationary sample process, and the nonstationary correlation technique applied to the quasi stationary
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Fig. 4 Typical displacement responses and the corresponding Fourier spectra of the 6-DOF chain system subject to nonstationary
white input

sample process can then be approximately transformed into stationary one. The results indicate that if the
excitation can be modeled as non-stationary white noise as represented in Eq. (16) with a slowly time-varying
envelope function � (t); then, the non-stationary responses of the system can also be treated approximately
as a stationary random process, and the correlation functions therefore can be obtained from a single sample
function of time by using the ergodic property of stationary random process.

The preceding results show that the non-stationary problem may reduce to a stationary problem if we
evaluate the non-stationary correlation functions at a fixed time instant. Therefore, under appropriate conditions
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of slowly time-varying envelope function � (t) in the product model of nonstationary ambient response, we
can follow the same procedures as those for stationary problem analysis, the correlation functions thus can be
treated as free vibration data and can be obtained from a single sample function of time by using the ergodic
property of stationary random process.

3 Numerical simulation

To demonstrate the effectiveness of the proposed method, we consider a linear 6-dof chain model with viscous
damping. A schematic representation of this model is shown in Fig. 1. The mass matrix M, stiffness matrix
K , and the damping matrix C of the system are given as follows:

M =

⎡

⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 3 0
0 0 0 0 0 4

⎤

⎥⎥⎥⎥⎥⎦
N × s2/m, K = 600 ·

⎡

⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 3 −2
0 0 0 0 −2 5

⎤

⎥⎥⎥⎥⎥⎦
N/m,

C = 0.05M + 0.001K + 0.2

⎡

⎢⎣
1 . . . 1
...

. . .
...

1 . . . 1

⎤

⎥⎦

6×6

N × s/m.

Note that the system has non-proportional damping (and so complex modes in general), since the damping
matrix C cannot be expressed as a linear combination of M and K . Consider that the ambient vibration input
can be modeled as non-stationary white noise as represented by the product model given by Eq. (4). The
stationary white noise is generated using the spectrum approximation method [14] as a zero-mean band-pass
noise, whose standard deviation is 0.02 N2 × s/rad with a frequency range from 0 to 50 Hz. The sampling
interval is chosen as �t = 0.01 s, and the sampling period is T = Nt ×�t = 1310.72 s. The stationary white
noise simulated is then multiplied by an amplitude-modulating function �(t) = 4 × (e−0.002t − e−0.004t ) to
obtain the non-stationary white noise, which serves as the excitation input acting on the 6th mass point of the
system. The time signal of a simulated sample of the non-stationary white noise and the power spectrum of
the corresponding stationary part are shown in Figs. 2 and 3, respectively.

The simulated displacement responses of the system were obtained using Newmark’s method [15]. By
examining the Fourier spectra associated with each of the response channel, as shown in Fig. 4, we chose the
response of the 6th channel, X6(t), which contains rich overall frequency information, as the reference channel
to compute the correlation functions of the system. According to the theory presented in the previous sections,
if the ambient excitation can be represented by a product model with slowly time-varying function, without any
additional treatment of transforming the original nonstationary responses, the non-stationary responses of the
system can be treated approximately as a stationary random process; then, the nonstationary cross correlation
functions of structural response evaluated at an arbitrary, fixed time instants of structural response are of the
same mathematical form as that of free vibration of a structure. Therefore, we can follow the same procedures
as those for stationary problems, and the correlation functions thus obtained are treated as free vibration data.
The Ibrahim time-domain method [13] could then be applied to identify modal parameters of the system.

Table 1 Results of modal parameter identification of the 6-dof chain system subjected to non-stationary white noise input

Mode Natural frequency (rad/s) Damping ratio (%) MAC

Exact ITD Error (%) Exact ITD Error (%)

1 5.03 5.02 0.23 5.24 5.14 1.91 1.00
2 13.45 13.42 0.20 1.07 0.97 9.35 1.00
3 19.80 19.75 0.24 1.13 1.11 1.77 1.00
4 26.69 26.52 0.62 1.43 1.41 1.40 1.00
5 31.66 31.41 0.79 1.66 1.59 4.22 0.95
6 33.73 33.41 0.94 1.74 1.73 0.57 1.00
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Fig. 5 Comparison between the identified mode shapes and the exact mode shapes of the 6-dof chain system subjected to
non-stationary white noise input

The results of modal parameter identification are summarized in Table 1, which shows that the errors in
natural frequencies are <1 % and the error in damping ratios is <10%. Note that the “exact” modal damping
ratios listed in Table 1 are actually the equivalent modal damping ratios obtained by utilizing ITD from
the simulated free vibration data of the non-proportionally damped structure. The identified mode shapes
are also compared with the exact values in Fig. 5, where we observe good agreement with the minimum
value of MAC (Modal Assurance Criterion) [16] of about 0.95. The errors of identified damping ratios and
mode shapes are somewhat higher due to the fact that the system response generally has lower sensitivity to
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Fig. 6 Comparison between the Fourier spectrum of correlation functions associated with the response of the 1st, 3rd and 6th
DOF of the system choosing the response of the 1st and 6th DOF, respectively, as the reference channels

these modal parameters than to the modal frequencies. In addition, by comparing with the Fourier spectra of
correlation functions, as shown in Fig. 6, associated with the response of the 1st, 3rd and 6th DOF of the system
choosing the response of the 1st and 6th DOF, respectively, as the reference channels, the Fourier spectra of
the correlation functions associated with the response of 6th channel (R61, R63, and R66) contains richer over
all frequency information, especially for higher modes than that of the 1st channel (R11, R13, and R16). The
results indicate that the selection of reference channel for computing correlation functions is also important to
the identification results. The richer frequency content the reference channel has, the better results of modal
parameters identification can be achieved.
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Fig. 7 A Schematic plot of the 7-dof system [17]

Table 2 Results of modal parameter identification of the 7-dof system subjected to non-stationary white noise input

Mode Natural frequency (rad/s) Damping ratio (%) MAC

Exact ITD Error (%) Exact ITD Error (%)

1 5.08 5.07 0.04 2.22 2.26 1.80 1.00
2 9.75 9.74 0.16 1.51 1.45 3.97 1.00
3 15.74 15.68 0.40 1.42 1.36 4.23 1.00
4 19.48 19.14 1.72 1.49 1.23 17.45 0.86
5 20.65 20.59 0.33 1.52 1.75 15.13 0.95
6 22.31 22.17 0.63 1.56 1.51 3.21 0.94
7 32.44 32.16 0.87 1.93 1.89 2.07 1.00

To further clarify the accuracy and adequacy of the proposed methods, numerical simulations have been
performed of another type of a structure, which is not in the form of a chain or truss model used as the test
sample. A schematic representation of this model is shown in Fig. 7 [17]. The mass matrix M, stiffness matrix
K , and the proportional damping matrix C of the system are given as follows:

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
0 5 0 0 0 0 0
0 0 3.5 0 0 0 0
0 0 0 4.5 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

N · s2/m, K = 400 ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0
−1 2.7 −1 −0.7 0 0 0
0 −1 3 −1 0 0 0
0 −0.7 −1 3.7 −1 −1 0
0 0 0 −1 2 0 −1
0 0 0 −1 0 2.85 −1
0 0 0 0 −1 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

N/m,

C = 0.2M + 0.001K N · s/m.



1460 C.-S. Lin

Fig. 8 Comparison between the identifiedmode shapes and the exact mode shapes of the 7-dof system subjected to non-stationary
white noise input
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Fig. 9 Schematic plot of the 6-dof system of a linear two-dimensional model of one-half of a railway vehicle [19]

This type of structure is not a chain model system in which the stiffness matrix K is not of a tri-diagonal
form. Note that the system has proportional damping, since the damping matrix C can be expressed as a linear
combination of M and K . The system considered has two pairs of closely spaced modes, as listed in Table 2.
In this example, we still use the previous nonstationary white-noise in the form of a product model as input
acting on the 7th mass of the system, and then the corresponding displacement responses were obtained by
Newmark’s method [15] are used for modal identification. The results of modal identification through the
ITD method in conjunction with the proposed nonstationary correlation technique are also summarized in
Table 2. From Table 2, we see that the identification results are good. The well-identified mode shapes are also
compared with the exact values in Fig. 8. The results indicate that the proposed methods may be applicable
to identify the modal parameters of a general structural system subjected to nonstationary white-noise in the
form of a product model.

To further examine the effectiveness of the present method for the more complex structural subjected to
the realistic ambient excitation, we consider a linear two-dimensional model of one-half of a railway vehicle
excited by a practical seismic signal. The dynamic system used in the numerical study (a sketch is shown in
Fig. 9) is identical to that in Reference [18,19]. The system is a 6-DOF systemwithu = [u1, u2, u3, u4, u5, u6],
where u4 = θ is a rotational displacement and others are vertical displacement as shown in Fig. 9. The mass
matrix is a diagonal matrix, diag M = [m1,m2,m3,m4,m5,m6], where m4 = IB is the mass moment of
inertia of the rigid body B at the top of the structure. The stiffness matrix can be obtained as

K =

⎡

⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 −k3L 0 0
0 −k3 k3 + k4 k3L − k4L −k4 0
0 −k3L k3L − k4L k3L2 + k4L2 k4L 0
0 0 −k4 k4L k4 + k5 −k5
0 0 0 0 −k5 k5 + k6

⎤

⎥⎥⎥⎥⎥⎦
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Table 3 Results of modal parameter identification of the 6-dof system of a linear two-dimensional model of one-half of a railway
vehicle subjected to non-stationary white noise input

Mode Natural frequency (rad/s) Damping ratio (%) MAC

Exact ITD Error (%) Exact ITD Error (%)

1 17.53 17.47 0.36 1.16 1.19 2.32 1.00
2 23.31 23.25 0.27 1.38 1.38 0.28 1.00
3 103.99 102.16 1.75 5.24 6.66 27.16 0.96
4 121.08 117.31 3.11 6.09 7.54 23.95 0.94
5 159.34 154.13 3.27 8.01 9.55 19.24 0.85
6 160.66 163.17 1.56 8.08 9.39 16.28 0.84

Fig. 10 A recorded sample of the Chi-Chi Earthquake

where L is the horizontal distance between the center of the rigid body B and the springs/dashpots. Throughout
this numerical study, [m1,m2,m3,m5,m6] = [1200, 850, 4125, 850, 1220] kg, and m4 = IB = 1.25 ×
105 kgm2; k1 = k6 = 3.0× 107 N/m, k2 = k5 = 1.0× 106 N/m and k3 = k4 = 6.0× 106 N/m; L = 8.53 m;
C = 0.1M + 0.001KN s/m. Note that this 6-DOF system of one-half of a railway vehicle has proportional
damping, since the dampingmatrixC can be expressed as a linear combination ofM and K . From the numerical
values, the analytical modal frequencies and damping ratios are listed in Table 3. This 6-DOF system features
the following: 6 modes with considerable frequency (0 ∼ 165rad/s) range, modal damping levels ranging from
low (1.16%) to relatively high (8.08%), and a pair of closely spaced modes (frequency separation smaller than
1.5 rad/s) [18]. Consider that the ambient vibration input is a practical vibration recorded at Sun-Moon Lake on
September 21, 1999, when Chi-Chi Earthquake with a moment magnitude of 7.6 occurred in central Taiwan.
The sampling interval and period of this seismic record are �t = 0.005 s and T = 59.995 s, respectively.
A sample of the seismic record, which serves as the excitation input acting on the 6th mass of the model, is
shown in Fig. 10. The displacement responses of the system were obtained using Newmark’s method [15];
then, we perform the modal identification using the simulation responses, and identification results obtained
are satisfactory, as summarized in Table 3.

It can be observed from the identification results obtained through the above numerical simulations that, for
the finite but sufficient acquisition of available sample time history to perform the correlation technique and ITD
method, themodal parameters of a system can bewell identified in general. This is because that, in the relatively
short time intervals of the nonstationary sample in the form of the product model with slowly time-varying
envelope function�(t), the variation of amplitudewith time of�(t) is very small, i.e.,�(t) can not significantly
describe the time-varying amplitude (variance) in the short time intervals of the aforementioned nonstationary
sample process. The short time intervals of the nonstationary sample in the form of the product model with
�(t) can be treated as a quasi stationary sample process, and the nonstationary correlation technique applied
to the quasi stationary sample process can then be approximately transformed into stationary one. It indicates
that when the practical ambient excitation, such as earthquakes, can be approximately modeled as a product
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model with slowly time-varying function, the proposed method is applicable to identify the modal parameters
of a structural system subjected to realistic excitation, which can properly describe the nonstationary process
with a slowly time-varying envelope function.

In this paper, we developed modal identification methods under the slowly time-varying nonstationary
assumption for ambient excitation.We also demonstrated the validity of these methods through numerical sim-
ulations without using the practical response data. From the nonstationary correlation functions of the vibration
behavior of realistic ambient excitation, we know that the slowly time-varying nonstationary assumptions are
consistent with the time-varying nature of ambient excitation in practice. Thus, the proposed methods are
generally applicable in identifying the modal parameters of a structure from the identification results obtained
through numerical simulations.

4 Conclusions

To identify dynamic characteristics of structures in nonstationary ambient vibration, modal-identification
method of using response data only is studied. If the ambient excitation can be properly represented by a
product model with slowly-time-varying envelope function, in the relatively short time intervals, the vari-
ation of amplitude with time of temporal root-mean-square functions of the response histories is so small
that cannot significantly describe the time-varying amplitude (variance) of the nonstationary sample process.
Therefore, without any additional treatment of transforming the original nonstationary responses, the proposed
nonstationary cross-correlation functions of structural response evaluated at an arbitrary, fixed time instants of
structural response are of the samemathematical form as that of free vibration of a structure, fromwhichmodal
parameters of the original system can thus be identified. In addition, the choice of the reference channel for
computing the correlation functions is important to the identification results. The reference channel is chosen as
a response channel whose Fourier spectrum has rich frequency content around the structure modes of interest.
The richer frequency content the reference channel has, the better results of modal parameters identification
can be achieved.
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