
Arch Appl Mech (2016) 86:1391–1414
DOI 10.1007/s00419-016-1124-x

ORIGINAL

B. Yang · W. Q. Chen · H. J. Ding

Equilibrium of transversely isotropic FGM plates
with an elliptical hole: 3D elasticity solutions

Received: 20 June 2015 / Accepted: 22 February 2016 / Published online: 8 March 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract A transversely isotropic plate of functionally gradedmaterial (FGM)with an elliptical hole subjected
to non-lateral loads is analyzed by employingEngland–Spencer plate theory. The problem is analytically solved
by determining the four analytic functions in the general solution to the governing equations when there are
no transverse forces acting on the plate surfaces. Three kinds of basic problems are classified according to
the boundary conditions. For the first kind problem, which is studied in detail in the paper, the boundary
conditions expressed by four real functions are rewritten as two complex function equations. The problem
is eventually transformed to a complex function theory problem. Three-dimensional elasticity solutions are
obtained for a transversely isotropic FGM plate containing an elliptical hole subject to loads at infinity or on
the hole boundary. The conformal mapping technology is used along with the Cauchy integral method. Explicit
expressions for the concentration factors of resultant forces are also presented. The present elasticity solutions
are exactly the same as those available in the literature if the FGM degenerates to the homogeneous material.
When the elliptical hole becomes a circular one, the present elasticity solutions are also found consistent with
those obtained in the authors’ previous work.
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List of symbols

x, y, z Rectangular coordinates
ρ, θ Polar coordinates
n, t Curvilinear coordinates with directions normal to and along the

boundary
ζ x + iy
η ρeiθ

σ eiθ

L Boundary of the mid-plane of plate
s Arc length measured from a certain point on L in a specified

direction
S Region of the mid-plane of plate
γ Unit circle
a, b Semi-major and semi-minor axes of the ellipse
R, m Real constants related to a and b
h Thickness of plate
ω (η) Mapping function
ū, v̄, w̄ Mid-plane displacements in rectangular coordinates
u, v, w Displacements in rectangular coordinates
R0, . . . R4, T1, . . . T4 Functions of z
a1, a2, a5, a6, a7, b1, b2, b5, b6, b7, b8 Real constants
κ1, . . . , κ9 Real constants
C, B, B1 Complex constants
σx , σy, τxy Stress components in rectangular coordinates
σn, σt , τnt Stress components in curvilinear coordinates
Nx , Ny, Nxy Resultant forces per unit length in rectangular coordinates
Mx , My, Mxy Bending and twisting moments per unit length in rectangular

coordinates
Qxz, Qyz Shear forces per unit length in rectangular coordinates
Nn, Nt , Nnt Resultant forces per unit length in curvilinear coordinates
Mn, Mt , Mnt Bending and twistingmoments per unit length in curvilinear coor-

dinates
Qn Shear force per unit length in curvilinear coordinates
Nb
n , Nb

nt , Mb
n , Mb

nt , Qb
n Known functions on the boundary L

p Known function on the boundary L , corresponding to the effec-
tive shear force

Xn, Yn, Zn Stresses acting at the point (x, y, z) on the cylindrical surface
perpendicular to the mid-plane of the plate

Nxn, Nyn, Mxn, Myn Resultant forces andmoments of Xn, Yn, Zn along the thickness
of the plate

X, Y, Z , MX , MY Components of the principal vectors and moments about the ori-
gin of external stresses applied on hole boundaries in rectangular
coordinates

α(ζ ), β(ζ ), φ(ζ ), ψ(ζ ) Analytical functions of ζ
A(ζ ) The first derivative of α(ζ )
β(η), φ(η), ψ(η), A(η) Analytical functions of η
{Q} = { f1 + i f2, f3 + i f4}T Functions of loads on the boundary
N1, N2, N12, M1, M2, M12 Loads applied at infinity in curvilinear coordinates
Nb
n , Nb

nt , Mb
n , Mb

nt Loads applied on the boundary of the elliptical hole
Ki j Resultant force concentration factors (RFCFs)
ci j Material parameters
c0i j Material parameters at z = −h/2
λ Gradient index of FGMs
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1 Introduction

Homogeneous elastic plates perforated by various holes have widely been used in engineering fields (such
as in the design of advanced machinery, pressure vessels, aerospace structures). Their static and dynamic
behaviors have been investigated efficiently by different methods, among which the complex variable method
is typical. It has been developed and adopted for plane problems in elasticity due to their effectiveness in
solving boundary value problems. A series of analytical results for plates with holes have been obtained by the
complex variablemethod as illustrated in the classic books byMuskhelishvili [1], Savin [2] and Lekhnitskii [3].
Recently, using the Schwarz’s alternating method and the Muskhelishvili’s complex variable method, Zhang
et al. [4] derived an efficient and accurate stress solution for an infinite elastic plate around two elliptic holes,
subjected to uniform loads on the hole boundaries and at infinity. Pan et al. [5] studied the stress distribution
around a rectangular hole in a finite plate under uniaxial tension by using theMuskhelishvili’s complex variable
method together with the proposed stress functions. Using Muskhelishvili’s complex variable method and the
conformal mapping technique, Sharma [6] determined analytically the moment distribution around polygonal
holes in an infinite isotropic plate subjected to bending/twisting moment at infinity.

As a new type of composite materials, functionally graded materials (FGMs) can be designed artificially
and neatly in which the volume fractions of different constituent materials vary continuously from one side
to the other, hence leading to no significant internal interface in them. There are a few papers dealing with
FGM plates with holes, but most of them considered only two-dimensional (2D) problems and assumed
the material is graded along the in-plane radial direction. For instance, Zhang et al. [7] obtained an exact
thermoelastic solution for an infinite functionally graded plate with a circular hole when the temperature field
varies arbitrarily in the radial direction. Kubair and Bhanu-Chandar [8] investigated the stress concentration
around a circular hole in FGM panels under uniaxial tension via an isoparametric finite element formulation.
Kubair [9] obtained closed-form expressions for the stresses and displacements in infinite FGM plates without
and with holes subjected to anti-plane shear loading. Stress distributions in infinite and finite FGM plates with
a circular hole under arbitrary in-plane uniform loads were studied by Yang et al. [10,11], respectively, using
the complex variable method combined with the least squares boundary collocation technique. Mohammadi
et al. [12] obtained analytical solutions for stress concentration around a circular hole in an infinite FGM plate
subjected to uniform biaxial tension and pure shear loading. There are relatively much few studies on three-
dimensional (3D) problems of FGM plates with the material properties varying along the thickness direction.
Based on the 3D elasticity theory and using a graded boundary element method, Ashrafi et al. [13] presented a
static analysis of FGM plates with circular holes subjected to biaxial tensions; they assumed that the material
properties vary through the thickness or longitudinal direction in an exponential way.

Based on the 3D theory of elasticity, Spencer and his coauthors (see, for example, Mian and Spencer [14])
have developed a procedure for deriving exact solutions for isotropic FGM plates with tractions-free surfaces
by formulating and solving a much simpler 2D plate problem. The material properties can vary arbitrarily with
the thickness coordinate. Yang et al. [15] extended thework ofMian and Spencer [14] to a transversely isotropic
FGM rectangular plate with opposite edges simply supported and subjected to a uniform load acting on the
top and bottom surfaces. Using the complex function theory, England and Spencer [16] reformulated the plate
theory in Mian and Spencer [14] in terms of four analytical functions. Hereinafter, this complex formulation
will be referred to as England–Spencer plate theory. England [17] further investigated the elastic field in an
FGM plate containing a cylindrical hole or a line crack through its thickness under a uniform force field at
infinity. England [18] generalized the above plate theory to the case involving the effect of top-surface pressure,
which satisfies the biharmonic equation or the higher-order ones. Yang et al. [19,20] extended the England–
Spencer plate theory to transversely isotropic FGM plates and obtained a series of 3D elasticity solutions for
FGM rectangular and annular plates. Recently, by using Laurent’s theorem to express each complex potential
as a power series, Yang et al. [21] studied the resultant force concentration in an infinite plate with a circular
hole subject to loads at infinity as well as the elastic field in an infinite plate subject to concentrated loads and
moments at the origin.

To the best of the authors’ knowledge, the 3D problem of FGM plates with elliptical hole has not been
addressed. The purpose of this paper is to investigate the 3D equilibrium of a transversely isotropic FGM plate
containing an elliptical hole subject to loads applied on the cylindrical boundaries of the plate by using Cauchy
integrals. The analysis is based on England–Spencer plate theory and is a further extension of the authors’
previous work (Yang et al. [19–21]). The outline of the paper is as follows: The main formulas obtained in our
previous papers (Yang et al. [19–21]) are summarized in Sect. 2. According to the boundary conditions on the
hole edge, three basic kinds of boundary value problems are classified in Sect. 3. As an example, Sect. 4 shows
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how to convert the first kind problem into a complex function theory problem. Based on the Cauchy integral
method and the conformal mapping technology, a mathematical procedure is developed to study the problems
of an infinite plate with an elliptical hole in Sect. 5. 3D elasticity solutions for such a plate subject to external
loads at infinity and on the edge of the hole are presented in Sects. 6 and 7, respectively. The validity and
accuracy of the derived solutions are checked by comparing with the ones available in the literature. Section
8 presents some numerical results, and Sect. 9 summarizes the work of the paper.

2 England–Spencer plate theory

A transversely isotropic FGM plate, bounded by the planes z = ±h/2, with the z-axis of the Cartesian
coordinates vertically upward, is considered here. The xy plane is the isotropic plane of the material which
coincides with the mid-plane of the plate. If the plate is only subject to normal biharmonic pressure p (x, y) on
the upper surface, we have σz = −p (x, y), σxz = σyz = 0 at z = h/2 and σz = σxz = σyz = 0 at z = −h/2.

According to the England–Spencer plate theory (England and Spencer [16]; England [18]), we seek the
displacement field in the following form:

u + iv = ū + i v̄ + 2
∂

∂ζ̄

(
R1� + R0w̄ + R2∇2w̄ + R3∇4w̄ + R4∇6w̄

)
,

w = w̄ + T1� + T2∇2w̄ + T3∇4w̄ + T4∇6w̄, (2.1)

where ū = ū(x, y), v̄ = v̄(x, y), and w̄ = w̄(x, y) are the mid-plane displacements, R0, . . . R4, T1, . . . T4 are
functions of z, and

� = ū,x + v̄,y, ∇2 = ∂2

∂x2
+ ∂2

∂y2
, ζ = x + iy, ζ̄ = x − iy,

2
∂

∂ζ
= ∂

∂x
− i

∂

∂y
, 2

∂

∂ζ̄
= ∂

∂x
+ i

∂

∂y
, (2.2)

Yang et al. [19] showed that the expressions of functions R j ( j = 0, . . . , 4) and Tk (k = 1, . . . , 4) and the
following governing equations could be obtained by making use of the stress boundary conditions on the upper
and lower surfaces of the plate:

∂

∂ζ̄

[
κ1� + κ2∇2w̄ + κ3∇4w̄ + κ4∇6w̄ + i�(x, y)

] = 0, (2.3)

S1 (h/2)∇4w̄ = −p (x, y) + S21∇2 p (x, y) , (2.4)

where� (x, y) = v̄,x − ū,y and the expressions of constants κ1, κ2, κ3, κ4, S21 and S1 (h/2) can be found from
Appendix of Yang et al. [19].

When p (x, y) = 0, Eq. (2.4) gives rise to ∇4w̄ = 0, and hence Eq. (2.1) becomes:

u + iv = ū + i v̄ + 2
∂

∂ζ̄

(
R1� + R0w̄ + R2∇2w̄

)
,

w = w̄ + T1� + T2∇2w̄, (2.5)

which was obtained in Yang et al. [15]. It becomes identical with that obtained by Mian and Spencer [14] if
the material degenerates from transverse isotropy to isotropy. With Eq. (2.5), the expressions of the mid-plane
displacements and resultant forces may be expressed in terms of four analytical functions (α(ζ ), β(ζ ), φ(ζ )
and ψ(ζ )) as follows:
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Fig. 1 FGM plate with holes and the coordinates: a 3D view, b front view, and c top view

w̄ = α (ζ ) + α (ζ ) + ζ̄ β (ζ ) + ζβ (ζ ), (2.6)

D = ū + i v̄ = κ1 + 1

κ1 − 1
φ (ζ ) − ζφ′ (ζ ) − ψ (ζ ) − 2

κ2

κ1

[
β (ζ ) + ζβ ′ (ζ )

]
, (2.7)

Nx + Ny = a1
[
φ′ (ζ ) + φ′ (ζ )

]
+ 4a2

[
β ′ (ζ ) + β ′ (ζ )

]
, (2.8)

Ny − Nx + 2i Nxy = a1
[
ζ̄ φ′′ (ζ ) + ψ ′ (ζ )

] − a5φ
′′′ (ζ ) + 4a2ζ̄ β ′′ (ζ )

+ 2a6α
′′ (ζ ) − a7β

′′′ (ζ ) , (2.9)

Mx + My = −b1
[
φ′ (ζ ) + φ′ (ζ )

]
+ 4b2

[
β ′ (ζ ) + β ′ (ζ )

]
, (2.10)

My − Mx + 2iMxy = a6
[
ζ̄ φ′′ (ζ ) + ψ ′ (ζ )

] − b5φ
′′′ (ζ ) + b6ζ̄ β ′′ (ζ )

+ b7α
′′ (ζ ) − b8β

′′′ (ζ ) , (2.11)

Qxz − i Qyz = − (b1 + a6) φ′′ (ζ ) + (4b2 − b6) β ′′ (ζ ) , (2.12)

where a1, a2, a5, a6, a7, b1, b2, b5, b6, b7, b8 are real constants (see [19]) and the prime represents derivative
with respect to ζ . Equations (2.6)–(2.12) are the general solution to the corresponding homogeneous equations
of Eqs. (2.3) and (2.4). It can be used to solve various problems of FGM plates subject to loads applied on the
cylindrical boundary.

3 Boundary conditions and basic problems

In England–Spencer plate theory, there are only four analytical functions in the general solution and they fully
determine the mid-plane displacements of the plate. Therefore, it is impossible for the three-dimensional exact
solutions which are derived based on these analytical functions to meet the cylindrical boundary conditions of
the plate point by point. However, we can in an approximate sense allow the three-dimensional solutions just
to meet four specified boundary conditions on the boundary L of the region S in the plate. The region S can be
either simply connected or multiply connected, and accordingly the boundary L can be either a single smooth
contour or a collection of contours L1, L2, . . . , Lm , Lm+1 (for a finite region) or a collection of contours
L1, L2, . . . , Lm (for an infinite region). As a result, the original boundary value problem in three-dimensional
elasticity is transformed into a 2D one which just concerns the deformation of the mid-plane of the plate. An
FGM plate with holes is shown in Fig. 1 along with the coordinates. Suppose that the mid-plane displacements
and resultant forces of the plate are all continuous in the region S and to the boundary L . The following three
kinds of boundary conditions are considered from the viewpoint of mechanics:

(1) Free boundary conditions

Nn (t) = Nb
n (s) , Nnt (t) = Nb

nt (s) , Mn (t) = Mb
n (s) , Qn (t) + ∂Mnt (t)

∂s
= p (s) , (3.1)

where Nb
n (s), Nb

nt (s), M
b
n (s), Mb

nt (s), Q
b
n (s), and p (s) = Qb

n (s) + ∂Mb
nt (s)
∂s are known functions on the

boundary L , corresponding to the normal force, tangential force, moment, torque, shear force and the effective
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Fig. 2 Mid-plane of an infinite FGM plate containing a hole

shear force, respectively; s is the arc length measured from a certain point on L in a specified direction;
subscripts n and t represent the outward normal and tangential direction of L (see Fig. 2 for an infinite plate
with a hole), respectively; and t = x (s) + iy (s) is a point on L with x (s) and y (s) being the coordinates of
the boundary point. Obviously, there is a one-to-one mapping between t and s.

(2) Clamped boundary conditions

ū (t) = ūb (s) , v̄ (t) = v̄b (s) , w̄ (t) = w̄b (s) ,
∂w̄ (t)

∂n
= Wn (s) , (3.2)

where ūb (s), v̄b (s), w̄b (s) and Wn (s) are known functions on the boundary L .
(3) Simply supported boundary conditions

Nn (t) = Nb
n (s) , Mn (t) = Mb

n (s) , w̄ (t) = w̄b (s) , ūt (t) = ūbt (s) , (3.3)

where ūt (t) is the displacement component in the tangential direction of the point on L and ūbt (s) is the known
function.

The boundary value problem of a plate with the free boundary conditions on the boundary L is classified
as the first kind basic problem, while that of a plate with clamped or simply supported boundary conditions
on L is classified as the second or third kind basic problem. In addition, there can be mixed types of boundary
conditions on L . In fact, many interesting and important problems have mixed boundary conditions, such as
the problem of a rectangular plate with two opposite edges simply supported and the problem of a cantilever
rectangular plate.

By virtue of Eqs. (2.6)–(2.12), the terms in the left-hand sides of Eqs. (3.1)–(3.3) can be expressed by the
boundary values of the four analytical functions α (ζ ), β (ζ ), φ (ζ ), ψ (ζ ) and their derivatives. Eventually,
the four analytical functions can be determined from the boundary conditions. To proceed, the following
transform for the displacement and stress components between coordinates (n, t) and coordinates (x, y)
shall be adopted:

ūn + i ūt = (ū + i v̄) e−i�, (3.4)

σn + σt = σx + σy, σt − σn + 2iτnt = (
σy − σx + 2iτxy

)
e2�i , (3.5)

Nn + Nt = Nx + Ny, Nt − Nn + 2i Nnt = (
Ny − Nx + 2i Nxy

)
e2�i , (3.6)

Mn + Mt = Mx + My, Mt − Mn + 2iMnt = (
My − Mx + 2iMxy

)
e2�i , (3.7)

where � is the angle between the axes n and x , and

(Nn, Nt , Nnt , Mn, Mt , Mnt ) =
∫ h

2

− h
2

(σn, σt , τnt , σnz, σt z, τnt z) dz. (3.8)

4 The first kind basic problem

The mid-plane displacements and resultant forces are expressed in terms of the four analytical functions. If the
boundary conditions can be rewritten as two complex function equations by an appropriate combination, we
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will lead to a complex function theory problem. That is, we are facingwith the task to determine the expressions
of the four analytical functions in the region S when the values of the two function equations consisting of the
four analytical functions and their derivatives are known on the boundary L . In the process of transforming Eq.
(3.1), (3.2) or (3.3) to two complex function equations, it will facilitate solving these two equations if we can
perform integration along L so as to reduce the order of derivatives of the complex functions in the boundary
conditions. In the following, the first kind basic problem will be addressed in detail for illustration.

Firstly, integrating Eq. (3.1)4 along L leads to

Q + Mnt = P (s) + e0, (4.1)

where e0 is a real integral constant, and

Q (t) =
∫

Qnds, P (s) =
∫

p (s) ds =
∫

Qb
n (s) ds + Mb

nt (s) . (4.2)

Combining Eqs. (3.1)1 with (3.1)2 and Eqs. (3.1)3 with (4.1), respectively, we obtain the following complex
forms

Nn (t) − i Nnt (t) = Nb
n (s) − i Nb

nt (s) . (4.3)

Mn (t) − iMnt (t) − i Q (t) = Mb
n (s) − i P (s) − ie0. (4.4)

By multiplying Eqs. (4.3) and (4.4) by e−i� and integrating along L , respectively, we find that
∫ (

Nxn − i Nyn
)
ds =

∫ [
Nb
n (s) − i Nb

nt (s)
]
e−i�ds, (4.5)

∫ (
Mxn − iMyn − i Qe−i�

)
ds =

∫ [
Mb

n (s) − i P (s) − ie0
]
e−i�ds, (4.6)

where the expressions of Nxn , Nyn , Mxn and Myn are shown to be

(
Nxn, Nyn, Qn

) =
∫ h

2

− h
2

(Xn, Yn, Zn) dz,
(
Mxn, Myn

) =
∫ h

2

− h
2

(Xn, Yn) zdz, (4.7)

in which Xn, Yn, Zn are stresses acting at the point (x, y, z) on the cylindrical surface perpendicular to the
mid-plane of the plate. They are exerted on the cylindrical surface from the positive side of the normal n.
Meanwhile, the following equations have been used

Nn − i Nnt = (
Nxn − i Nyn

)
ei�, Mn − iMnt = (

Mxn − iMyn
)
ei�. (4.8)

We have
(
Nxn, Nyn, Qn, Mxn, Myn

) = (
Nx , Nxy, Qxz, Mx , Mxy

)
cos (n, x)

+ (
Nxy, Ny, Qyz, Mxy, My

)
cos (n, y) . (4.9)

Substituting Eq. (4.9)3 into Eq. (4.2)1 and making use of Eq. (2.12), we obtain

Q = −1

2
i
{
− (b1 + a6)

[
φ′ (ζ ) − φ′ (ζ )

]
+ (4b2 − b6)

[
β ′ (ζ ) − β ′ (ζ )

]}
. (4.10)

Substituting Eq. (4.9) into Eqs. (4.5) and (4.6) gives

1

2

∫ [(
Ny − Nx + 2i Nxy

)
dζ + (

Nx + Ny
)
d ζ̄

] =
∫ [

Nb
n (s) − i Nb

nt (s)
]
d (x − iy). (4.11)

1

2

∫ [(
My − Mx + 2iMxy

)
dζ + (

Mx + My − 2i Q
)
d ζ̄

] =
∫ [

Mb
n (s) − i P (s) − ie0

]
d (x − iy).

(4.12)
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Substituting Eqs. (2.8) and (2.9) into Eq. (4.11) and Eqs. (2.10), (2.11) and (4.10) into Eq. (4.12) and then
integrating gives rise to

a1
[
t̄φ′ (t) + φ (t) + ψ (t)

] + 4a2
[
t̄β ′ (t) + β (t)

] + 2a6α
′ (t) − a5φ

′′ (t)
− a7β

′′ (t) = f̄ = f1 − i f2 + c1, (4.13)

a6
[
t̄φ′ (t) + ψ (t)

] + b6 t̄β
′ (t) + b7α

′ (t) − b5φ
′′ (t) − b8β

′′ (t) − (2b1 + a6) φ (t)

+ (8b2 − b6) β (t) = F̄ = f3 − i f4 + ie1 t̄ + c2, (4.14)

where c1 and c2 are complex constants, e1 = −2e0, and

f1 − i f2 = 2
∫ [

Nb
n (s) − i Nb

nt (s)
]
d (x − iy) = −2i

∫ [
Nb
xn (s) − i Nb

yn (s)
]
ds, (4.15)

f3 − i f4 = 2
∫ [

Mb
n (s) − i P (s)

]
d (x − iy) = −2i

∫ [
Mb

xn (s) − iMb
yn (s) − i Zb (s) e−i�

]
ds,

(4.16)

where Nb
xn (s), Nb

yn (s), Qb
n (s), Mb

xn (s) and Mb
yn (s) can be calculated from Eq. (4.7) and

Zb (s) =
∫

Qb
n (s) ds. (4.17)

By virtue of Eq. (4.8)1, it can be found that the following equations are equivalent to the boundary conditions
(3.1)

Nxn (t) − i Nyn (t) = Nb
xn (s) − i Nb

yn (s) ,

Mn (t) − iMnt (t) − i Q (t) = Mb
n (s) − i P (s) − ie0. (4.18)

Equations (4.13) and (4.14) are the complex forms of the boundary conditions (3.1) or (4.18) which contain
three integral constants c1, c2 and e1. In amultiply connected region, these three integral constants are generally
different along the contours. However, the three constants always can be made zero along a certain contour. For
a finite singly connected region, the holomorphic functions α (ζ ), β (ζ ), φ (ζ ) and ψ (ζ ) can be determined
from the boundary conditions (4.13) and (4.14) on only one boundary L . The integral constant e1 in Eq. (4.14)
can be taken as zero since β ··

1 (the imaginary part of β1) with the term iβ ··
1 ζ in the function β (ζ ), which doesn’t

show up in the expressions of the mid-plane displacements and resultant forces of the plate, can be arbitrary.
Constants c1 and c2 along with constants β0 and φ0 in functions β (ζ ) and φ (ζ ) simultaneously contribute
to the constant terms in Eqs. (4.13) and (4.14). Thus, we can also take c1 = 0 and c2 = 0 because of the
arbitrariness of the constants φ0 and β0 (see Eq. (2.16) in Yang et al. [21]).

For an infinite region S containing a hole, as shown in Fig. 2, L becomes the boundary of the hole and the
integral constants can be treated in the same way. It is noted that the four holomorphic functions are usually
multi-valued, with the following expressions under the boundedness condition for resultant forces at infinity
(see Yang et al. [21])

α (ζ ) = B̄ζ lnζ + A ln ζ + α1ζ + α2ζ
2 + α0 (ζ ) , (4.19)

β (ζ ) = Blnζ + β1ζ + β0 (ζ ) , (4.20)

φ (ζ ) = C lnζ + φ1ζ + φ0 (ζ ) , (4.21)

ψ (ζ ) = B1lnζ + ψ1ζ + ψ0 (ζ ) , (4.22)

where

C = κ5 (X + iY ) , B = κ6 (MY − iMX ) + κ7 (X + iY ) ,

B1 = κ8 (MY + iMX ) + κ9 (X − iY ) . (4.23)

[α0 (ζ ) , β0 (ζ ) , φ0 (ζ ) , ψ0 (ζ )] = [α0, β0, φ0, ψ0] +
∞∑

n=1

[
α−n, β−n, φ−n, ψ−n

]
ζ−n. (4.24)

It can be shown that α2, φ·
1 (the real part of φ1), β ·

1 (the real part of β1) and ψ1 are related to the stresses at
infinity; φ··

1 (the imaginary part of φ1) is proportional to the rigid-body rotation at infinity and hence can be
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taken as zero; β ··
1 (the imaginary part of β1) has no relation with the displacements and resultant forces and

can be taken as zero; α1 is related to the rigid-body rotation but nothing with the resultant forces and may be
chosen arbitrarily.

Substituting Eqs. (4.19)–(4.22) into Eqs. (4.13) and (4.14) leads to the task to determine the expressions of
the four holomorphic functions α0 (ζ ), β0 (ζ ), φ0 (ζ ) and ψ0 (ζ ) in the region S. The corresponding boundary
conditions are as follows

a1
[
t̄φ′

0 (t) + φ0 (t) + ψ0 (t)
] + 4a2

[
t̄β ′

0 (t) + β0 (t)
] + 2a6α

′
0 (t) − a5φ

′′
0 (t)

− a7β
′′
0 (t) = f̄ 0 = f 01 − i f 02 , (4.25)

b7α
′
0 (t) + (8b2 − b6) β0 (t) − (2b1 + a6) φ0 (t) + a6ψ0 (t) + a6 t̄φ

′
0 (t) + b6 t̄β

′
0 (t)

− b5φ
′′
0 (t) − b8β

′′
0 (t) = F̄0 = f 03 − i f 04 , (4.26)

where

f 01 − i f 02 = f1 − i f2 − 2a6
(
B̄ + α1

) − (a1ψ1 + 4a6α2) t − [
a1

(
φ1 + φ̄1

)

+ 4a2
(
β1 + β̄1

)]
t̄ − (a1C + 4a2B) t̄ t−1 − 2a6At

−1 − (a5C + a7B) t−2

− (
a1C̄ + 4a2 B̄

)
ln t̄ −

[
a1

(
2
κ2

κ1
B̄ − κ1 + 1

κ1 − 1
C̄

)
+ 2a6 B̄

]
ln t. (4.27)

f 03 − i f 04 = f3 − i f4 − b7
(
B̄ + α1

) − (a6ψ1 + 2b7α2) t − [a6φ1 + b6β1

− (2b1 + a6) φ̄1 + (8b2 − b6) β̄1
]
t̄ − (a6C + b6B) t̄ t−1 − b7At

−1

− (b5C + b8B) t−2 − [
(8b2 − b6) B̄ − (2b1 + a6) C̄

]
ln t̄

−
[
a6

(
2
κ2

κ1
B̄ − κ1 + 1

κ1 − 1
C̄

)
+ b7 B̄

]
ln t. (4.28)

Equations (4.25) and (4.26) show that the right-hand sides should be single-valued functions of t along the
contours, which can be proved by using Eqs. (4.27) and (4.28).

In the first kind basic problem, the function α′ (ζ ) rather than α (ζ ) appears in the expressions of the
resultant forces and boundary conditions. For convenience, the following new function is introduced

A (ζ ) = α′ (ζ ) . (4.29)

Equations (4.13) and (4.14) can be rewritten in the following matrix forms

[E]
{
Φ (t)

} + [F] t̄ {Φ (t)}′ + [G] {Φ (t)}′′ + [H ] {Ψ (t)} = {
Q̄

}
, (4.30)

where
{
Q̄

} = {
f̄ , F̄

}T
, f̄ = f1 − i f2 and F̄ = f3 − i f4, and

[E] =
[
a1 4a2
−2b1 − a6 8b2 − b6

]
, [F] =

[
a1 4a2
a6 b6

]
, [G] =

[−a5 −a7
−b5 −b8

]
,

[H ] =
[
a1 2a6
a6 b7

]
, {Φ (t)} =

{
φ (t)
β (t)

}
, {Ψ (t)} =

{
ψ (t)
A (t)

}
. (4.31)

The conjugate expression of Eq. (4.30) is as follows

[E] {Φ (t)} + [F] t
{
Φ (t)

}′ + [G]
{
Φ (t)

}′′ + [H ]
{
Ψ (t)

} = {Q} . (4.32)
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5 Conformal mapping

Suppose that the two complex variables ζ and η are related by

ζ = ω (η) , (5.1)

where the function ω (η) is a single-valued analytic function within a certain domain
∑

in the complex plane
η. Equation (5.1) means that each point η in the domain

∑
corresponds to a point ζ within a certain domain S

in the plane ζ and that is true vice versa. To ensure that the conformal transformation is mutually one-to-one,
ω′ (η) cannot be zero in the domain

∑
.

If domains
∑

and S all are infinite and correspond with each other at infinity, we have

ω (η) = Rη + P (η) , (5.2)

where R is a constant. Function P (η) is holomorphic in an infinite domain, which means that it is holomorphic
in any finite part of this domain, while it can be expressed in the following series form for sufficiently large
|ζ |

P (η) = a0 +
∞∑

n=1

an
ηn

.

As for the transformation which maps the infinite region S surrounded by a simple and closed contour L in
the ζ plane into

∑
, the exterior of the unit circle γ , in the η plane, we use ζ = t to represent a point on L and

η = σ = eiθ a point on γ . Suppose that Eq. (5.1) is continuous to the boundary and hence we have t = ω (σ).
Now let us use φ1 (ζ ) to represent φ (ζ ) that was used earlier and introduce the following new notations

φ (η) = φ1 (ζ ) = φ1 [ω (η)] . (5.3)

φ′
1 (ζ ) = dφ1 (ζ )

dζ
= dφ (η)

dζ
= dφ (η)

dη

dη

dζ
= φ′ (η)

1

ω′ (η)
. (5.4)

φ′′
1 (ζ ) = d

dζ

[
φ′ (η)

1

ω′ (η)

]
=

[
φ′ (η)

1

ω′ (η)

]′ 1

ω′ (η)

= φ′′ (η)
1

ω′ (η)2
− φ′ (η)

ω′′ (η)

ω′ (η)3
. (5.5)

Similar formulas can be established for α1 (ζ ), β1 (ζ ) and ψ1 (ζ ). For example, we have

α (η) = α1 (ζ ) = α1 [ω (η)] . (5.6)

and
A (η) = A1 (ζ ) = A1 [ω (η)] . (5.7)

By making use of Eqs. (5.3), (5.4), (5.5) and (5.7), we can rewrite Eqs. (4.30) and (4.32) in the following form

[E]
{
Φ (σ)

} + [F]
ω (σ)

ω′ (σ )
{Φ (σ)}′ + [G]

1

ω′ (σ )2
{Φ (σ)}′′

− [G]
ω′′ (σ )

ω′ (σ )3
{Φ (σ)}′ + [H ] {Ψ (σ)} = {

Q̄
}
, (5.8)

[E] {Φ (σ)} + [F]
ω (σ)

ω′ (σ )

{
Φ (σ)

}′ + [G]
1

ω′ (σ )
2

{
Φ (σ)

}′′

− [G]
ω′′ (σ )

ω′ (σ )
3

{
Φ (σ)

}′ + [H ]
{
Ψ (σ)

} = {Q} , (5.9)

in which {Q} is expressed as a function of σ by virtue of t = ω (σ), and

{Φ (σ)} =
{

φ (σ)
β (σ )

}
, {Ψ (σ)} =

{
ψ (σ)
A (σ )

}
. (5.10)
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For an infinite region S containing a hole, we may obtain from Eq. (4.19) that

A (ζ ) = α′ (ζ ) = B̄ ln ζ + 2α2ζ + A0 (ζ ) , (5.11)

where

A0 (ζ ) = B̄ + Aζ−1 + α1 + α′
0 (ζ ) = B̄ + α1 + Aζ−1 −

∞∑

n=1

nα−nζ
−n−1 = A0 +

∞∑

n=1

A−nζ
−n. (5.12)

Obviously
A0 = B̄ + α1, A−1 = A, A−n = − (n − 1) α−n+1, (n = 2, 3, . . .) . (5.13)

Just as β0 (ζ ), φ0 (ζ ) and ψ0 (ζ ), A0 (ζ ) in Eq. (5.12) is also a holomorphic function in the infinite region. It
will be more convenient to use β (ζ ), φ (ζ ), ψ (ζ ) and A (ζ ) in solving the first kind basic problem.

The exterior of an ellipse can be mapped conformally onto that of a circle by

ζ = ω (η) = R

(
η + m

η

)
, R = a + b

2
> 0, 0 ≤ m = a − b

a + b
< 1, (5.14)

where a and b are semi-major and minor axes of the ellipse.
By substituting Eq. (5.14) into Eqs. (4.20)–(4.22), (5.11), (4.24) and (5.12), we obtain

β (η) = Blnη + Rβ ·
1η + β0 (η) , (5.15)

φ (η) = C lnη + Rφ·
1η + φ0 (η) , (5.16)

ψ (η) = B1lnη + Rψ1η + ψ0 (η) , (5.17)

A (η) = B̄lnη + 2α2Rη + A0 (η) , (5.18)

where β0 (η), φ0 (η), ψ0 (η) and A0 (η) are all holomorphic in the infinite region.
Equations (5.15)–(5.18) can be rewritten in the following matrix form

{Φ (η)} =
{

φ (η)
β (η)

}
=

{
C
B

}
ln η + R

{
φ·
1

β ·
1

}
η + {Φ0 (η)} , (5.19)

{Ψ (η)} =
{

ψ (η)
A (η)

}
=

{
B1

B̄

}
ln η + R

{
ψ1
2α2

}
η + {Ψ0 (η)} , (5.20)

in which

{Φ0 (η)} =
{

φ0 (η)
β0 (η)

}
, {Ψ0 (η)} =

{
ψ0 (η)
A0 (η)

}
, (5.21)

By substituting the boundary values of functions {Φ (η)} and {Ψ (η)} in Eqs. (5.19) and (5.20) into Eq. (5.8),
we have

[E]
{
Φ0 (σ )

} + [F]
ω (σ)

ω′ (σ )
{Φ0 (σ )}′ + [G]

1

ω′ (σ )2
{Φ0 (σ )}′′

− [G]
ω′′ (σ )

ω′ (σ )3
{Φ0 (σ )}′ + [H ] {Ψ0 (σ )} = {

Q̄0} , (5.22)

where
{
Q̄0} = {

Q̄
} + [E]

{
C̄
B̄

}
ln σ − R [E]

{
φ·
1

β ·
1

}
1

σ
− [F]

{
C
B

}
ω (σ)

σω′ (σ )

− R [F]

{
φ·
1

β ·
1

}
ω (σ)

ω′ (σ )
+ [G]

{
C
B

}
1

σ 2ω′ (σ )2
+ [G]

{
C
B

}
ω′′ (σ )

σω′ (σ )3

+ R [G]

{
φ·
1

β ·
1

}
ω′′ (σ )

ω′ (σ )3
− [H ]

{
B1

B̄

}
ln σ − R [H ]

{
ψ1
2α2

}
σ.

(5.23)
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The conjugate formula of Eq. (5.22) is

[E] {Φ0 (σ )} + [F]
ω (σ)

ω′ (σ )

{
Φ0 (σ )

}′ + [G]
1

ω′ (σ )2

{
Φ0 (σ )

}′′

− [G]
ω′′ (σ )

ω′ (σ )3

{
Φ0 (σ )

}′ + [H ]
{
Ψ0 (σ )

} = {
Q0} . (5.24)

Substituting Eq. (5.14) into Eqs. (5.22)–(5.24) leads to

[E]
{
Φ0 (σ )

} + [F] σ
1+mσ 2

σ 2 − m
{Φ0 (σ )}′ + [G]

σ 4

R2
(
σ 2 − m

)2 {Φ0 (σ )}′′

− [G]
2mσ 3

R2
(
σ 2 − m

)3 {Φ0 (σ )}′ + [H ] {Ψ0 (σ )} = {
Q̄0} . (5.25)

{
Q̄0

} = {
Q̄

} + [E]

{
C̄
B̄

}
ln σ − R [E]

{
φ·
1

β ·
1

}
1
σ

− [F]

{
C
B

}
1+mσ 2

σ 2 − m

− R [F]

{
φ·
1

β ·
1

}
σ
1+mσ 2

σ 2 − m
+ [G]

{
C
B

}
σ 2

R2
(
σ 2 − m

)2

+ [G]

{
C
B

}
2mσ 2

R2
(
σ 2 − m

)3 + R [G]

{
φ·
1

β ·
1

}
2mσ 3

R2
(
σ 2 − m

)3

− [H ]

{
B1

B̄

}
ln σ − R [H ]

{
ψ1
2α2

}
σ.

(5.26)

[E] {Φ0 (σ )} + [F]
σ 2 + m

σ
(
1 − mσ 2

)
{
Φ0 (σ )

}′ + [G]
1

R2
(
1 − mσ 2

)2
{
Φ0 (σ )

}′′

− [G]
2mσ 3

R2
(
1 − mσ 2

)3
{
Φ0 (σ )

}′ + [H ]
{
Ψ0 (σ )

} = {
Q0} . (5.27)

{
Q0

} = {Q} − [E]

{
C
B

}
ln σ − R [E]

{
φ·
1

β ·
1

}
σ − [F]

{
C̄
B̄

}
σ 2 + m

1 − mσ 2

−R [F]

{
φ·
1

β ·
1

}
σ 2 + m

σ
(
1 − mσ 2

) + [G]

{
C̄
B̄

}
σ 2

R2
(
1 − mσ 2

)2

+ [G]

{
C̄
B̄

}
2mσ 4

R2
(
1 − mσ 2

)3 + R [G]

{
φ·
1

β ·
1

}
2mσ 3

R2
(
1 − mσ 2

)3

+ [H ]

{
B̄1
B

}
ln σ − R [H ]

{
ψ̄1
2ᾱ2

}
1

σ
.

(5.28)

For an infinite plate with an elliptical hole, we suppose φ0 (∞) = 0 and β0 (∞) = 0, namely

{Φ0 (∞)} = 0. (5.29)

The function {Φ0(η)}, which is holomorphic outside the unit circle, can be expanded as

{Φ0 (η)} =
∞∑

k=1

{Φk}η−k, (5.30)

where {Φk} is a constant coefficient array and hence

{Φ0 (η)}′ = −
∞∑

k=1

k {Φk}η−k−1, {Φ0 (η)}′′ =
∞∑

k=1

k (k + 1) {Φk}η−k−2. (5.31)
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By rewriting Eq. (5.25) in terms of Cauchy integral, that is, bymultiplying each term in Eq. (5.25)with dσ
2π i(σ−η)

where |η| > 1 and then integrating along γ , we can find

− [F] η
1+mη2

η2 − m
{Φ0 (η)}′ − [G]

η4

R2
(
η2 − m

)2 {Φ0 (η)}′′

+ [G]
2mη3

R2
(
η2 − m

)3 {Φ0 (η)}′ − [H ] {Ψ0 (η)} + [H ] {Ψ0 (∞)} = 1

2π i

∫

γ

{
Q̄0

}
dσ

σ − η
. (5.32)

fromwhich we can obtain the expression of {Ψ0 (η)} once the functionΦ0 (η) and the integral at the right-hand
side are known. Notice that the term {Ψ0 (∞)} may be omitted since it has no effect on the resultant forces in
the plate.

Now let us examine Eq. (5.27), which is conjugate to Eq. (5.25). Rewriting Eq. (5.27) in terms of Cauchy
integral eventually leads to

− [E] {Φ0 (η)} = 1

2π i

∫

γ

{
Q0

}
dσ

σ − η
, |η| > 1. (5.33)

from which we can obtain the expression of {Φ0(η)} once the Cauchy integral of {Q0} is known. In the
following, the two integrals at the right-hand sides of Eqs. (5.32) and (5.33) will be calculated. The calculation
is either easy or complex, depending on the nature of the problem studied.

6 An infinite plate with an elliptical hole subject to loads at infinity

We consider a plate with a free elliptical hole, but subject to loads N1, N2, N12, M1, M2, M12 at infinity. It
can be found that f1 − i f2 = 0, f3 − i f4 = 0, C = 0, B = 0, and B1 = 0. Suppose the angle between the
direction of N1 and the x-axis is � and N2 is perpendicular to N1. The following transform relations between
Cartesian coordinates and curvilinear coordinates shall be adopted

N∞
x + N∞

y = N1 + N2, N∞
y − N∞

x + 2i N∞
xy = (N2 − N1 + 2i N12) e

−2i�,

M∞
x + M∞

y = M1 + M2, M∞
y − M∞

x + 2iM∞
xy = (M2 − M1 + 2iM12) e

−2i�. (6.1)

Notice the following expressions (see Yang et al. [21])
{

φ·
1

β ·
1

}
= 1

2
[D]−1

{
N∞
x + N∞

y
M∞

x + M∞
y

}
,

{
ψ1
2α2

}
= [H ]−1

{
N∞
y − N∞

x + 2i N∞
xy

M∞
y − M∞

x + 2iM∞
xy

}
. (6.2)

Therefore
{

φ·
1

β ·
1

}
= 1

2
[D]−1

{
N1 + N2
M1 + M2

}
,

{
ψ1
2α2

}
= [H ]−1

{
N2 − N1 + 2i N12
M2 − M1 + 2iM12

}
e−2i�, (6.3)

where [D] =
[
a1 4a2
−b1 4b2

]
. Hence, the constants φ·

1, β
·
1, α2 and ψ1 can be completely determined.

The following Cauchy integrals can be calculated from Eqs. (5.26) and (5.28)

1

2π i

∫

γ

{
Q̄0

}

σ − η
dσ = R [E]

1

η

{
φ·
1

β ·
1

}
+ R [F]

{
φ·
1

β ·
1

} (
1 + m2

)
η

η2 − m

− 2m

R
[G]

{
φ·
1

β ·
1

}
η3

(
η2 − m

)3 , |η| > 1.
(6.4)

1

2π i

∫

γ

{
Q0

}

σ − η
dσ = Rm [F]

{
φ·
1

β ·
1

}
1

η
+ R [H ]

{
ψ̄1
2ᾱ2

}
1

η
, |η| > 1. (6.5)
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By substituting Eq. (6.5) into (5.33), we obtain

{Φ0 (η)} = R
{
γ 0} 1

η
, (6.6)

where
{
γ 0} = −m [E]−1 [F]

{
φ·
1

β ·
1

}
− [E]−1 [H ]

{
ψ̄1
2ᾱ2

}
. (6.7)

By substituting Eqs. (6.4) and (6.6) into Eq. (5.32) and omitting the constant terms, we obtain

{Ψ0 (η)} = R [H ]−1 [F]
{
γ 0

} 1+mη2

η
(
η2 − m

) − 2

R
[H ]−1 [G]

{
γ 0

} η3

(
η2 − m

)3−
(

R [H ]−1 [E]
1

η
+ R

(
1 + m2

)
[H ]−1 [F]

η

η2 − m
− 2m

R
[H ]−1 [G]

η3

(
η2 − m

)3

){
φ·
1

β ·
1

}
.

(6.8)

Substituting Eqs. (6.6) and (6.8) into Eqs. (5.19) and (5.20) leads to

{Φ (η)} = R

{
φ·
1

β ·
1

}
η + R

{
γ 0} 1

η
. (6.9)

{Ψ (η)} = R

{
ψ1
2α2

}
η + R [H ]−1 [F]

{
γ 0

} 1+mη2

η
(
η2 − m

) − 2

R
[H ]−1 [G]

{
γ 0

} η3

(
η2 − m

)3−
(

R [H ]−1 [E]
1

η
+ R

(
1 + m2

)
[H ]−1 [F]

η

η2 − m
− 2m

R
[H ]−1 [G]

η3

(
η2 − m

)3

) {
φ·
1

β ·
1

}
.

(6.10)

The resultant forces and moments in the plate can be expressed in the following matrix form
{
Nx + Ny
Mx + My

}
= 2 [D] Re {Φ (ζ)}′ , (6.11)

{
Ny − Nx + 2i Nxy
My − Mx + 2iMxy

}
= [F] ζ̄ {Φ (ζ)}′′ + [G] {Φ (ζ)}′′′ + [H ] {Ψ (ζ )}′ , (6.12)

where {Φ (ζ)}′ = {Φ (η)}′/ω′ (η).
It is very simple to evaluate the resultant forces on the boundary of the hole. The polar coordinates are

adopted here to describe a point in the complex plane η, namely η = ρeiθ . ρ = 1 corresponds to the unit circle
and also the boundary of the elliptical hole. Coordinates ρ and θ can be interpreted as curvilinear coordinates
in the plane η. By making use of the relations Nρ + Nθ = Nx + Ny and Mρ + Mθ = Mx + My , we find
Nρ = 0 and Mρ = 0 on the boundary of the hole and

{
Nθ

Mθ

}
= 2 [D] Re

(

{Φ (η)}′ η2

R
(
η2 − m

)

)

ρ=1

. (6.13)

Substituting Eq. (6.9) into Eq. (6.13) leads to

{
Nθ

Mθ

}
= 2 [D] Re

{({
φ·
1

β ·
1

}
− {

γ 0} e−2iθ
)

e2iθ

e2iθ − m

}
. (6.14a)

By substituting Eqs. (6.7) and (6.3) into (6.14a) and noticing the relationship [F] = 2[D] − [E], we obtain
{
Nθ

Mθ

}
= Re

{{
N1 + N2
M1 + M2

}
+ 2 [D] [E]−1

(
m

{
N1 + N2
M1 + M2

}
+

{
N2 − N1 − 2i N12
M2 − M1 − 2iM12

}
e2i�

)
e−2iθ − m

1 − 2m cos 2θ + m2

}
.

(6.14b)
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That is
{
Nθ

Mθ

}
=

{
N1 + N2
M1 + M2

}
+ 2 [D] [E]−1

({
N1 + N2
M1 + M2

}
(
m cos 2θ − m2

)+
{
N2 − N1
M2 − M1

}
[cos 2 (� − θ) − m cos 2�]+

2

{
N12
M12

}
[sin 2 (� − θ) − m sin 2�]

)
1

1 − 2m cos 2θ + m2 .

(6.14c)

Let [D][E]−1 =
(
dei j

)
, in which

de11 = 1, de12 = 0, de21 = (b1b6 + 4a6b2)/J, de22 = 4(a1b2 + a2b1)/J,

J = a1 (8b2 − b6) + 4a2 (2b1 + a6) . (6.15)

We can find from Eqs. (6.14c) and (6.15) that Nθ on the boundary of the hole is independent of M1, M2, M12
and the material constants. Its expression is as follows

Nθ = 1

1 − 2m cos 2θ + m2

{(
1 − m2) (N1 + N2) + 2 [cos 2(� − θ) − m cos 2�] (N2 − N1)

+ 4 [sin 2(� − θ) − m sin 2�] N12} . (6.16)

For a single load, we may define the resultant force concentration factors (RFCFs) Ki j as follows

Ki1 = Nθ max (a, θ)/N , Ki2 = Mθ max (a, θ)/M, (i = 1, 2, 3) . (6.17)

where i = 1 corresponds to uniaxial tension (N = N1, M1 = 0) or cylindrical bending (M = M1, N1 = 0);
i = 2 to equi-biaxial tension (N = N1 = N2, M1 = M2 = 0) or pure bending (M = M1 = M2, N1 = N2
= 0); and i = 3 to pure shear (N = N12, M12 = 0) or pure torsion (M = M12, N12 = 0). In the following,
six special cases will be discussed.

6.1 Uniaxial tension

In this case, we have N1 = N , N2 = N12 = 0. It can be obtained from Eq. (6.16) that

Nθ = 1 − m2 − 2 cos 2(� − θ) + 2m cos 2�

1 − 2m cos 2θ + m2 N , (6.18)

which is the same as the result that is obtained by integrating along the thickness direction the stress component
σθ in an isotropic and homogeneous plate as in Muskhelishvili [1]. When N1 = N is perpendicular to the
major axis of the elliptical hole (namely � = π/2), it can be found from Eq. (6.18) that the maximum Nθ

appears at θ = 0 and θ = π (namely both ends of the major axis) with its value being

(Nθ )max = 3 + m

1 − m
N =

(
1 + 2

a

b

)
N . (6.19)

Therefore, the resultant force concentration factor is K11 = 1+ 2a/b. It means that the more flat the elliptical
hole, the greater the K11. K11 will tend to infinity as b → 0.

6.2 Equi-biaxial tension

In this case, we have N1 = N2 = N , and N12 = 0. It can be obtained from Eq. (6.16) that

Nθ = 2
(
1 − m2

)
N

1 − 2m cos 2θ + m2 , (6.20)

which shows that the maximum Nθ appears at θ = 0 and θ = π with the value being

(Nθ )max = 2
1 + m

1 − m
N = 2

a

b
N . (6.21)

Therefore, the resultant force concentration factor is K21 = 2a/b.
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6.3 Pure shear

In this case, we have N12 = N , and N1 = N2 = 0. It can be obtained from Eq. (6.16) that

Nθ = 4 [sin 2(� − θ) − m sin 2�]

1 − 2m cos 2θ + m2 N , (6.22)

which shows that Nθ is dependent of θ and �. When � = 0, the extremum of Nθ occurs at θ = ±θ0 and
θ = π ± θ0, where cos 2θ0 = 2m/(1 + m2) and sin 2θ0 = (1 − m2)/(1 + m2). The extrema are given by

(Nθ )extremum = ∓ 4N

1 − m2 . (6.23)

Therefore, the resultant force concentration factor is K31 = 4/(1 − m2) = 2 + a/b + b/a.

6.4 Cylindrical bending (� = π/2)

In this case, we have M1 = M , M2 = M12 = 0, and N1 = N2 = N12 = 0. It can be obtained from Eq. (6.14c)
that

Mθ = M + 2 (1 + m) Mde22 (cos 2θ − m)

1 + m2 − 2m cos 2θ
, (6.24)

which shows that the maximum Mθ occurs at θ = 0 and θ = π and the resultant force concentration factor is
K12 = 1 + 2de22(1 + m)/(1 − m) = 1 + 2de22a/b.

6.5 Pure bending

In this case, we have M1 = M2 = M , M12 = 0, and N1 = N2 = N12 = 0. It can be obtained from Eq. (6.14c)
that

Mθ = 2M + 4mMde22 (cos 2θ − m)

1 + m2 − 2m cos 2θ
, (6.25)

which indicates that Mθ reaches its maximum at θ = 0 and θ = π with the resultant force concentration factor
K22 = 2 + 4de22m/(1 − m) = 2 − 2de22(1 − a/b).

6.6 Pure torsion (� = 0)

In this case, we have M1 = M2 = 0, M12 = M , and N1 = N2 = N12 = 0. It can be obtained from Eq. (6.14c)
that

Mθ = − 4Mde22 sin 2θ

1 + m2 − 2m cos 2θ
. (6.26)

This expression indicates that Mθ obtains its extremum at θ = 1

2
arccos

[
2m/(1 + m2)

]
with the resultant

force concentration factor K32 = de22(2 + a/b + b/a).
For a circular hole, we have m = 0 and � = 0. In this case, we find that Eq. (6.14b) is exactly the same

as Eq. (7.5) in Yang et al. [21].

7 An infinite plate with an elliptical hole subject to loads on the boundary of the hole

7.1 Uniform loads applied on the boundary of the hole

We consider an infinite plate subject to loads Nb
n , N

b
nt , M

b
n and Mb

nt applied uniformly on the boundary of the
elliptical hole. No loads are applied at infinity. In this case, we know that the constants φ·

1, β
·
1, α2 and ψ1 are

all zero. The loads applied on the boundary of the elliptical hole should constitute a balanced system of forces,
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requiring that the principal force vector and principal moment be zero. Thus, we have C = 0, B = 0, and
B1 = 0. By making use of Eq. (4.2)2 and Qb

n(s) = 0, we obtain from Eqs. (4.15)1 and (4.16)1 that

f1 − i f2 = 2
∫ [

Nb
n (s) − i Nb

nt (s)
]
dζ̄ = 2R

(
Nb
n − i Nb

nt

) (
1

σ
+ mσ

)
. (7.1)

f3 − i f4 = 2
∫ [

Mb
n (s) − i P (s)

]
dζ̄ = 2R

(
Mb

n − iMb
nt

) (
1

σ
+ mσ

)
. (7.2)

It can be found from Eqs. (5.26) and (5.28) that

{
Q̄0} = {

Q̄
} =

{
f1 − i f2
f3 − i f4

}
= 2R

{
Nb
n − i Nb

nt
Mb

n − iMb
nt

} (
1

σ
+ mσ

)
. (7.3)

{
Q0} =

{
f1 + i f2
f3 + i f4

}
= 2R

{
Nb
n + i Nb

nt
Mb

n + iMb
nt

}(m
σ

+ σ
)

. (7.4)

Hence

1

2π i

∫

γ

{
Q̄0

}
dσ

σ − η
= −2

R

η

{
Nb
n − i Nb

nt
Mb

n − iMb
nt

}
,

1

2π i

∫

γ

{
Q0

}
dσ

σ − η
= −2

mR

η

{
Nb
n + i Nb

nt
Mb

n + iMb
nt

}
. (7.5)

Substituting Eq. (7.5)2 into Eq. (5.33) gives

{Φ0 (η)} = R
{
γ 1} 1

η
, (7.6)

in which
{
γ 1} = 2m [E]−1

{
Nb
n + i Nb

nt , Mb
n + iMb

nt

}T
. (7.7)

Substituting Eqs. (7.5)1 and (7.6) into Eq. (5.32) leads to

{Ψ0 (η)} = 2
R

η
[H ]−1

{
Nb
n − i Nb

nt , Mb
n − iMb

nt

}T + R [H ]−1 [F]
{
γ 1} 1+mη2

η
(
η2 − m

)

−2m

R
[H ]−1 [G]

{
γ 1} η

(
η2 − m

)3 − 2

R
[H ]−1 [G]

{
γ 1} η

(
η2 − m

)2 . (7.8)

Therefore, we can obtain from Eqs. (5.19) and (5.20) that

{Φ (η)} = {Φ0 (η)} , {Ψ (η)} = {Ψ0 (η)} , (7.9)

where the expressions of Φ0(η) and Ψ0(η) are shown in Eqs. (7.6) and (7.8).

7.2 Uniform loads applied on part of boundary of the hole

We now consider the case that uniform loads Nb
n , N

b
nt , M

b
n and Mb

nt are applied only on the arc t1t2 of the
boundary of the elliptical hole where t1 and t2 correspond to the points σ1 and σ2 on the boundary of the unit
circle hole, as shown in Fig. 3. Meanwhile, no loads are applied at infinity, which ensures that the constants
φ·
1, β ·

1, α2 and ψ1 are all zero. By starting from the point t1 and calculating the line integral in a clockwise
manner, just as Eqs. (7.1) and (7.2), we find that

f1 − i f2 = 0, t on the arc t1Mt2,

f1 − i f2 = 2
(
Nb
n − i Nb

nt

) (
t̄ − t̄2

)
, t on the arc t2t1, (7.10)

f3 − i f4 = 0, t on the arc t1Mt2,

f3 − i f4 = 2
(
Mb

n − iMb
nt

) (
t̄ − t̄2

)
, t on the arc t2t1. (7.11)
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•

•
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2t
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Fig. 3 Schematic diagram of an elliptic hole

By virtue of Eqs. (3.10)1 and (3.12)1 in Yang et al. [21], we obtain the following expressions of the principal
vectors and moments

X − iY =
∫ t1

t2

[
Nb
xn (s) − i Nb

yn (s)
]
ds = i

∫ t1

t2

(
Nb
n − i Nb

nt

)
dζ̄ = i

(
Nb
n − i Nb

nt

) (
t̄1 − t̄2

)
, (7.12)

MX − iMY = −i
∫ t1

t2

[
Mb

xn (s) − iMb
yn (s)

]
ds =

∫ t1

t2

(
Mb

n − iMb
nt

)
dζ̄ =

(
Mb

n − iMb
nt

) (
t̄1 − t̄2

)
,

(7.13)

where

t1 = R

(
σ1 + m

σ1

)
, t2 = R

(
σ2 + m

σ2

)
. (7.14)

As a result, Eqs. (5.26) and (5.28) can be simplified to

{
Q̄0

} =
{
f1 − i f2
f3 − i f4

}
+ [E]

{
C̄
B̄

}
ln σ − [F]

{
C
B

}
1+mσ 2

σ 2 − m
+

[G]

{
C
B

}
σ 2

R2
(
σ 2 − m

)2 + [G]

{
C
B

}
2mσ 2

R2
(
σ 2 − m

)3 − [H ]

{
B1

B̄

}
ln σ,

(7.15)

{
Q0

} =
{
f1 + i f2
f3 + i f4

}
− [E]

{
C
B

}
ln σ − [F]

{
C̄
B̄

}
σ 2 + m

1 − mσ 2+

[G]

{
C̄
B̄

}
σ 2

R2
(
1 − mσ 2

)2 + [G]

{
C̄
B̄

}
2mσ 4

R2
(
1 − mσ 2

)3 + [H ]

{
B̄1
B

}
ln σ,

(7.16)

where the constants C , B, B1 can be determined from Eqs. (4.23), (7.12) and (7.13), respectively; f1 − i f2
and f3 − i f4 can be determined from Eqs. (7.10) and (7.11), respectively.

By rewriting Eqs. (7.15) and (7.16) in terms of Cauchy integrals and then integrating along γ , omitting the
constant terms that are irrelevant to the resultants forces, we can obtain

1

2π i

∫

γ

{
Q̄0

}

σ − η
dσ = R

π i

{
Nb
n − i Nb

nt
Mb

n − iMb
nt

} [
−1

η
ln

σ2

σ1
+

(
1

η
+ mη

)
ln

σ2 − η

σ1 − η

]

− t̄2
π i

{
Nb
n − i Nb

nt
Mb

n − iMb
nt

}
ln

σ2 − η

σ1 − η
+ [F]

{
C
B

}
1+mη2

η2 − m

+
(
[E]

{
C̄
B̄

}
− [H ]

{
B1

B̄

})
[ln (σ1 − η) − ln η]

− [G]

{
C
B

}
η2

R2
(
η2 − m

)2 − [G]

{
C
B

}
2mη2

R2
(
η2 − m

)3 .

(7.17)
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1

2π i

∫

γ

{
Q0

}

σ − η
dσ = R

π i

{
Nb
n + i Nb

nt
Mb

n + iMb
nt

} [
−m

η
ln

σ2

σ1
+

(
η + m

η

)
ln

σ2 − η

σ1 − η

]

− t2
π i

{
Nb
n + i Nb

nt
Mb

n + iMb
nt

}
ln

σ2 − η

σ1 − η

+
(
[H ]

{
B̄1
B

}
− [E]

{
C
B

})
[ln (σ1 − η) − ln η] .

(7.18)

Substituting Eq. (7.18) into Eq. (5.33) yields

{φ0 (η)} = − R

π i
[E]−1

{
Nb
n + i Nb

nt
Mb

n + iMb
nt

} [
−m

η
ln

σ2

σ1
+

(
η + m

η

)
ln

σ2 − η

σ1 − η

]

+ t2
π i

[E]−1
{
Nb
n + i Nb

nt
Mb

n + iMb
nt

}
ln

σ2 − η

σ1 − η
−

(
[E]−1 [H ]

{
B̄1
B

}
−

{
C
B

})
[ln (σ1 − η) − ln η] .

(7.19)

Substituting Eq. (7.17) into Eq. (5.32) gives

{Ψ0 (η)} = − R

π i
[H ]−1

{
Nb
n − i Nb

nt
Mb

n − iMb
nt

} [
−1

η
ln

σ2

σ1
+

(
1

η
+ mη

)
ln

σ2 − η

σ1 − η

]

+ t̄2
π i

[H ]−1
{
Nb
n − i Nb

nt
Mb

n − iMb
nt

}
ln

σ2 − η

σ1 − η
− [H ]−1 [F]

{
C
B

}
1+mη2

η2 − m

− [H ]−1
(
[E]

{
C̄
B̄

}
− [H ]

{
B1

B̄

})
[ln (σ1 − η) − ln η]

+ [H ]−1 [G]

{
C
B

}
η2

R2
(
η2 − m

)2 + [H ]−1 [G]

{
C
B

}
2mη2

R2
(
η2 − m

)3

− [H ]−1 [G]
η4

R2
(
η2 − m

)2 {φ0 (η)}′′

+ [H ]−1

(

[G]
2mη3

R2
(
η2 − m

)3 − [F] η
1+mη2

η2 − m

)

{Φ0 (η)}′ .

(7.20)

It can be obtained from Eqs. (5.19) and (5.20) that

{φ (η)} =
{
C
B

}
ln η + {φ0 (η)} , {Ψ (η)} =

{
B1

B̄

}
ln η + {Ψ0 (η)} , (7.21)

where the expressions of φ0(η) and Ψ0(η) are shown in Eqs. (7.19) and (7.20).
If the uniform loads are applied over the total boundary of the elliptical hole, we have

t1 = t2, σ1 = σ2, ln
σ2

σ1
= 2π i. (7.22)

Consequently, Eq. (7.21) becomes identical with Eq. (7.9).
With the above solution in hand, the problem of any concentrated force applied on the boundary of the

elliptical hole can be solved by illimitably reducing the size of the arc t1t2 while increasing the load magnitude.
Similarly, it is very convenient to obtain the analytical solutionwhen an arbitrary number of concentrated forces
of any magnitude applied on the boundary of the elliptical hole.

8 Numerical results and discussions

Consider an infinite FGM plate containing an elliptical hole subject to a uniform pressure Nb
n applied on the

edge of the elliptical hole. Let h = 0.2m. The material parameters of the infinite plate are assumed to be of
the form (Yang et al. [12])

ci j = c0i je

(z + h/2)

h
λ
, (i, j = 1, 2, . . . , 6), (8.1)
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where c0i j arematerial parameters at z = −h/2which are given in Table 1. The parameter λ is the gradient index
reflecting the degree of material inhomogeneity. Obviously, λ = 0 corresponds to homogeneous materials.

The hole in the plate has an important effect on the strength of the plate. The following results will focus
on the impact of the gradient index λ and the shape of the hole a/b on the stress field in the plate. Unless stated
otherwise, we take θ = 0, a = 1m, and z = h/2.

Figure 4 shows the distribution of the normalized hoop stress σθ/σ in the ρ-direction for a/b = 2 and
different values of λ. It is noted that σ = Nb

n /h, and ρ = 1 corresponds to the boundary of the elliptical hole.
We can find that the maximum absolute value of the normalized hoop stress at the boundary of the elliptical
hole occurs when λ = 2 and the minimum absolute value is obtained when λ = −2. There is a clear inflection
point at ρ = 1.5 for all three curves in the figure. As expected, the normalized hoop stress tends to zero at
infinity.

Figure 5 depicts the distribution of the normalized hoop stress σθ/σ at ρ = 1.5 in the θ -direction for
a/b = 2 and different values of λ. It can be found that the distribution of the normalized hoop stress for λ = 2
is not the same as that for λ = 0 and λ = −2. The line of θ = π/2 and θ = 3π/2 is the line of symmetry for
the distribution of the normalized hoop stress.

In Fig. 6, the distribution of the normalized hoop stress σθ/σ at ρ = 2, θ = 0 and π in the z-direction for
a/b = 2 and different values of λ is presented. The distributions of the normalized hoop stress for λ = −2
and λ = 2 show an interesting mirror-reversed relation, which is not obvious from the material model (8.1).
However, this property holds strictly and a proof for a particular case is given for illustration in “11”. It can be
observed that the normalized hoop stress basically keeps constant along the thickness of the plate for λ = 0.
Themaximum value occurs at z = −h/2 for λ = −2, where the stiffness is the largest. Similarly, themaximum

Table 1 Elastic constants of Al2O3 (unit: GPa)

c011 c012 c013 c033 c055

460.2 174.7 127.4 509.5 126.9

ρ

σ θ
/σ

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1 2 3 4 5 6

λ=-2 λ=0 λ=2

Fig. 4 Distribution of normalized hoop stress σθ/σ in the ρ-direction for a/b = 2 and different values of λ

θ

σ θ
/σ
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-0.75

-0.5

-0.25

0

0.25

0 π/4 π/2 3π/4 π 5π/4 3π/2 7π/4 2π

λ=-2
λ=0
λ=2

Fig. 5 Distribution of normalized hoop stress σθ/σ at ρ = 1.5 in the θ -direction for a/b = 2 and different values of λ
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value occurs at z = h/2 for λ = 2. It is also noted that the normalized hoop stress values for θ = 0 are the
same as those for θ = π due to the symmetry of the problem.

In Fig. 7, the curves of the normalized hoop stress σθ/σ at ρ = 1.5 versus λ for different values of a/b
are depicted. It is shown that the normalized hoop stress first slowly decreases and then rapidly increases with
λ, and the turning point is in the vicinity of λ = 1. The larger the value of a/b, the more obvious the turning.
The absolute value of the normalized hoop stress increases with a/b for certain λ.

Figure 8 shows the distribution of the normalized hoop stress σθ/σ in the z-direction for λ = 0, a/b = 2
and different values of ρ. In order to discuss the approximation caused by using Saint-Venant principle on the
hole edge, a comparison is made between the 2D elasticity solution [1] and our 3D elasticity solution. It is

z h

σ θ
/σ

-0.5

-0.375

-0.25

-0.125

0

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

θ=0, λ=-2
θ=0, λ=0
θ=0, λ=2
θ=π, λ=-2
θ=π, λ=0
θ=π, λ=2

Fig. 6 Distribution of normalized hoop stress σθ/σ at ρ = 2, θ = 0 and π in the z-direction for a/b = 2 and different values of
λ

λ

σ θ
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1
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2.5

3

3.5
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Fig. 7 Distribution of normalized hoop stress σθ/σ at ρ = 1.5 versus λ for different values of a/b
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-0.5 -0.3 -0.1 0.1 0.3 0.5

3D(ρ=1) 3D(ρ=1.2)

3D(ρ=1.4) 2D(ρ=1)

2D(ρ=1.2) 2D(ρ=1.4)

Fig. 8 Distribution of normalized hoop stress σθ/σ in the z-direction for λ = 0, a/b = 2 and different values of ρ
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noted that the 2D elasticity solution is accurate enough because Saint-Venant principle is not employed and
the uniform distribution of the 2D elasticity solution in the thickness of the plate can be established for the
problem of an elliptical hole subject to a uniform pressure applied on the boundary. It is seen that there is a
distinct difference between the 2D and 3D elasticity solutions on the edge of the hole. Outside the domain
from the edge of the hole with the size of about the thickness of the plate, the present 3D elasticity solution
agrees well with the 2D elasticity solution.

9 Conclusions

England–Spencer plate theory for a transversely isotropic functionally graded plate expresses the general
solution of the governing equations in terms of four analytical functions. In an approximate sense, the boundary
conditions can be expressed by four real functions, which correspond to the general solution. In this paper, we
show that for the first kind basic problem, the boundary conditions can be rewritten as two complex function
equations, thus eventually transforming the original problem into a complex function theory problem. This
enables us to solve the equilibrium problems of FGM plates subject to different loads applied on the boundary
of the plate by using the conformal mapping technology and the Cauchy integral method.

3D elasticity solutions are obtained for a transversely isotropic FGM plate containing an elliptical hole
subject to loads at infinity or on the boundary of the hole. As for the case of loads applied at infinity, the
analytical expressions and concentration factors of the resultant forces Nθ and Mθ for six typical cases are
presented. It is found that the expression of the resultant force Nθ on the boundary of the elliptical hole in an
FGM plate is exactly the same as that in a homogeneous plate and is also independent of the material constants
and moments applied at infinity. When the elliptical hole degenerates to the circular one, the present elasticity
solutions are consistent with those obtained in our previous work [21]. Numerical results are presented to
consider an infinite FGM plate containing an elliptical hole subject to internal pressure applied uniformly on
the hole boundary. It is shown that the gradient index and the shape of the hole have a serious impact on the
stress field near the hole and little effect far away from the hole, where the stresses vanish at infinity.

It is strengthened that the obtained analytical solutions exactly satisfy the equilibrium equations of the
plate and the traction boundary conditions on the upper and lower surfaces of the plate. Approximations are
only made to satisfy the boundary conditions on the cylindrical edge of the plate. Outside the domain from the
edge of the hole with the size of about the thickness of the plate, the present elasticity solutions are accurate
enough to serve as a benchmark to check the validity and accuracy of any simplified plate theories or numerical
methods when employed in the analysis of FGM plates.
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11 Appendix

If there is no transverse load applied on the top and bottom of the plate, the expressions of the in-plane stresses
in the plate are [19]:

σx + σy =
(

c11 + c12 − 2
c213
c33

){
2

κ1 − 1

[
φ′ (ζ ) + φ′ (ζ )

]

− 4

(
z + κ2

κ1

)[
β ′ (ζ ) + β ′ (ζ )

]}
.

(11.1)

σy − σx + 2iσxy = 4c66
[
ζ̄ φ′′ (ζ ) + ψ ′ (ζ )

] − 16c66
κ1 − 1

R1φ
′′′ (ζ )

+ 8c66

(
z + κ2

κ1

)
ζ̄ β ′′ (ζ ) + 8c66zα′′ (ζ )

− 32c66

(
R2 − κ2

κ1
R1

)
β ′′′ (ζ ) .

(11.2)
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Without loss of generality, we consider for illustration an infinite plate with a circular hole. In this case,m = 0,
and we have from Eq. (7.7) that {

γ 1} = {0} . (11.3)

Substituting Eq. (11.3) into Eqs. (7.6) and (7.8) and noticing Eqs. (7.9), (5.19) and (5.20), we obtain

φ (η) = 0, β (η) = 0,

ψ (η) = 2R

η

b7Nb
n

a1b7 − 2a26
= B1 (η)

b7Nb
n

a1b7 − 2a26
,

α′ (η) = −2R

η

a6Nb
n

a1b7 − 2a26
= −B1 (η)

a6Nb
n

a1b7 − 2a26
, (11.4)

from which we can further derive

φ (ζ ) = 0, β (ζ ) = 0,

ψ ′ (ζ ) = B2 (ζ )
b7Nb

n

a1b7 − 2a26
, α′′ (ζ ) = −B2 (ζ )

a6Nb
n

a1b7 − 2a26
. (11.5)

Substituting Eqs. (8.1) and (11.5) into Eqs. (11.1) and (11.2) leads to

σx + σy = 0. (11.6)

σy − σx + 2iσxy = 4Nb
n B2 (ζ ) c066e

λ

( z

h
+0.5

)

b7 − 2a6z

a1b7 − 2a26
. (11.7)

Substituting Eq. (8.1) into the expressions of constants a1, a6 and b7 defined in [19] gives rise to

a1 = 4
∫ h/2

−h/2
c66 (z) dz = 4c066e

0.5λ h

λ

(
e0.5λ − e−0.5λ

)
≡ 4c066e

0.5λA1(λ),

a6 = 4
∫ h/2
−h/2 c66 (z) zdz = 4c066e

0.5λ
[
h2

2λ

(
e0.5λ + e−0.5λ

) − h2

λ2

(
e0.5λ − e−0.5λ

)
]

≡ 4c066e
0.5λA6(λ)

,

b7 = 8
∫ h/2
−h/2 c66 (z) z2dz = 8c066e

0.5λ
[(

h3

4λ
+ 2h3

λ3

) (
e0.5λ − e−0.5λ

) − h3

λ2

(
e0.5λ + e−0.5λ

)]

≡ 8c066e
0.5λB7(λ)

.(11.8)

As we can see, both A1(λ) and B7(λ) are even functions of λ, and A6(λ) is an odd function of λ.
Making use of Eq. (11.8), we can obtain from Eq. (11.7) that

σy − σx + 2iσxy = e
λ
z

h B2 (ζ ) Nb
n

B7(λ) − 2A6(λ)z

A1(λ)B7(λ) − 2A2
6(λ)

. (11.9)

Then, it is obvious that all the three in-plane stresses σx , σy and σxy (or σr , σθ and σrθ ) have the mirror-reversed
relationship between the pairs (λ, z) and (−λ,−z) when a uniform pressure Nb

n is applied on the edge of a
circular hole. For the elliptical hole, the proof is similar, but more tedious, and it is left for the interested reader.
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