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Abstract Ceramic foams made by replica techniques contain sharp edged cavities, which are potential crack
initiators. This paper presents an approach to analyse such structures with respect to their fracture mechanical
properties. A fundamental domain of an open cell Kelvin foam is used to model the geometry including the
cavities and to generate a finite element model of the structure. Sub-models containing crack tip elements are
used to resolve the local stress fields at the vicinity of the sharp-edged cavities. The interaction integral is used
to compute the local stress intensity factors under multi-axial loading. Using a homogenization approach, a
criterion for brittle failure based on the effective stress state is presented. The failure criteria can be extended
to account for the anisotropic behaviour of the foam structure.
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1 Introduction

Open cell ceramic foams are widely used in industrial processes, e.g. as filters for metal casting, as catalysts
or as burner plates in furnaces. One of the production routes of such foams is the Schwartzwalder process [1],
where an open cell polyurethane (PU) foam, see Fig. 1 middle, is coated with a ceramic slurry, dried and
finally fired. During the firing process, the PU pyrolyses and sharp-edged cavities remain, see Fig. 1 left.
Cracks may initiate at the edges of these cavities under external loading. The properties of ceramic foams have
been analysed in many studies. Colombo and Hellmann [2] describe fabrication processes and their influence
on the mechanical properties of reticulated ceramic foams. Twigg and Richardson [3] studied heat transfer and
transport properties of ceramic foam catalysts. Gibson and Ashby [4] derived fundamental theoretical basics
to describe the mechanical behaviour of foams.

Jang, Kraynik and Kyriakides studies the microstructure of open cell foams and its effects on the elastic
properties [5]. Detailed numerical models of open cell foams where developed by Kraynik et al. [6] using
the surface evolver of Ken Brakke [7] to analyse the mechanical behaviour. Storm et al. [8] developed a
novel modelling strategy for open cell foams based on implicit functions and studied the influence of basic
geometrical properties on the mechanical and thermal properties.

The open cell Kelvin foam [9] is often used as a simplified model [10–13]. Analytical description of the
mechanical behaviour is given by Zhu et al. [14] and also by Warren and Kraynik [15].

Failure of open cell ceramic foams are described by various failure criteria [16–18].
To the authors knowledge the sharp-edged cavities of reticulated open cell ceramic foams which may act

as crack initiators have not been analysed so far. We describe in detail the development of a finite element
model, which takes into account the foam productions process.
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This paper presents a procedure how to evaluate the integrity of those foams in terms of fracture toughness
as well as classical strength hypothesis. This evaluation is applied for selected examples and parameters.

2 Models and methods

2.1 Finite element model generation

To generate a finite element foam model, we perform the following procedure. First, a periodic close hard
sphere packing is created using a molecular dynamics code of Skoge et al. [19]. Using the centre points of the
spheres, the corresponding Voronoi tessellation is computed with help of Rycroft’s Voronoi cell library [20].
The Voronoi tessellation is then converted into a Surface Evolver model, because the Voronoi tessellation is
not the structure with a locally stable energy minimum. Such a structure is found using the Surface Evolver [7],
which minimizes the surface area and therewith the surface energy of the whole foam. During the minimization
several topological changes have to be made, if single facets or edges shrink to a single point. Kraynik et al. [6]
implemented algorithms, which take care of such situations. The result may then be a foam as shown in the
left picture in Fig. 2. The surface evolver also allows to generate the corresponding wet foam, where each
triple edge of the foam is converted into a plateau border. At this step it is possible to chose the volume of the
liquid phase of the wet foam. The relaxed state of the wet foam without its cell walls is taken as the geometry
of the PU foam (see Fig. 1 right). This geometry represents the inner surface of the ceramic foam, where all
triple edges are the sharp edges of the cavities. To model the coating the same evolver mesh is used, but all
triple edges of the wet foam are taken as inner constraints for the coating surface. Now the coating volume can
be defined and outer surface is computed. This surface is still spanned tightly over the triple edge constraints,
whereas a second coating step is applied, which is defined by an equidistant surface. This procedure follows

Fig. 1 Broken ceramic foam, polyurethane foam, surface evolver [7] model of a wet Kelvin foam

Fig. 2 Evolver models of periodic monodispersed foams. (Left) Relaxed random foam based on a sphere packing. (Centre) BCC
lattice of a relaxed Kelvin foam. (Right) The corresponding strut network of a Kelvin soap foam. The foam struts are defined as
the Plateau borders, where three cell walls met at dihedral angles of arccos(−1/2) = 120◦. Foam nodes are located where four
Plateau borders (struts) met, which are slightly curved and met at tetrahedral angles of arccos(−1/3) ≈ 109.47◦
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Fig. 3 (Left) Wet foam model of a single Kelvin cell node with a fundamental domain (green) and a domain (red) get by a rotation
of π around the (110)-axis. The cell walls still exist but are not displayed. (Middle) Same structure with a liquid coating with the
same two domains (orange and green). (Right) Volume model as a combination of the inner and outer surfaces. Different colours
show the different domains. (Color figure online)

the steps of the real coating process, where the PU foam is first drained with a slurry, then dried and followed
by a second spray coating process. It would be also possible to repeat the spray coating to generate a second
coating, which could even represent a separate material.

All the steps can be done for a stochastic foam (see Fig. 2 left) as well, but for the sake of clarity we
concentrate on a crystalline Kelvin foam (see Fig. 2 centre), where a body centre cubic (BCC) arrangement of
cells is representative for the whole foam. For a stochastic foam containing thousands of cells, the first three
steps of this procedure can be a time consuming and laborious process.

Figure 2 (right) shows a representative volume element (RVE) of a Kelvin foam. It is already in its relaxed
state. For the picture, all foam faces have been removed only the struts remain. This structure still has threefold
rotation symmetries around the cube diagonals as well as fourfold rotation symmetries around the normals
through the centres of all quadrangles. Therefore, we simplify the structure further and end up with a single
node, where four struts met. This geometry is enclosed by symmetry planes, which are normal to the four
struts axes forming a tetrahedron. There are still two more mirror symmetry planes with normals in 1- and
2-direction, which are not used here. The fundamental domain of the structure is highlighted in Fig. 3 (left and
middle) by an orange colour. The green domain is created by a rotation by π around the (111)-axes. All other
domains may be created by mirror operations.

Figure 3 (left) shows the relaxed wet foam evolver model of a single Kelvin cell node. The liquid volume
fraction for a whole RVE (as in Fig. 2 right) is 0.7 %. This structure now serves as an assumed rigid foam,
which gets a simulated coating in two steps. In the first coating step, a liquid layer is computed using the surface
evolver again forming a minimal surface. The six sharp edges of the wet foam are used as inner wire constraints
where the slurry surface is spanned over. The volume of the liquid can be defined. The second coating is a
layer of constant thickness over the total outer surface. This state is shown in the middle of Fig. 3. The inner
and outer surfaces represent the lower and upper boundary surface of a single volume, which is finally used to
create a finite element (FE) mesh, see Fig. 3 (right). The surfaces are approximated by bivariate cubic splines.
The node is generated by mirror and rotation operations of one fundamental domain, see the different colours
in Fig. 3 (right). Six complete nodes and twelve half nodes finally form the Kelvin cell foam model containing
the sharp-edged cavities. It is still an idealized structure because the liquid coating process is computed without
considering external forces like gravity and any motion of the structure within an environment. But the form
of the node which is significantly thicker than the struts is very realistic.

Figure 4 (left) shows the final FE model of Kelvin cell having a relative density of 3.8 %, which can be
adjusted by choosing different volumes for the initial wet foam and the first coating and another thickness of
the second coating. The whole Kelvin cell is generated from the fundamental domain with reflections, rotations
and translations, see the different colours in Fig. 4 (left).

For evaluating stress intensity factors (SIF) along the cavity corners submodels are created, which are
circular crack tip meshes (see Fig. 4 right) extruded along the edges of the cavities. There exist three submodels
for the four-sided strut loops around the normals (100), (010) and (001). For the six-sided strut loops, another
four submodels are used having the normals (111), (11-1), (1-11) and (-111) as depicted in Fig. 5. For each
submodel a local parametric coordinate (lpc) is introduced which goes from [0…4] for a four-sided strut loop
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Fig. 4 (Left) Finite element model of the Kelvin foam including the sharp edged strut cavities with different domains.
(Right) Detail of the mesh (black grid) together with the submodels (white grid) for stress intensity factor calculations

Fig. 5 Definitions for quadrilateral and hexagonal crack paths. (Bottom) A submodel for a hexagonal crack, the view is in plane
of the hexagon so that the out of plane curvature can be seen clearly

and from [0...6] for a six-sided strut loop. An in plane view of the submodel around the normal (111) is also
shown in Fig. 5 (bottom), where the out of plane curvature for the hexagonal submodel becomes visible.

For the simulations, the commercial FEM code Abaqus [21] is used. The material properties are for a
Al2O3 ceramic with 95 % density [22,23]. The elastic modulus is E = 320 GPa, Poisson’s ratio ν = 0.25,
tensile fracture strength σc = 300 MPa and the mode I fracture toughness KIc = 3.3 MPa

√
m. The size of the

RVE is 2 × 2 × 2 mm3.

2.2 Homogenization and external loading

Considering a linear elastic material and small deformation theory, the homogenization is analogous to Storm
et al. [8]. Σi j and Ei j are the homogenized (effective) stresses and strains, which are the volume averages of
the local stresses and strains σi j and εi j , with i, j = 1, 2, 3.
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Σi j = 1

V

∫
σi jdV (1)

Ei j = 1

V

∫
εi jdV (2)

At the boundary of the RVE, periodic boundary conditions are applied. The microdisplacement field ui is
the superposition of a homogeneous macrodisplacement field Ui = Ei j x j and a local periodic displacement
fluctuation field ũi :

ui = Ei j x j + ũi (3)

Periodicity requires similar displacement fluctuations and antiperiodic tractions at corresponding points on
opposite boundaries j− and j+.

ũ j−
i = ũ j+

i (4)

t j−i = −t j+i . (5)

The lower index describes the direction of the displacement or traction force and the upper index j− or j+ the
negative or positive surface of the RVE having a normal in j-direction. So the periodic displacement boundary
conditions are applied using equation constraints

u j+
i − u j−

i = �u j
i (6)

and symmetry conditions
�u j

i = �uij , (7)

which is analogous to Storm et al. [8] as well. The boundary conditions are either the external displacements
�u j

i or the tractions t ji , which are applied at reference nodes (one for each spatial direction j) and related to
the effective stresses or strains by

Σi j = t ji
l2RVE

(8)

Ei j = �u j
i

lRVE
(9)

assuming a cubic RVE with length lRVE.
Failure and yield criteria are often formulated in a cylindrical coordinate system with coordinates p, q and

θ , where p corresponds to the hydrostatic pressure

p = −1

3
Σi i (10)

and q to the equivalent von Mises stress

q =
√

3

2
Si j Si j (11)

expressed by the deviatoric part of the stress tensor

Si j = Σi j − 1

3
Σkkδi j . (12)

The angle θ is defined counterclockwise around the hydrostatic axis (−p) starting from the projection of the
Σ1-axis onto the π-plane, which denotes a plane in principle stress space, where the hydrostatic pressure
p = 0.

The effective principal stresses are related to the cylindrical coordinates by
⎡
⎣Σ1

Σ2
Σ3

⎤
⎦ =

⎡
⎣p
p
p

⎤
⎦+ 2

3
q

⎡
⎣ cos θ

cos
(
θ − 2π

3

)
cos
(
θ + 2π

3

)
⎤
⎦ . (13)
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Fig. 6 Rotations for the stress state and general stress state

The response of the Kelvin cell on an external load also depends on the orientation of the stress state. The Kelvin
cell is an orthotropic structure and obeys therefore all symmetries of the octahedral symmetry group (Oh).
Hence, applying three subsequent rotations as shown in Fig. 6 (left) with φ around 3-axis, ψ around 2′-axis
and ω around 1′′ with

φ ∈
[
0,

π

4

]
(14)

ψ ∈
[

0, tan−1

(
tan φ√

1 + tan2 φ

)]
(15)

ω ∈ [0, π) (16)

all representative stress states can be obtained. Consequently, the rotation matrix Rik(φ, ψ, ω) is

Rik(φ, ψ, ω) =
⎡
⎣ cos φ cos ψ sin φ cos ψ − sin ψ

− sin φ cos ω + cos φ sin ψ sin ω sin φ sin ψ sin ω + cos φ cos ω cos ψ sin ω
sin φ sin ω + cos φ sin ψ cos ω sin φ sin ψ cos ω − cos φ sin ω cos ψ cos ω

⎤
⎦ (17)

and the effective stress tensor is calculated by

Σkl(p, q, θ, φ, ψ, ω) = ΣP
i j (p, q, θ)Rik(φ, ψ, ω)R jl(φ, ψ, ω) (18)

with

ΣP
i j (p, q, θ) =

⎡
⎣Σ1 0 0

0 Σ2 0
0 0 Σ3

⎤
⎦ (19)

and the principal values Σi from Eq. (13).

2.3 Local failure criteria

Two local stress-based measures are used to define local material loading. The first is the classical von Mises
stress.

σvM =
√

1

2
si j si j (20)

si j denotes the local deviatoric stress tensor. This measure is evaluated only for the outer surfaces of the foam.
Secondly a fracture mechanical measure is used. Since an arbitrary stress state will cause local mixed mode

loading, the coplanar SIF

Kco =
√
K 2

I + K 2
II + 1

1 − ν
K 2

III (21)
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is used as local measure for brittle failure. For a homogeneous isotropic material, the SIFs KN are related to
the J -integral [24] by

J = KNYNMKM = 1 − ν2

E

(
K 2

I + K 2
II

)+ 1 + ν

E
K 2

III, (22)

where YNM denotes the Irwin matrix, here for a homogeneous isotropic material, with N , M = I, II, III.

YNM = 1

E

⎡
⎣1 − ν2 0 0

0 1 − ν2 0
0 0 1 + ν

⎤
⎦ (23)

To separate the SIFs, the interaction integral is used. The SIFs and the interaction integral J int
M are related by

KN = Y−1
NM J int

M
1

k0
, (24)

where KN is the SIF for mode N = I, II, III, Y−1
NM the inverted Irwin matrix and k0 a unit value SIF. The scalar

value of the interaction integral J int
N for mode N is defined as

J int
N = lim

→0

∫



MN
i j niq jd (25)

with
MN

i j = σklε
N
kl δi j − σk j u

N
k,i − σ N

kj uk,i , (26)

which superimposes the actual fields σk j , εkl and uk,i with auxiliary fields σ N
kj , εNkl and uN

k,i . These auxiliary
fields are the known near crack tip solutions for pure mode N loading causing a unit value SIF k0.

2.4 Homogenized failure criteria and failure surfaces

A homogenized failure criterion for a single local point P is a function of the effective (homogenized) stress
state

Σi j A
P
i jklΣkl − 1 ≥ 0, (27)

where AP
i jkl represents the failure tensor for a local point P , e.g. an integration point or a point at the crack

front. Σi j is the effective stress state, as defined in equation (18), that fulfils

λc(Σi j ) = fc(σi j )|Σi j

c
− 1 ≥ 0, (28)

where fc(σi j ) represents one of the local stress-based measures Eqs. (20) or (21). The constant c stands for
the corresponding critical values σc or KIc .

Considering a linear problem where

σi j (λΣkl) = λσi j (Σkl) (29)

we can scale Σi j to Σ̂i j so that Eq. (28) fulfils exactly

λc(Σ̂i j ) = 0 (30)

and then Eq. (27) fulfils
Σ̂i j A

P
i jklΣ̂kl − 1 = 0, (31)

which is an implicit function, describing an isosurface in the effective stress space. Due to the symmetry of
the effective stress tensor Σ̂i j , the failure tensor AP

i jkl has the same symmetries as the elasticity tensor Ci jkl

(Hooke’s law):
AP
i jkl = AP

i jlk = AP
jikl = AP

kli j . (32)
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So in a general case AP
i jkl has only 21 independent components, which can be calculated using

√√√√ N∑
m=1

(
Σ̂

(m)
i j AP

i jklΣ̂
(m)
kl − 1

)2 → min (33)

for N ≥ 21 linearly independent stress states to approximate the failure surface for all stress states that fulfil
Eqs. (30) and (31). Considering a linear elastic problem, the calculation of the components of AP

i jkl can be
simplified to the solution of a system of 21 linear equations

Σ̂
(m)
i j AP

i jklΣ̂
(m)
kl − 1 = 0, m = 1, 2, . . . , 21 (34)

with 21 linearly independent stress states.

2.5 Using the structural symmetry of the Kelvin cell

It has been shown in the previous section that the Kelvin cell is build up by fundamental domains, which have
all the same shape but different orientations. Let us define homologous points, which are points having the
same local position within their domain. The orientation of the domains are defined by the symmetry group
of the structure, which is in the case of the Kelvin cell the octahedral group (Oh) containing all transformation
matrices Ti j . All Ti j are defined by rotation and mirror operations, but no translations. The transformation
matrices are orthogonal matrices, so that

Ti j Tjk = δik (35)

The local stress state of a point P is a function of the effective stress state

σ P
i j = g(Σi j ). (36)

Considering a linear elastic problem this relation is defined by the linear mapping

σ P
i j = BP

i jklΣkl (37)

with the mapping tensor BP
i jkl between the effective stress state and the local stress state of point P . The local

stress states of two homologous points obey the symmetries of the structure. To show this, we consider two
homologous points P1 and P2. Using Eq. (37) we can write

σ
P1
i j = BP1

i jklΣkl (38)

σ P2
mn = BP2

mnopΣop. (39)

The local stress state of P1 is related to the one of P2 by

σ
P1
i j = σ P2

mnTmi Tnj (40)

and the effective stress states are related by

Σkl = ΣopTokTpl . (41)

After substituting the Eqs. (40) and (41) into Eq. (38) we get

σ P2
mnTmi Tnj = BP1

i jklΣopTokTpl , (42)

and solving for σ
P2
mn yields

σ P2
mn = BP1

i jkl TimTjnTkoTlp︸ ︷︷ ︸
B

P2
mnop

Σop. (43)
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Comparing Eqs. (43) and (39) one sees that the mapping tensors BP1
i jkl and BP2

mnop for two homologous points
P1 and P2 are similar and can be transformed into each other using

BP2
mnop = BP1

i jkl TimTjnTkoTlp, (44)

where Tim describes the transformation from P1 to P2. To study the failure behaviour of a symmetric structure,
only a single fundamental domain has to be evaluated.

Stress intensity factors (SIF) describe the local loading of a crack depending on the local stress state at the
crack tip, see [25] ⎧⎨

⎩
KI
KII
KIII

⎫⎬
⎭ = lim

r→0

√
2πr

⎧⎨
⎩

σ22(r, α = 0)
σ12(r, α = 0)
σ23(r, α = 0)

⎫⎬
⎭ (45)

defined in a local crack tip coordinate system as shown in Fig. 7 (left). Because of the proportionality of

KN ∼ σi j ∼ Σkl (46)

the SIF can be calculated using

KN = DP
NklΣkl (47)

analogous to Eq. (37) for a linear elastic problem with DP
Nkl as the mapping tensor from the effective stress

state to the SIFs for a point P at the crack tip. Two mapping tensors DP1
Nkl and DP2

Nmn of two homologous points
P1 and P2 can be transformed into each other using, analogous to Eq. (44)

DP2
Nmn = DP1

NklTkmTln. (48)

Also for the evaluation of the SIFs, a single fundamental domain needs to be investigated only. An example
for the crack paths of a single fundamental domain is shown in Fig. 7 (right). Analogously, the failure tensors
(see Eq. 34) of two homologous points AP1

i jkl and AP2
mnop can be transformed into each other using

AP2
mnop = AP1

i jkl TimTjnTkoTlp. (49)

Fig. 7 (Left) Local Cartesian and cylindrial coordinate systems at crack tip. (Right) Crack paths of fundamental domain
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3 Results

3.1 Results for homologous points

At the top of Fig. 8, an outline of a part of the Kelvin cell model is shown where the locations of four homologous
points are indicated. Under the same effective loading, two homologous points can have the same magnitude
of the local stress σi j but the sign can be different if the corresponding domains have a mirror symmetry. For
an uniaxial loading in the 3-direction, all domains have a symmetric local stress σ33 with the same sign of the
local stress. For a shear loading in (12)-direction, mirroring with respect to the (13)-plane changes the sign of
σ13 but mirroring with respect to the (23)-plane does not. For these homologous points, the magnitudes of σ33
and σ13 are constant.

In a second example we change the effective stress state from a uniaxial Σ11 = 1/16 MPa to an uniaxial
stress state with Σ22 = 1/16 MPa. This is equivalent to a rotation of the stress state around the (111)-axis by
an angle α = 2/3 π . In Fig. 9 the results of the two effective stress states are shown. Left the local σ11 stresses
are shown and right the local σ22 stresses. The results are the same except for a rotation of 2/3 π around the
(111)-axis.

A similar result is obtained, if we look at local von Mises stresses as it is shown in Fig. 10.
As an example for the mirror and point symmetries of the SIF, the four-sided strut loop around the nor-

mal (001) under effective shear loading Σ13 is investigated in Fig. 11. We find one set of homologous points

Fig. 8 (Top) Location of four homologous points. (Left) Local stresses σ33 (in MPa) under effective uniaxial loading
Σ22 = 1/16 MPa. (Right) Local stress σ13 (in MPa) under effective shear loading Σ12 = 1/16 MPa
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Fig. 9 (Left) Local stress σ11 (in MPa) under effective uniaxial loading Σ11 = 1/16 MPa. (Right) Local stress σ22 (in MPa) under
effective uniaxial loading Σ22 = 1/16 MPa

Fig. 10 Values of von Mises failure criteria of two uniaxial effective loadings, (left) Σ11 = 1/16 MPa, (right) Σ22 = 1/16 MPa

at the local parametric coordinates lpc = [0, 1, 2, 3] and second set at lpc = [0.5, 1.5, 2.5, 3.5]. The graph for
KII has mirror symmetries at lpc = [1.5, 3.5] and point symmetries at lpc = [0.5, 2.5]. The KIII graph instead
has mirror symmetries at lpc = [0.5, 2.5] and point symmetries at lpc = [1.5, 3.5]. A remarkable result is also
that KI is zero everywhere on this strut loop for a Σ13 loading.

3.2 Effective failure surface

The effective failure surface (EFS) for the whole foam is the minimum of the failure surfaces of all local points
for the same parameters φ, ψ , ω, p, q , θ . In Fig. 12, the failure surfaces are shown for two criteria λvM(Σ̂i j ) = 0
and λco(Σ̂i j ) = 0 for the basic orientation O1, see Table 1 for the values of φ, ψ and ω corresponding to the
rotations. Each failure surface for a single point is a quadric in the six dimensional stress space. The curves
in Fig. 12 are therefore projections of those quadrics onto the two-dimensional stress plane spanned by the
effective von Mises stress q and the effective hydrostatic stress p. We show the failure surfaces for a selection
of six points P1 to P6, which are the points that become critical within our finite element discretization. The
EFS is not smooth, because it is build up by intersecting quadrics.
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Fig. 11 SIF at the four-sided strut loop around the normal (001) under effective shear loading Σ13 = 1/16 MPa
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Fig. 12 Effective failure surfaces (EFS) for the orientation O1 and θ = 0 with failure surfaces (FS) of different local points Pi ,
(left) von Mises criterion λvM(Σ̂i j ) = 0, (right) coplanar stress intensity factor criterion λco(Σ̂i j ) = 0

Table 1 Parameters of stress state orientations of φ, ψ and ω used for Figs. 12 and 13

O1 O2 O3 O4 O5 O6

φ 0 0 φmax φmax φmax φmax
ψ 0 0 0 0 ψmax ψmax
ω 0 π

4 0 π
4 0 π

4

Since the Kelvin cell is not isotropic, the orientation of the stress state has an influence on the shape
of the failure surfaces if they are plotted in the q-p-plane. Figure 13 shows the EFS of λvM(Σ̂i j ) = 0 and
λco(Σ̂i j ) = 0 for three different Lode angles θ and the six orientations, which are defined by the angles φ, ψ
and ω as listed in Table 1. For pure hydrostatic stress states, the orientation does not influence the results, so
the intersection points of the EFS with the hydrostatic axis are equal.

For a Lode angle of θ = 0, a rotation with ω has no effect on the EFS for both criteria λc. For Lode angles
θ 
= 0, the results depend strongly on φ, ψ and ω. For rather low hydrostatic stresses the smallest values for
the EFS are found either for the first O1 or third O3 orientation of the stress states for both investigated failure
criteria. If the stress state is nearly hydrostatic other orientations can become critical.

All failure surfaces, four our chosen two criteria, are point symmetric with regard to the stress space origin,
which can be expressed by λc(p, q, θ, φ, ψ, ω) = λc(−p, q, θ + π, φ, ψ, ω).

If we compare the two EFSs in Figs. 12 and 13, we see that all values for the coplanar criterion λco(Σ̂i j ) = 0
are greater than the values for the von Mises criterion λvM(Σ̂i j ) = 0. That means that for the given geometry,
relative density and the given material parameter set the structure would rather fail due to high stresses at the
strut surfaces according to stretching, bending and torsion. The sharp-edged cavities seem to be uncritical, at
least for the given configuration.
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Fig. 13 Effective failure surfaces for three different Lode angles θ , (left) von Mises criterion λvM(Σ̂i j ) = 0, (right) coplanar
stress intensity factor criterion λco(Σ̂i j ) = 0

4 Conclusions

A method is presented to model reticulated open cell ceramic foams containing sharp edges cavities. For such
structures, stress intensity factors can be calculated for effective multi-axial loadings. The presented tools can
be used for arbitrary open cell foam structures.

Effective failure surfaces for inhomogeneous structures are defined as the minimum of the failure surfaces
of all local points of the structure under consideration. Since the Kelvin cell obeys octahedral symmetries
only a single fundamental domain needs to be considered to compute the EFS of the whole structure. The
local stress states and therefore stress-based local failure criteria of two homologous points in two different
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fundamental domains can be transformed into each other only by knowing the relative spatial orientation of
the two fundamental domains. Since the octahedral symmetry group contains 48 elements (transformation
matrices), the costs for computational post-processing can be reduced to 1/48.

The inspection of the EFSs for the von Mises criterion as well as for the coplanar 3D Mixed-Mode fracture
criterion are anisotropic for a Kelvin cell under multi-axial mechanical loading. Since both criteria are point
symmetric, the EFSs also show this feature. It should be pointed out that the current simulations allow negative
KI values, without checking if the crack faces are intersecting each other. Therefore, contact models need to
be implemented. Then negative KI values would influence the KII and KIII values due to friction between the
crack faces.

All EFSs for the 3D Mixed-Mode fracture criterion are obtained for larger stresses than the effective
failure surfaces for the von Mises criterion. This means that for the given geometry, relative density and the
given material parameter set the structure would rather fail due to high stresses at the strut surfaces according
to stretching, bending and torsion. The sharp-edged cavities seem to be uncritical, at least for the given
configuration. It is uncertain if the edges of the cavities can be more critical for another geometry of the
ceramic foam.

The investigations presented in this paper were done only for mechanical loading. With the presented
tools, the stress intensity factors can be calculated also for thermo-mechanical loadings, especially for thermal
shocks, which occur if the foams are used as filters in metal melt filtration applications.
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