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Abstract Metal/ceramic composites with lamellar microstructures are a novel class of metal-matrix compos-
ites produced by infiltration of freeze-cast or ice-templated ceramic preforms with molten aluminium alloy.
The cost-effectiveness of production and relatively high ceramic content make such composites attractive to
a number of potential applications in the automotive, aerospace and biomedical engineering. A hierarchi-
cal lamellar microstructure exhibited by these composites, with randomly orientated domains in which all
ceramic and metallic lamellae are parallel to each other, is the result of the ice crystal formation during freeze-
casting or ice-templating of preforms from water–ceramic suspensions. In this paper, a single-domain sample
of metal/ceramic composite with lamellar microstructure is modelled theoretically using a combination of
analytical and computational means. Stress field in the sample containing multiple transverse cracks in the
ceramic layer is determined using a modified 2-D shear lag approach and a finite element method. Using
finite element modelling, the shear layer thickness is determined and used as input in the analytical model.
Degradation of stiffness properties of the sample due to multiple transverse cracking is predicted using the
equivalent constraint model.

Keywords Metal/ceramic composites ·Transverse cracking ·Damagemodelling · Finite element modelling ·
Analytical modelling

1 Introduction

Metal-matrix composites are material systems in which metal is combined with another, often nonmetallic,
material to produce a novel material with superior engineering properties. Metal-matrix composites offer many
advantages over monolithic metals and their alloys such as high specific stiffness and strength, better creep,
fatigue and wear resistance, and good thermal properties [1–4].

In the recent decades, significant advances have been made in the field leading to increase in the number of
reinforcements as well as processing routes available [5]. One of the new classes of metal-matrix composites
that have emerged during this time are interpenetrating phase composites, in which ceramic preformswith open
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porosity are infiltrated with molten metal or alloy to produce composites with two three-dimensionally inter-
penetrating constituents [5]. Metal/ceramic interpenetrating phase composites possess production-dependent
ceramic content and exhibit highly sophisticated internalmicrostructures that depend on the preform fabrication
method.

Several innovative methods have been developed to produce open-pore ceramic preforms [5]. One of
them—freeze-casting—is based on the physics of ice formation and involves controlled directional freezing
of concentrated water–ceramic suspension [6–8]. Growing ice crystals pushes fine ceramic particles forcing
them to form thin parallel and connected layers, creating a lamellar microstructure. The ice is subsequently
sublimated by freeze-drying. The resulting ceramic preforms exhibit pronounced open porosity andmechanical
strength and can be infiltrated with either organic or inorganic phase.

Wanner and Roy [9] have studied metal/ceramic composites produced at Institute of Applied Materials-
CeramicMaterials and Technologies at Karlsruhe Institute of Technology, Karlsruhe, Germany. These compos-
ites were produced from alumina preforms prepared by freeze-casting and subsequent sintering by infiltrating
them with aluminium–silicon alloy using a squeeze-casting technique. The resulting metal/ceramic compos-
ites were found to possess hierarchical lamellar microstructure with randomly orientated individual regions
(domains), in which all ceramic and metallic lamellae are parallel to each other. Domains had sizes of up to
several millimetres, while thicknesses of alternating ceramics and metallic lamellae were from 20 to 200µm
[9]. Individual domains were found to exhibit a pronounced anisotropy, with the freezing direction being the
stiffest and strongest. Failure in this direction occurred in a brittle manner, while other directions were con-
trolled by the alloy and exhibited extensive ductility [10]. In the subsequent studies, complete set of anisotropic
elastic properties of these composites was determined experimentally using ultrasound phase spectroscopy and
resonant ultrasound spectroscopy and predicted using micromechanical modelling [11,12]. A study of single-
domain samples taken from these composites was also undertaken [13] focusing on the compressive response
and elasto-plastic behaviour. Launey et al. [14] used freeze-casting or ‘ice-templating’ to create fine-scale
laminated metal/ceramic bulk composites, with ceramic contents of 36% and with lamellae thickness down
to 10 microns, fracture toughness of 40 MPa-m0.5 and tensile strength of approximately 300MPa.

Damage mechanisms in metal/ceramic composites with lamellar microstructures have not been studied
in depth yet. Previous studies of cracking patterns in metal/ceramic composites under tensile loading were
performed on composites fabricated by diffusion bonding and focused mainly on multiple cracking in ceramic
layers ahead of amacroscopic through crack [15–19]. Initiation and accumulation of damagewithin the ceramic
lamellae, mainly in the form of transverse cracking (Fig. 1), has been observed under compressive loading.
It is also expected to occur under tensile loading due to failure strain of ceramics being less than that of the
metal.

In this paper, a single-domain sample of metal/ceramic composite with lamellar microstructure is modelled
theoretically using a combination of analytical and computational means. Stress field in the sample containing
multiple transverse cracks in the ceramic layer is determined using a modified 2-D shear lag approach [20,21]

Fig. 1 Transverse cracks in ceramic layer of metal/ceramic composite with lamellar microstructure
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and a finite element method. The equivalent constraint model is then applied to predict degradation of stiffness
properties of the sample due to multiple transverse cracking.

2 Analytical modelling

2.1 Stress analysis

Consider a metal/ceramic composite sample consisting of a ceramic layer of thickness 2hc fully bonded
between two metal layers of thickness hm. Ceramic layer contains multiple tunnelling cracks, assumed to be
spaced uniformly with crack spacing S = 2s, spanning the full thickness of the ceramic layer and depth 2w
of the sample. The sample is referred to the coordinate system x1x2x3, with x1 axis parallel to the cracks
(Fig. 2) and subjected to biaxial tension σ̄11, σ̄22 and in-plane shear loading σ̄12. Due to periodicity of damage
and symmetry of the sample, only a quarter of the representative segment bounded by two cracks needs to
be considered (Fig. 2).The equilibrium equations in terms of microstresses, i.e. stresses averaged across the
thickness of the layer and the depth of the sample, have the form

χσ̃
(m)
i j + σ̃

(c)
i j = (1+ χ)σ̄i j , i, j = 1, 2, χ = hm/hc (1a)

dσ̃
(c)
22

dx2
+ τ2

hc
= 0,

dσ̃ (c)
12

dx2
+ τ1

hc
= 0, (1b)

σ̃
(c)
i j = 1

2whc

w∫

−w

hm∫

−hm

σ
(m)
i j (x1, x2, x3)dx1dx3 (1c)

Fig. 2 Schematics showing a metal/ceramic composite sample with multiple tunnelling cracks in the ceramic layer (left) and a
representative segment bounded by two cracks (right)

Fig. 3 Variation of the out-of-plane shear stress
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where τ1, τ2 are the interface shear stresses at the metal/ceramic interface. Assuming that out-of-plane shear
stresses vary linearly with x3 and in the metal layer this variation is restricted to the shear layer of thickness
hs (Fig. 3), so that

σ
(c)
j3 = τ j

hc
x3, |x3| < hc;

σ
(m)
j3 = τ j

hs
(hc + hs − x3), hc < |x3| < hc + hs, j = 1, 2 (2)

the interface shear stresses τ1, τ2 can be expressed in terms of the in-plane displacements ũ(c)
j , ũ(m)

j , j = 1, 2,
and shear moduli Gc,Gm of ceramic and metal as
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In addition, it is also assumed that ε̃(c)
11 = ε̃
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11 , and crack surfaces are stress-free, i.e.
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Equations (1)–(4) can be reduced to two uncoupled second-order ordinary differential equations with respect
to in-plane microstresses in the ceramic layer
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Solutions of these equations satisfying specified boundary conditions can be found as
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The in-plane microstresses in the ceramic layer containing multiple transverse cracks can be used to evaluate
the reduction of stiffness properties of the metal/ceramic composite single-domain sample due to damage.
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2.2 Stiffness reduction

Let us consider an equivalent constraint laminate, in which the damaged layer is replaced with an equivalent
homogeneous layer with degraded stiffness properties. The constitutive equations of the ‘equivalent’ layer in
the coordinate system x1x2x3 (Fig. 2) are

{σ̄ (c)} = [Q̄(c)]{ε̄(c)} (8)

The reduced in-plane stiffness matrix [Q̄(c)] of this equivalent homogeneous layer is related to the in-plane
stiffness matrix [Q̂(c)] of the undamaged ceramic layer via the In situ Damage Effective Functions (IDEFs)
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Once the in-plane microstresses σ̃
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i j (i.e. stresses and strains averaged across the layer

thickness and samplewidth) are known from themicromechanical analysis, themacrostresses andmacrostrains
can be found as
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By substituting Eq. (6a) in Eq. (10) and then in Eq. (9), closed-form expressions for the IDEFs representing
them as explicit functions of the relative transverse crack density Dc = hc/s are obtained
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(m)
12 ) + Q̂(c)

12 (Ŝ(m)
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(m)
11 )], α

(c)
2 = 1

χ
Q̂(c)

66 Ŝ
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3 Numerical modelling

Analytical modelling was accompanied by numerical studies of the microstructure. The aims of these studies
were to verify the results of the analytical modelling and also to estimate numerically the thickness of the shear
layer hs introduced in the analytical model. For this purpose, the finite element (FE) modelling in ABAQUS
[26] was employed.

Firstly, FE model of a Plexiglas (PMMA) plate specimen containing a set of four parallel cracks was
developed to enable comparison with experimental and numerical results of Bai and Pollard [27]; please refer
to Fig. 8 and Fig. 1 in [27] for a sketch of the experimental specimen and FE model, respectively. In the
present study, only a quarter of the specimen was modelled in ABAQUS taking into account symmetry of the
specimen. Meshed geometry used in the present study is shown in Fig. 4. The elastic properties of the Plexiglas



182 M. Kashtalyan et al.

Fig. 4 FE model reproducing experimentally validated numerical studies of Bai and Pollard [27]

Fig. 5 FE model of a quarter of the representative segment with thicknesses 2hc and hm of the ceramic and metallic layers. 2s is
the crack spacing

Table 1 Properties of the constituents

Constituent Young’s modulus (GPa) Poisson’s ratio Layer thickness (mm) Shear modulus (GPa)

Aluminium alloy Al–12Si 80 0.33 0.3 30
Alumina Al2O3 390 0.24 0.2 157.26

(PMMA) were taken as follows: for the fractured (f) and the neighbouring (n) layers: En = Ef = 40GPa,
νn = νf = 0.2. Numerical results obtained in the current study give practically the same stress distribution as
that obtained by Bai and Pollard [27] and are discussed in more detail in the next section.

Secondly, FE model corresponding to the layered metal/ceramic microstructure described in Sect. 2 was
created (Fig. 5). One quarter of the representative segment (Fig. 2, left) was built in ABAQUS in order to
investigate dependence of the stress field on the transverse coordinate x3 for different crack spacings (parameter
S). Boundary conditions reproducing tensile loading (σ̄11 = σ̄12 = 0) were applied to the segment. Material
behaviour of the metallic and ceramic layers was modelled as elastic, with Young’s moduli, Poisson’s ratio
and layer thicknesses data given in Table 1. FE modelling allowed us to estimate numerically the thickness of
the shear layer for different crack spacings and use these results in the analytical modelling.
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Fig. 6 Distribution of the normal stress component σ22 in the direction perpendicular to the fracture along the line OA (see Fig. 4)
as a function of fracture spacing-to-layer thickness ratio (S/Tf ): on the left the part of the symmetric graph—results of Bai and
Pollard [27], on the right of the graph—results obtained in the present study

Fig. 7 Axial stress distribution for three crack half-spacing-to-layer thickness ratios: a s/hc = 1.3; b s/hc = 1.0; c s/hc = 0.7

4 Results and discussion

FE model presented in Fig. 4, which corresponds to numerical model of Bai and Pollard [27], was used to
verify FE model for the metal/ceramic composite. Results of the plane-strain calculations are plotted in Fig. 6
and show the distribution of the normal stress component in the direction perpendicular to the fractures (σ22)
along the line OA (refer to Fig. 4) as a function of fracture spacing-to-layer thickness ratio (S/Tf ). The left side
of the graph shows the stress values obtained by Bai and Pollard [27], and the right side presents calculations
using ABAQUS. In the present study, only the curves for S/Tf = 0.7, 1.0, 1.3 were produced and very good
correspondence with the results of Bai and Pollard [27] was observed. Figure 6 shows also that when the
fracture spacing reaches some critical value, the stress between cracks changes from tensile to compressive
which can have decisive influence on the failure evolution. The latter case can be studied using the approach
developed in [28–31].
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Fig. 8 Shear stress distribution (left) and shear stress distribution along Paths 1 and 2 (right) for three crack half-spacing-to-layer
thickness ratios: a s/hc = 0.7; b s/hc = 1.0; c s/hc = 1.3
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Fig. 9 Normalised axial stress σ̃
(c)
22 /σ̄22 in the ceramic layer as a function of coordinate x2 for a range of crack spacing-to-layer

thickness ratios as predicted by: a analytical model and b finite element model

After verification, numerical modelling of layered metal/ceramic microstructure presented in Fig. 5 was
carried out. For large crack spacings, axial stress σ

(c)
22 in the ceramic layer between the cracks away from crack

surfaces was found to be tensile (Fig. 7a). As crack density increases and crack spacing becomes smaller, a
region of compressive stress in the ceramic layer emerges (Fig. 7b, c). There is also a region of high tensile
stresses in the ceramic layer in the vicinity of ceramic/metal interface, indicating possibility of debonding as
competing failure mechanism.

Distribution of shear stress σ23 is shown in Fig. 8. For estimation of the shear layer thickness for different
fracture spacing, the distribution of the shear stress was studied along the nodes-path corresponding to the
largest absolute vales of the negative (Path 2) and positive (Path 1) shear stresses (see Fig. 8, left). Shear stress
as a function of the x3 coordinate along the path is presented in Fig. 8, right, for the whole metallic layer
with zooming in the shear layer as insert. The shear layer thickness was estimated as distance between the
crack tip and the position along the x3 coordinate for which the shear stress is equal to zero. This procedure
was carried out for different half-spacing-to-layer thickness ratios s/hc = 0.7, 1.0, 1.3, and corresponding
ratios hs/hm = 0.17, 0.22, 0.27 were obtained. For three studied half-spacing-to-layer thickness ratios
s/hc = 0.7, 1.0, 1.3, the thickness of the shear layer increases with increase of the distance between the
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Table 2 Reduction ratio for the composite Young’s modulus E2/Ê2

Relative crack density D = hc/s Equivalent constraint model FE simulation Difference (%)

0.1 0.7805 0.7889 −1.06
0.2 0.6461 0.6514 −0.819
0.5 0.4421 0.4358 1.45
0.8 0.3571 0.3486 2.44

Fig. 10 Normalised stiffness properties of a metal/ceramic composite sample as a function of crack density: a ceramic content
35%; b ceramic content 45%

cracks and the linear shape of the shear stress is only the first approximation to the numerical nonlinear graph.
Numerically estimated shear layer thicknesses were used as input in the analytical model.

Figure 9 shows distribution of the normalised axial stress σ̃
(c)
22 /σ̄22 under uniaxial tensile loading (σ̄11 =

σ̄12 = 0) as a function of distance x2 for a range of half-spacing-to-layer thickness ratios s/hc. According to the
analytical model, the average axial stress between the two existing cracks is tensile, with its value decreasing
as the distance between two neighbouring cracks becomes smaller.

Table 2 shows reduction of the composite’s Young’s modulus as predicted by the equivalent constraint
model and FE simulation for a range of relative crack densities Dc = hc/s. The value of Young’s modulus
E2 for composite with cracks is normalised by its value Ê2 in the undamaged state and given as a reduction
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ratio E2/Ê2. The shear layer thickness was taken as hs = 0.15hm. It can be seen that predictions based on the
analytical model are in good agreement with FE model.

Reduction of all in-plane elastic properties of the composite as a function of relative crack density is shown
in Fig. 10 for two ceramic contents: 35 and 45%. To facilitate the analysis, the values of stiffness properties
for composite with cracks are normalised by their respective values for the undamaged composite and are
plotted as reduction ratios E1/Ê1, E2/Ê2, G12/Ĝ12, ν12/ν̂12 and ν21/ν̂21 against the relative crack densities
Dc = hc/s. It can be seen that multiple cracking significantly reduces not only composite’s Young’s modulus
E2 (i.e. modulus in the direction normal to the cracks), but also in-plane shear modulus G12 and Poisson’s
ratio ν21. For example, for the relative crack density of Dc = hc/s = 0.25, which is roughly corresponds to
what is observed in Fig. 1, the reduction in Young’s modulus E2 and Poisson’s ratio ν21 is approximately 40%.
As expected, Young modulus E1 (i.e. modulus in the direction parallel to the cracks) is not affected by the
presence of cracks. Poisson’s ratio ν12 increases slightly with increasing Dc, the reason being that Poisson’s
ratios ν12 and ν21 are not independent from each other, but related as ν12/E1 = ν21/E2.

Experimental data for metal/ceramic composites are required for comparison purposes, which are currently
not available in the literature, and this could become a task for future work. The nonlinear behaviour of the
shear stresses in the shear layer and also dependence of the shear layer thickness on the fracture spacing are
also interesting subjects of future studies.

5 Conclusions

The cracked microstructure of single-domain metal/ceramic composite sample is modelled by analytical and
computational approaches. The results obtained by finite element analysis are consistent with observations
made by Bai and Pollard [27]. According to the obtained results, the average axial stress between the two
cracks is decreasing with decrease in the distance between the cracks. Using FE modelling, the shear layer
thickness for different crack spacings is calculated and used as input in the analytical model. Stress field is
determined using a modified 2-D shear lag approach and a finite element method. The equivalent constraint
model can be applied to predict degradation of stiffness properties of the sample due to multiple transverse
cracking.
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