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Abstract An improved one-dimensional beam model considering simultaneously the effects of interfacial
compliance and the large deflection for adherends and overlap is proposed for the unbalanced single-lap
joint (SLJ) under tensile loading. Based on the displacement compatibility condition of flexible interface, the
governing differential equations that captured the main features of geometrical nonlinearity for the unbalanced
SLJ are derived. The present model can obtain closed-form solutions for edge moment factors, transverse
deflections and interface stress distributions for the unbalanced SLJ. The compared results between the present
model, existing classical models and nonlinear finite element results validate the accuracy of the geometrically
nonlinear model. Finally, the influences of Young’s modulus ratio and thickness ratio on the edge moment
factors are studied with the present model.

Keywords Unbalanced single-lap joint · Geometrically nonlinear analysis · Flexible interface ·
Edge moment factor · Interfacial stress

1 Introduction

Due to the outstanding advantages of efficiency and simplicity [1,2], the adhesive bonding technology has
been used extensively in aerospace engineering, automotive engineering and civil engineering. The simplest
form of the adhesive joint is the single-lap joint (SLJ), which has been incorporated into the ASTM and ISO
standards for determining adhesive properties and strength [3]. In order to further understand the interfacial
stress distributions and edge moment factors of single-lap joint under tensional load, many studies including
the analytical methods [4–8], experimental approaches [2,9–15] and numerical methods [11,14–19] have been
conducted on the single-lap joint. Along with the tensional load increases, the phenomenon of large rotation
for the single-lap joint will occur and the edge moment factor k will reduce due to the eccentric loading path
[20]. Just as Tsai and Morton [1] pointed out the large deflection effect for the adherends cannot be neglected
for the long single-lap joint (i.e., ξ l ≥ 1). Besides the large deflection of the adherends, the overlap geometric

Z. Jiang· S. Wan (B)
School of Transportation, Southeast University, Nanjing 210096, China
E-mail: seufrpbridge@163.com

Z. Jiang
E-mail: jzhengw@126.com

Z. Zhong
Department of Civil Engineering, Shanxi University, Taiyuan 030013, China

M. Li
School of Civil Engineering, Southeast University, Nanjing 210096, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-015-1093-5&domain=pdf


1274 Z. Jiang et al.

nonlinearity also can affect pronouncedly the adhesive stress due to large deflection [21]. Therefore, both
the geometric nonlinearity effect of the overlap and the adherends should be taken into account when the
geometrically nonlinear analysis for adhesively bonded single-lap joint is performed, i.e., the geometrically
nonlinear effect should be incorporated not only to determine the edge moment factor k at the overlap ends
but also to construct the equilibrium equations for adherends and adhesive in overlap region [21]. However,
once the geometrically nonlinear influence for the bonded region is incorporated into, the analytical solution
for the interfacial stress and the edge moment factor will be very difficult [20].

Some analytical models that incorporated only the large deflection effects of adherends have been proposed
for the balanced single-lap joint (i.e., the adherends have identical mechanics properties and geometries)
[22,23]. Goland and Reissner [24] presented one of the most classical solution for the balanced single-lap joint.
In their paper, the large deflection effect of adherends was considered when determining the edge moment
factor k. Meanwhile, the influence of the adherends bending and adhesive peel stress was incorporated into
the G-R model. Oplinger [25] tried to improve the Hart-Smith model through considering the geometrically
nonlinear effect of adherends coupled with the adhesive shear strain. In the Oplinger model, the influence
of adhesive thickness deformation was ignored. Compared with the G-R model, Hart-Smith model and the
Oplingermodel, the L-Tmodel presentedmore accurate solution for the edgemoment factor and adhesive stress
due to incorporating simultaneously the effects of the large deflection for overlap and adherends [5,20,26].
Luo and Tong [20] provided the closed-form solutions for the balanced single-lap joint through considering
simultaneously adhesive peel stress and shear stress and the large deflection of overlap. Among L-T model,
two sets of novel fully coupled nonlinear governing equations for the transverse and longitudinal deflection
were constructed using the method of symmetric and antisymmetric deformation superposition. Then, the L-T
model was used to solve the problem of the geometrically nonlinear analysis for the composite single-lap joint
[5,26]. However, the L-T model is not applicable to the more general unbalanced/unsymmetric single-lap joint
(i.e., the adherends have different mechanics properties and/or geometries).

Compared with the balanced single-lap joint, the theoretical analysis of interface stress and edge moment
factors for the unbalanced single-lap joint is more complicated due to the fact that the edge loads in two end
sections of the overlap region are nomore identical and difficult to determine. Some studies conducted the theo-
retical analysis for the unbalanced single-lap joint. Based on the finite element theory, a one-dimensional beam
model considering the effect of the large deflection of adherends was proposed for balanced and unbalanced
adhesively bonded single-lap joint by Srinivas [27]. Bigwood and Crocombe presented simplified equations for
adhesive stress distributions of unbalanced adhesively bonded single-lap joint based on one-dimensional beam
model (i.e., B-C model) [28]. Adams determined the edge moment factors for the unbalanced sing-lap joint
considering the necessity of the global equilibrium [29]. Cheng obtained the edge moment factors following
the idea of the G-R model, which emphasized the importance of global equilibrium and the deformation com-
patibility of overlap region after rotation (i.e., Cheng’s model) [30]. Meanwhile, the interfacial stresses were
obtained using the method of variation principle combined with 2D elasticity theory. Yang and Pang proposed
an analytical model for the unbalanced adhesively bonded composite single-lap joint based on the laminated
anisotropic theory [31]. Li modified the shear force results of two end sections for the Cheng model using the
simplified beam theory [32]. Taheri and Zou [33] provided an analytical solution for the unbalanced single-lap
joint based on the adhesive interface constitutive model and the sandwich plate theory. Lee and Kim[34]
proposed calculation formulas for the edge moment factor of the unbalanced single-lap joint as neglecting
the effect of the transverse shear force. All the aforementioned models for the unbalanced single-lap joint
incorporated only the effect of the large deflection for the adherends.

To our best knowledge, there is no closed-form solution for interfacial stress and edge moment factor in
the unbalanced single-lap joints when the adhesive strain and the geometrical nonlinear effect of overlap and
adherends were considered simultaneously.Meanwhile, the effect of the interfacial compliance on the adhesive
stress was neglected in most existing models for the adhesively bonded single-lap joint. Moreover, compared
with the balanced single-lap joint, the unbalanced single-lap joint is more widely used. There is significant
interest in designing the unbalanced single-lap joint which joins the adherends with different geometries and/or
dissimilar materials [32]. Therefore, for further understanding the mechanical property of unbalanced bond
single-lap joint and removing the disadvantage of neglecting the effect of the overlap geometric nonlinearity and
interfacial compliance, the fully coupled nonlinear analysis is performed using the improved one-dimensional
beam model, incorporating simultaneously the effects of interfacial compliance and the large defection for
overlap and adherends in this paper. Based on the displacement compatibility condition of the flexible interface
theory [35,36], the fully coupled nonlinear governing equations for the transverse and longitudinal deflection
of adherends in bonded region are constructed. Then, the closed-form solutions for the interface stress and
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(a)

(b)

Fig. 1 Schematic configuration for the unbalanced SLJ with tensile load: a geometrical parameters; b force equilibrium free-body
diagram

edge moment factor are obtained. The accuracy of the present solutions is validated through the comparisons
with the edge moment factor, adhesive stress and transverse deflection of the nonlinear finite element analysis
(i.e., NFEA) and the Cheng’s model (or B-C model). Finally, the parametric analysis concerning the edge
moment factors is performed.

2 Fully coupled nonlinear analysis

2.1 One-dimensional beam model

Considering the single-lap joint consists of joining adherends with different geometries and/or dissimilar
materials, as shown in Fig. 1. The upper adherend with thickness t1 and the lower adherend with thickness
t2 are bonded by an adhesive layer with thickness ta . The unbalanced single-lap joint is divided into four
sections: the upper adherend (i.e., Sect. 1) and the lower adherend (i.e., Sect. 2), Sects. 3 and 4. The width of
the unbalanced SLJ is b. The length of Sects. 3 and 4 are l1 and l2, respectively. And the length of bonded
region is L . The tensile load acted on the unbalanced single-lap joint is P .

In this study, the basic assumptions adopted are as follows:

1. Both the adhesive layer and two adherends behave linear-elastically.
2. The two adherends and the adhesive layer are boned perfectly.
3. The stress distributions of the adhesive layer are uniform across the thickness.
4. The effects of the large rotation for the adherends and the overlap are incorporated, i.e., the geometrically

nonlinear effect should be considered not only to determine the edge moment factor k at the overlap ends
but also to construct the equilibrium equations for adherends and adhesive in overlap region. Meanwhile,
the assumption of small strain is employed [5,20,26].

The infinitesimal isolated body of the unbalanced SLJ is shown in Fig. 2. By referring to Fig. 2, the
following equilibrium equations for the upper adherend and the lower adherend can be obtained as:

dN1

dx
= bτ (x) ,

dN2

dx
= −bτ (x) (1)

dQ1

dx
= bσ (x) − bτ (x)

dw1

dx
,

dQ2

dx
= −bσ (x) + bτ (x)

dw2

dx
(2)

dM1

dx
= Q1 − bt1

2
τ (x) + N1

dw1

dx
,
dM2

dx
= Q2 − bt2

2
τ (x) + N2

dw2

dx
(3)

where N1 and N2 are the axial force for the upper adherend and the lower adherend, respectively; Q1 and Q2
are the transverse shear force for the upper adherend and the lower adherend, respectively; M1 and M2 are the
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Fig. 2 Stress equilibrium of infinitesimal isolated body for the geometrically nonlinear analysis

bending moment for the upper adherend and the lower adherend, respectively; τ (x) and σ (x) are shear stress
and peel stress for the interface, respectively.

Meanwhile, from Fig. 2, the overall equilibrium of the infinitesimal isolated body can be obtained as:

NT = N1 + N2 = P (4)

QT = Q1 + Q2 = −Q∗
1 = −Q∗

2 (5)

MT = M1 + M2 + N1r1 − N2r2 = P [−w − α (l1 + x) + r1] (6)

where NT , MT and QT are the total axial force, bending moment and transverse force of the cross section in
bonded region, respectively; Q∗

1, Q
∗
2 are the transverse force in two ends of the bonded region, respectively; r1

and r2 are the distance between the neutral planes of bonded region and the upper adherend, and the distance
between the neutral planes of bonded region and the lower adherend, respectively;w is the transverse deflection
of the bonded region; α is the rotation angle of the SLJ, and α = (t1 + 2ta + t2)/[2 (l1 + L + l2)].

As shown in Fig. 3, r1 and r2 can be defined as [32]:

r1 = t1 + t2 + 2ta
2 (1 + A1/A2)

; r2 = t1 + t2 + 2ta
2 (1 + A2/A1)

(7)

The transverse deflection w of the overlap region can be defined as:

w = w1 + w2

2
(8)

Therefore, Eq. (7) can be expressed as:

MT = M1 + M2 + N1r1 − N2r2 = P

[
−w1 + w2

2
− α (l1 + x) + r1

]
(9)

Based on the Euler-Bernoulli beam theory, the constitutive equations for the geometrically nonlinear
analysis can be expressed as:

Ni = Ai

[
dui
dx

+ 1

2

(
dui
dx

)2

+ 1

2

(
dwi

dx

)2
]

− Bi
d2wi

dx2
(10)

Mi = Bi

[
dui
dx

+ 1

2

(
dui
dx

)2

+ 1

2

(
dwi

dx

)2
]

− Di
d2wi

dx2
(11)
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Fig. 3 Neutral plane for the bonded region in unbalanced SLJ

where Ai , Bi and Di are axial extension, extension bending, and bending stiffness, respectively; for the isotropic
beam, Bi = 0. By neglecting the nonlinear terms of the Eqs. (10) and (11), the axial force and bending moment
of the isotropic beam can be obtained as [20]:

Ni = Ai
dui
dx

; Mi = −Di
d2wi

dx2
(i = 1, 2) (12)

2.2 Governing equation

Tsai et al pointed out that the local deformation near free ends of adhesive layer in bonded joint is affected
pronouncedly by the highly concentrated shear stress and peel stress of interface [37]. And the influence of the
interfacial shear stress and peel stress on the local deformation cannot be neglected. This standpoint has been
validated in plated beam using the interface deformable bilayer beam model [35,36]. As shown in Fig. 4, the
real deformed cross section for each adherend is nonlinear, which is different from the linear one presumed in
the most existing models. Therefore, in order to present an accurate closed-form solution for the unbalanced
SLJ, this study will incorporate simultaneously the effects of interface compliance and large deflection, which
are not considered in existing models of published literatures.

With referring to Fig. 4, the displacement compatibility conditions for the adhesive interface can be obtained
as [35,36]:

w1 (x) − Cn1σ (x) + Cs1τ (x)
dw1

dx
= w2 (x) + Cn2σ (x) − Cs2τ (x)

dw2

dx
+ taεz (x) (13)

u1 (x) + t1
2

dw1 (x)

dx
− Cs1τ (x) = u2 (x) − t2

2

dw2 (x)

dx
+ Cs2τ (x) + taγxz (x) (14)

Cni = ti

10E (i)
33

; Csi = ti

15G(i)
13

(15)

where Cni and Csi (i = 1, 2) are the interfacial compliance coefficients for two adherends under interfacial
peel stress and interfacial shear stress, respectively.

The stress–strain relations of the adhesive layer are defined as [5,20,26]:

εz (x) = σ (x)

Ea
; γxz (x) = τ (x)

Ga
(16)
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Fig. 4 Displacement continuity condition along interface

Substantial researches have indicated that Eq. (16) is sufficiently accurate for the thin adhesive layer.
The nonlinear terms τ (x) dw1/dx and τ (x) dw2/dx inEq. (13) are neglected. Then, differentiatingEq. (13)

with respect to x twice and combining with Eq. (16) yield:

d2w1 (x)

dx2
= d2w2 (x)

dx2
+

(
Cn1 + Cn2 + ta

Ea

)
d2σ (x)

dx2
(17)

Substituting Eqs. (1) and (3) into Eq. (2) yields:

σ (x) = 1

b

d2M1

dx2
+ t1

2b

d2N1

dx2
− N1

b

d2w1

dx2
; σ (x) = −1

b

d2M2

dx2
+ t2

2b

d2N2

dx2
+ N2

b

d2w2

dx2
(18)

To obtain the closed-form analytical solution for the unbalanced SLJ, the nonlinear terms in Eq. (18) should
be linearized. Based on the principle of stiffness distribution, the axial forces N1 and N2 of the upper adherend
and lower adherend in the boned region are determined as follows:

N1 = A1P

A1 + A2
; N2 = A2P

A1 + A2
(19)

Substituting Eq. (19) into Eq. (18) yields:⎧⎨
⎩

σ(x) = 1
b
d2M1
dx2

+ t1
2b

d2N1
dx2

− A1P
(A1+A2)b

d2w1
dx2

σ(x) = − 1
b
d2M2
dx2

+ t2
2b

d2N2
dx2

+ A2P
(A1+A2)b

d2w2
dx2

(20)

Substituting Eqs. (20) and (12) into Eq. (17) and combining with Eqs. (4), (5) and (9) yields:

d6w1

dx6
+ a11

d5u1
dx5

+ a12
d4w1

dx4
+ a13

d3u1
dx3

+ a14
d2w1

dx2
+ a15

du1
dx

+ a16w1 = f (x) (21)

where

ξ = D1

b

(
Cn1 + Cn2 + ta

Ea

)
; a11 = − t1A1

2D1
; a12 = A1P

D1 (A1 + A2)
− P

2D2
; a13 = PA1t1

4D1D2
;
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a14 = 1

ξ

[(
1 + D1

D2

)
− A1P2

2bD2 (A1 + A2)

(
Cn1 + Cn2 + ta

Ea

)]
; a15 = −1

ξ

(r1 + r2) A1

D2
a16 = −1

ξ

P

D2
;

f (x) = 1

ξ

[
Pα

D2
(l1 + x) − P (r1 + r2)

D2

]
.

Differentiating Eq. (14) with respect to x once and combining with Eqs. (4), (5) and (9) yield:

d4w1

dx4
+ b13

d3u1
dx3

+ b14
d2w1

dx2
+ b15

du1
dx

+ b16w1 = g (x) (22)

where

η = t2PD1

4bD2

(
Cn1 + Cn2 + ta

Ea

)
; b13 = −1

η

[(
Cn1 + Cn2 + ta

Ea

)
t1t2PA1

8bD2
+

(
Cs1 + Cs2 + ta

Ga

)
A1

b

]
;

b14 = 1

η

[
t2A1P2

4bD2 (A1 + A2)

(
Cn1 + Cn2 + ta

Ea

)
+

(
t1
2

− D1t2
2D2

)]
; b15 = 1

η

(
1 + A1

A2
+ A1t2 (r1 + r2)

2D2

)
;

b16 = 1

η

t2P

2D2
; g (x) = 1

η

[
− t2
2D2

Pα (l1 + x) + t2P

2D2
(r1 + r2) + P

A2

]
.

Due to Eqs. (1), (2) and (3) with the geometrically nonlinear character, Eqs. (21) and (22) based on Eqs. (1), (2)
and (3) capture the main features of the unbalanced SLJ under static tensile loading. The effects of large deflec-
tion are reflected through the terms a12

(
d4w1/dx4

)
, a14

(
d2w1/dx2

)
in Eq. (21) and terms b14

(
d2w1/dx2

)
in Eq. (22). Meanwhile, the terms including Cni and Csi reflect the effect of interface compliance. That is, the
fully coupled nonlinear equations [i.e., Eqs. (21) and (22)] have incorporated simultaneously the influences of
the large deflection and the interface compliance.

Eliminating w1 from the fully coupled nonlinear equations [i.e., Eqs. (21) and (22)] using the elimination
method, the differential governing equation for the unbalanced SLJ can be obtained as:

d9u1
dx9

+ h11
d7u1
dx7

+ h13
d5u1
dx5

+ h15
d3u1
dx3

+ h16
du1
dx

= h17g (x) + h18 f (x) (23)

where

c1i = a1i − b1(i+2)

a12 − b14
(i = 1, 3, 4) ; c1i = a1i

a12 − b14
(i = 5, 6) ; c17 = 1

a12 − b14
; d11 = − c11

b14 − c14
;

d1i = b1i − c1i
b14 − c14

(i = 3, 5, 6) ; d17 = 1

b14 − c14
; d18 = − c17

b14 − c14
; e11 = − d11

c14 − d16
;

e1i = c1(i−2) − d1i
c14 − d16

(i = 3, 5) ; e16 = c15
c14 − d16

; e1i = c1(i−1)

c14 − d16
(i = 7, 8) ; f11 = − e11

d16 − e17
;

f1i = d1(i−2) − e1i
d16 − e17

(i = 3, 5) ; f16 = d15 − e16
d16 − e17

; f17 = d17
d16 − e17

; f18 = d18 − e18
d16 − e17

; g11 = − f11
e17

;

g1i = e1(i−2) − f1i
e17

(i = 3, 5) ; g16 = e15 − f16
e17

; g17 = e16
e17

; g18 = e18
e17

h1i = − f1i − g1(i+2)

g11
(i = 1, 3) ;

h1i = − f1i − g1(i+1)

g11
(i = 5, 6) ; h17 = − f17

g11
; h18 = − f18 − g18

g11

and

w1 = −g11
d9u1
dx9

− g13
d7u1
dx7

− g15
d5u1
dx5

− g16
d3u1
dx3

− g17
du1
dx

+ g18 f (x) (24)

Equations (23) and (24) are valid for the geometrically nonlinear analysis of the general unbalanced single-lap
joint. When a12 = 0, b14 = c14 and b16 = c16, Eqs. (23) and (24) can be reduced to the balanced SLJ case.
Therefore, the differential governing equation for the balanced SLJ can be obtained as:⎧⎨

⎩
d5u1
dx5

+ d ′
13

d3u1
dx3

+ d ′
15

du1
dx = d ′

17 f (x) + d ′
18g (x)

d4w1
dx4

+ c14
d2w1
dx2

+ c16 = −c11
d5u1
dx5

− c13
d3u1
dx3

− c15
du1
dx + c17 f (x)

(25)
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where

d ′
1i = b1i − c1i

−c11
(i = 3, 5) ; d ′

17 = c17
c11

; d ′
18 = − 1

c11
.

2.3 Closed-form solutions for the unbalanced SLJ

The characteristic equation of Eq. (23) is:

R
(
R8 + h11R

6 + h13R
4 + h15R

2 + h16
) = 0 (26)

Through numerical calculation, the roots of Eq. (26) can be obtained for one case as:±R1,±R2,±R3± i R4, 0.

2.3.1 Deflections for upper adherend

The longitudinal deflection u1 and transverse deflectionw1 for the upper adherend can be obtained as follows:

u1 = c1e
R1x + c2e

−R1x+c3e
R2x + c4e

−R2x + eR3x [c5 cos (R4x) + c6 sin (R4x)]

+ e−R3x [c7 cos (R4x) + c8 sin (R4x)] + c9 + u1c (27)

w1 = T1c1e
R1x + T2c2e

−R1x + T3c3e
R2x + T4c4e

−R2x + eR3x [T5 cos (R4x) + T6 sin (R4x)]

+ e−R3x [T7 cos (R4x) + T8 sin (R4x)] + w1c (28)

and

u1c =
∫ [

h17
h16

g (x) + h18
h16

f (x)

]
dx

S1 =
(
c5R

9
3 + 9c6R

8
3R4 − 36c5R

7
3R

2
4 − 84c6R

6
3R

3
4 + 126c5R

5
3R

4
4 + 126c6R

4
3R

5
4 − 84c5R

3
3R

6
4

− 36c6R
2
3R

7
4 + 9c5R3R

8
4 + c6R

9
4

)
S2 =

(
c6R

9
3 − 9c5R

8
3R4 − 36c6R

7
3R

2
4 + 84c5R

6
3R

3
4 + 126c6R

5
3R

4
4 − 126c5R

4
3R

5
4 − 84c6R

3
3R

6
4

+ 36c5R
2
3R

7
4 + 9c6R3R

8
4 − c5R

9
4

) ;
S3 =

(
−c7R

9
3 + 9c8R

8
3R4 + 36c7R

7
3R

2
4 − 84c8R

6
3R

3
4 − 126c7R

5
3R

4
4 + 126c8R

4
3R

5
4 + 84c7R

3
3R

6
4

− 36c8R
2
3R

7
4 − 9c7R3R

8
4 + c8R

9
4

)
S4 =

(
−c8R

9
3 − 9c7R

8
3R4 + 36c8R

7
3R

2
4 + 84c7R

6
3R

3
4 − 126c8R

5
3R

4
4 − 126c7R

4
3R

5
4 + 84c8R

3
3R

6
4

+ 36c7R
2
3R

7
4 − 9c8R3R

8
4 − c7R

9
4

)
S5 =

(
c5R

7
3 + 7c6R

6
3R4 − 21c5R

5
3R

2
4 − 35c6R

4
3R

3
4 + 35c5R

3
3R

4
4 + 21c6R

2
3R

5
4 − 7c5R3R

6
4 − c6R

7
4

)

S6 =
(
c6R

7
3 − 7c5R

6
3R4 − 21c6R

5
3R

2
4 + 35c5R

4
3R

3
4 + 35c6R

3
3R

4
4 − 21c5R

2
3R

5
4 − 7c6R3R

6
4 + c5R

7
4

)

S7 =
(
−c7R

7
3 + 7c8R

6
3R4 + 21c7R

5
3R

2
4 − 35c8R

4
3R

3
4 − 35c7R

3
3R

4
4 + 21c8R

2
3R

5
4 + 7c7R3R

6
4 − c8R

7
4

)

S8 =
(
−c8R

7
3 − 7c7R

6
3R4 + 21c8R

5
3R

2
4 + 35c7R

4
3R

3
4 − 35c8R

3
3R

4
4 − 21c7R

2
3R

5
4 + 7c8R3R

6
4+c7R

7
4

)

S9 =
(
c5R

5
3 + 5c6R

4
3R4 − 10c5R

3
3R

2
4 − 10c6R

2
3R

3
4 + 5c5R3R

4
4 + c6R

5
4

)
;

S10 =
(
c6R

5
3 − 5c5R

4
3R4 − 10c6R

3
3R

2
4 + 10c5R

2
3R

3
4 + 5c6R3R

4
4 − c5R

5
4

)
;

S11 =
(
−c7R

5
3 + 5c8R

4
3R4 + 10c7R

3
3R

2
4 − 10c8R

2
3R

3
4 − 5c7R3R

4
4 + c8R

5
4

)
;

S12 =
(
−c8R

5
3 − 5c7R

4
3R4 + 10c8R

3
3R

2
4 + 10c7R

2
3R

3
4 − 5c8R3R

4
4 − c7R

5
4

)
;

S13 = (
c5R

3
3 + 3c6R

2
3R4 − 3c5R3R

2
4 − c6R

3
4

) ; S14 = (
c6R

3
3 − 3c5R

2
3R4 − 3c6R3R

2
4 + c5R

3
4

) ;
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S15 = (−c7R
3
3 + 3c8R

2
3R4 + 3c7R3R

2
4 − c8R

3
4

) ; S16 = (−c8R
3
3 − 3c7R

2
3R4 + 3c8R3R

2
4 + c7R

3
4

) ;
S17 = (c5R3 + c6R4) ; S18 = (c6R3 − c5R4) ; S19 = (c8R4 − c7R3) ; S20 = − (c7R4 + c8R3)

T1 = −
(
g11R

9
1 + g13R

7
1 + g15R

5
1 + g16R

3
1 + g17R1

)
; T2 =

(
g11R

9
1 + g13R

7
1 + g15R

5
1 + g16R

3
1 + g17R1

)
;

T3 = −
(
g11R

9
2+g13R

7
2+g15R

5
2+g16R

3
2+g17R2

)
; T4 =

(
g11R

9
2 + g13R

7
2 + g15R

5
2 + g16R

3
2 + g17R2

)
;

T5 = − (g11S1 + g13S5 + g15S9 + g16S13 + g17S17) ; T6 = − (g11S2 + g13S6 + g15S10 + g16S14 + g17S18) ;
T7 = − (g11S3 + g13S7 + g15S11 + g16S15 + g17S19) ; T8 = − (g11S4+g13S8 + g15S12 + g16S16 + g17S20) ;

w1c = −g17
du1c
dx

+ g18 f (x)

where ci (i = 1, 2, . . ., 9) are the unknown coefficients determined by the boundary condition and the defor-
mation compatibility conditions; u1c is the particular solution for Eq. (23); w1c is determined by the Eq. (24).

2.3.2 Internal force and moment for upper adherend

By substituting Eqs. (27) and (28) into the Eq. (12) and combining Eqs. (1) and (3), the internal forces N1, M1
and Q1 for the upper adherend can be obtained as:

N1 = A1c1R1e
R1x − A1c2R1e

−R1x+A1c3R2e
R2x − A1c4R2e

−R2x

+ eR3x [A1S17 cos (R4x) + A1S18 sin (R4x)] + e−R3x [A1S19 cos (R4x) + A1S20 sin (R4x)] + N1C

(29)

M1 = −D1T1c1R
2
1e

R1x − D1T2c2R
2
1e

−R1x − D1T3c3R
2
2e

R2x − D1T4c4R
2
2e

−R2x

− eR3x [U1 cos (R4x) +U2 sin (R4x)] − e−R3x [U3 cos (R4x) +U4 sin (R4x)] (30)

Q1 = V1e
R1x + V2e

−R1x+V3e
R2x + V4e

−R2x + eR3x [V5 cos (R4x) + V6 sin (R4x)]

+ e−R3x [V7 cos (R4x) + V8 sin (R4x)] + Q1C (31)

and

N1C = A1
du1c
dx

;
U1 = D1

(
T5R

2
3 + 2T6R3R4 − T5R

2
4

) ; U2 = D1
(
T6R

2
3 − 2T5R3R4 − T6R

2
4

) ;
U3 = D1

(
T7R

2
3 − 2T8R3R4 − T7R

2
4

) ; U4 = D1
(
T8R

2
3 + 2T7R3R4 − T8R

2
4

) ;
V1 =

(
t1
2
A1c1R

2
1 − D1T1c1R

3
1 − P

2
T1c1R1

)
; V2 =

(
D1T2c2R

3
1 + t1

2
A1c2R

2
1 + P

2
T2c2R1

)
;

V3 =
(
t1
2
A1c3R

2
2 − D1T3c3R

3
2 − P

2
T3c3R2

)
; V4 =

(
D1T4c4R

3
2 + t1

2
A1c4R

2
2 + P

2
T4c4R2

)
;

V5 =
[
t1
2

(A1S17R3 + A1S18R4) − (U1R3 +U2R4) − P

2
(T5R3 + T6R4)

]
;

V6 =
[
(U1R4 −U2R3) + t1

2
(A1S18R3 − A1S17R4) − P

2
(T6R3 − T5R4)

]
;

V7 =
[
(U3R3 −U4R4) + t1

2
(A1S20R4 − A1S19R3) − P

2
(T8R4 − T7R3)

]
;

V8 =
[
(U4R3 +U3R4) − t1

2
(A1S20R3 + A1S19R4) + P

2
(T8R3 + T7R4)

]
;

Q1C = t1
2
A1

d2u1c
dx2

− P

2

dw1c

dx
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2.3.3 Interfacial stress

Substituting Eqs. (28), (29) and (31) into Eqs. (1) and (2) yields:

τ (x) = A1

b
c1R

2
1e

R1x + A1

b
c2R

2
1e

−R1x+
A1

b
c3R

2
2e

R2x + A1

b
c4R

2
2e

−R2x

+ eR3x [V9 cos (R4x) + V10 sin (R4x)] + e−R3x [V11 cos (R4x) + V12 sin (R4x)] + τC (32)

σ (x) = W1c1e
R1x + W2c2e

−R1x+W3c3e
R2x + W4c4e

−R2x

+ eR3x [W5 cos (R4x) + W6 sin (R4x)] + e−R3x [W7 cos (R4x) + W8 sin (R4x)] (33)

and

V9 = A1

b

(
c5R

2
3 + 2c6R3R4 − c5R

2
4

) ; V10 = A1

b

(
c6R

2
3 − 2c5R3R4 − c6R

2
4

) ;

V11 = A1

b

(
c7R

2
3 − 2c8R3R4 − c7R

2
4

) ; V12 = A1

b

(
c8R

2
3 + 2c7R3R4 − c8R

2
4

) ; τC = A1

b

d2u1c
dx2

W1 =
(
t1A1

2
R3
1 − 1

b
D1T1R

4
1 − P

2b
T1R

2
1

)
; W2 = −

(
1

b
D1T2R

4
1 + t1A1

2
R3
1 + P

2b
T2R

2
1

)
;

W3 =
(
t1A1

2
R3
2 − 1

b
D1T3R

4
2 − P

2b
T3R

2
2

)
; W4 = −

(
1

b
D1T4R

4
2 + t1A1

2
R3
2 + P

2b
T4R

2
2

)
;

W5 =
[
bt1
2

(V9R3 + V10R4) − 1

b

(
U1R

2
3 + 2U2R3R4 −U1R

2
4

) − P

2b

(
T5R

2
3 + 2T6R3R4 − T5R

2
4

)] ;

W6 =
[
bt1
2

(V10R3 − V9R4) − 1

b

(
U2R

2
3 − 2U1R3R4 −U2R

2
4

) − P

2b

(
T6R

2
3 − 2T5R3R4 − T6R

2
4

)] ;

W7 =
[
1

b

(−U3R
2
3 + 2U4R3R4 +U3R

2
4

) + bt1
2

(V12R4 − V11R3) − P

2b

(
T7R

2
3 − 2T8R3R4 − T7R

2
4

)] ;

W8 =
[
1

b

(−U4R
2
3 − 2U3R3R4 +U4R

2
4

) − bt1
2

(V12R3 + V11R4) − P

2b

(
T8R

2
3 + 2T7R3R4 − T8R

2
4

)] ;

2.3.4 Deflections for lower adherend

Substituting Eqs. (27), (28), (32) and (33) into Eqs. (13) and (14) yields:

w2 = X1c1e
R1x + X2c2e

−R1x + X3c3e
R2x + X4c4e

−R2x

+ eR3x [X5 cos (R4x) + X6 sin (R4x)] + e−R3x [X7 cos (R4x) + X8 sin (R4x)] + w1c (34)

u2 = X9c1e
R1x + X10c2e

−R1x+X11c3e
R2x + X12c4e

−R2x

+ eR3x [X13 cos (R4x) + X14 sin (R4x)] + e−R3x [X15 cos (R4x) + X16 sin (R4x)] + u2C (35)

and

X1 =
[
T1 −

(
Cn1 + Cn2 + ta

Ea

)
W1

]
; X2 =

[
T2 −

(
Cn1 + Cn2 + ta

Ea

)
W2

]
;

X3 =
[
T3 −

(
Cn1 + Cn2 + ta

Ea

)
W3

]
; X4 =

[
T4 −

(
Cn1 + Cn2 + ta

Ea

)
W4

]
;

X5 =
[
T5 −

(
Cn1 + Cn2 + ta

Ea

)
W5

]
; X6 =

[
T6 −

(
Cn1 + Cn2 + ta

Ea

)
W6

]
;

X7 =
[
T7 −

(
Cn1 + Cn2 + ta

Ea

)
W7

]
; X8 =

[
T8 −

(
Cn1 + Cn2 + ta

Ea

)
W8

]
;

X9 =
{
1 + t1

2
T1R1 + t2

2

[
T1 −

(
Cn1 + Cn2 + ta

Ea

)
W1

]
R1 −

(
Cs1 + Cs2 + ta

Ga

)
A1

b
R2
1

}
;
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X10 =
{
1 − t1

2
T2R1 − t2

2

[
T2 −

(
Cn1 + Cn2 + ta

Ea

)
W2

]
R1 −

(
Cs1 + Cs2 + ta

Ga

)
A1

b
R2
1

}
;

X11 =
{
1 + t1

2
T3R2 + t2

2

[
T3 −

(
Cn1 + Cn2 + ta

Ea

)
W3

]
R2 −

(
Cs1 + Cs2 + ta

Ga

)
A1

b
R2
2

}
;

X12 =
{
1 − t1

2
T4R2 − t2

2

[
T4 −

(
Cn1 + Cn2 + ta

Ea

)
W4

]
R2 −

(
Cs1 + Cs2 + ta

Ga

)
A1

b
R2
2

}
;

X13 = c5 + t1
2

(T5R3 + T6R4) + t2
2

[
T5R3 −

(
Cn1 + Cn2 + ta

Ea

)
R3W5 + T6R4

−
(
Cn1 + Cn2 + ta

Ea

)
R4W6

]
−

(
Cs1 + Cs2 + ta

Ga

)
V9;

X14 = c6 + t1
2

(T6R3 − T5R4) + t2
2

[
T6R3 −

(
Cn1 + Cn2 + ta

Ea

)
R3W6 − T5R4

+
(
Cn1 + Cn2 + ta

Ea

)
R4W5

]
−

(
Cs1 + Cs2 + ta

Ga

)
V10;

X15 = c7 + t1
2

(T8R4 − T7R3) + t2
2

[
T8R4 −

(
Cn1 + Cn2 + ta

Ea

)
R4W8 − T7R3

+
(
Cn1 + Cn2 + ta

Ea

)
R3W7

]
−

(
Cs1 + Cs2 + ta

Ga

)
V11;

X16 = c8 − t1
2

(T8R3 + T7R4) + t2
2

[
−T8R3 +

(
Cn1 + Cn2 + ta

Ea

)
R3W8 − T7R4

+
(
Cn1 + Cn2 + ta

Ea

)
R4W7

]
−

(
Cs1 + Cs2 + ta

Ga

)
V12;

u2C = c9 + u1c + t1 + t2
2

dw1c

dx
−

(
Cs1 + Cs2 + ta

Ga

)
τC

2.3.5 Internal force and moment for lower adherend

By substituting Eqs. (34) and (35) into the Eq. (12) and combining Eqs. (1) and (3), the internal forces N2, M2
and Q2 for the lower adherend can be obtained as:

M2 = −D2
d2w2

dx2
= Y1c1e

R1x + Y2c2e
−R1x + Y3c3e

R2x + Y4c4e
−R2x

+ eR3x [Y5 cos (R4x) + Y6 sin (R4x)] + e−R3x [Y7 cos (R4x) + Y8 sin (R4x)] (36)

N2 = A2X9R1c1e
R1x − A2X10R1c2e

−R1x+A2X11R2c3e
R2x − A2X12R2c4e

−R2x

+ eR3x [Y9 cos (R4x) + Y10 sin (R4x)] + e−R3x [Y11 cos (R4x) + Y12 sin (R4x)] + N2C (37)

Q2 = Z1c1e
R1x + Z2c2e

−R1x + Z3c3e
R2x + Z4c4e

−R2x

+ eR3x [Z5 cos (R4x) + Z6 sin (R4x)] + e−R3x [Z7 cos (R4x) + Z8 sin (R4x)] + Q2C (38)

and

Y1 = −D2

[
T1 −

(
Cn1 + Cn2 + ta

Ea

)
W1

]
R2
1; Y2 = −D2

[
T2 −

(
Cn1 + Cn2 + ta

Ea

)
W2

]
R2
1;

Y3 = −D2

[
T3 −

(
Cn1 + Cn2 + ta

Ea

)
W3

]
R2
2; Y4 = −D2

[
T4 −

(
Cn1 + Cn2 + ta

Ea

)
W4

]
R2
2;

Y5 = −D2

⎡
⎣ T5R2

3 −
(
Cn1 + Cn2 + ta

Ea

)
R2
3W5 + 2T6R3R4 − 2

(
Cn1 + Cn2 + ta

Ea

)
R3R4W6

+
(
Cn1 + Cn2 + ta

Ea

)
R2
4W5 − T5R2

4

⎤
⎦ ;
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Y6 = −D2

⎡
⎣ T6R2

3 −
(
Cn1 + Cn2 + ta

Ea

)
R2
3W6 − 2T5R3R4 + 2

(
Cn1 + Cn2 + ta

Ea

)
R3R4W5

+
(
Cn1 + Cn2 + ta

Ea

)
R2
4W6 − T6R2

4

⎤
⎦ ;

Y7 = −D2

⎡
⎣+T7R2

3 −
(
Cn1 + Cn2 + ta

Ea

)
R2
3W7 − 2T8R3R4 + 2

(
Cn1 + Cn2 + ta

Ea

)
R3R4W8

+
(
Cn1 + Cn2 + ta

Ea

)
R2
4W7 − T7R2

4

⎤
⎦ ;

Y8 = −D2

⎡
⎣+T8R2

3 −
(
Cn1 + Cn2 + ta

Ea

)
R2
3W8 + 2T7R3R4 − 2

(
Cn1 + Cn2 + ta

Ea

)
R3R4W7

+
(
Cn1 + Cn2 + ta

Ea

)
R2
4W8 − T8R2

4

⎤
⎦ ;

Y9 = A2 (X13R3 + X14R4) ; Y10 = A2 (X14R3 − X13R4) ; Y11 = A2 (X16R4 − X15R3) ;
Y12 = −A2 (X16R3 + X15R4) ; N2C = A2

du2C
dx

;

Z1 =
{
Y1R1 + t2A1

2
R2
1 − P

2

[
T1 −

(
Cn1 + Cn2 + ta

Ea

)
W1

]
R1

}
;

Z2 =
{
t2A1

2
R2
1 − Y2R1 − P

2

[
T2 −

(
Cn1 + Cn2 + ta

Ea

)
W2

]
R1

}
;

Z3 =
{
Y3R2+

t2A1

2
R2
2 − P

2

[
T3 −

(
Cn1 + Cn2 + ta

Ea

)
W3

]
R2

}
;

Z4 =
{
t2A1

2
R2
2 − Y4R2 − P

2

[
T4 −

(
Cn1 + Cn2 + ta

Ea

)
W4

]
R2

}
;

Z5 = (Y5R3 + Y6R4) + bt2
2

V9 − P

2

[
T5R3 −

(
Cn1 + Cn2 + ta

Ea

)
R3W5 + T6R4

−
(
Cn1 + Cn2 + ta

Ea

)
R4W6

]
;

Z6 = (Y6R3 − Y5R4) + bt2
2

V10 − P

2

[
T6R3 −

(
Cn1 + Cn2 + ta

Ea

)
R3W6 − T5R4

+
(
Cn1 + Cn2 + ta

Ea

)
R4W5

]
;

Z7 = (Y8R4 − Y7R3) + bt2
2

V11 − P

2

[
T8R4 −

(
Cn1 + Cn2 + ta

Ea

)
R4W8 − T7R3

+
(
Cn1 + Cn2 + ta

Ea

)
R3W7

]
;

Z8 = bt2
2

V12 − (Y8R3 + Y7R4) − P

2

[
−T8R3 +

(
Cn1 + Cn2 + ta

Ea

)
R3W8 − T7R4

+
(
Cn1 + Cn2 + ta

Ea

)
R4W7

]
;

Q2C = bt2
2

τC − P

2

dw1c

dx

2.3.6 Deflections for the outer adherend

Based on the classical beam theory, the governing equations for the region 3 and region 4 can be obtained as
[20]:

⎧⎨
⎩

A1
du3
dx3

= P

−D1
d2w3
dx23

= P (−w3 − αx3)
(0 ≤ x3 ≤ l1) (39)
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⎧⎨
⎩

A2
du4
dx4

= P

−D2
d2w4
dx24

= P
[
−w4 − α (l1 + L + x4) + t1+t2+2ta

2

] (0 ≤ x4 ≤ l2) (40)

The boundary conditions for the region 3 and region 4 can be expressed as:⎧⎨
⎩
x3 = 0 u3 = 0, w3 = 0

x3 = l1 − D1
d2w3
dx23

= −M∗
1

;
{
x4 = 0 − D2

d2w4
dx24

= M∗
2

x4 = l2 w4 = 0
(41)

In terms of Eqs. (41), (39) and (40) are solved and the deflections for the outer adherends can be obtained as:⎧⎨
⎩
u3 = P

A1
x3

w3 = M∗
1 sinh(β1x3)
P sinh(β1l1)

− αx3
(0 ≤ x3 ≤ l1) (42)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u4 = P
A2
x4 + C

w4 = −M∗
2
P cosh (β2x4) +

M∗
2
P coth (β2l2) sinh (β2x4) + t1+t2+2ta

2 − α (l1 + L + x4)

(0 ≤ x4 ≤ l2) (43)

where β1 = √
P/D1; β2 = √

P/D2.

2.3.7 Boundary condition

The unknown coefficients c1, c2, c3, c4, c5, c6, c7, c8, c9 and the edge moments M∗
1 , M

∗
2 , Q

∗
1, Q

∗
2 can be

determined by following boundary conditions, deformation compatibility conditions and global equilibrium
conditions:

N1 (0) = P, Q1 (0) = −Q∗
1, M1 (0) = −M∗

1 (44)

N2 (L) = P, Q2 (L) = −Q∗
2, M2 (L) = M∗

2 (45)

w1|x=0 = w3|x3=l1 ,
dw1

dx

∣∣∣∣
x=0

= dw3

dx3

∣∣∣∣
x3=l1

(46)

w2|x=L = w4|x4=0 ,
dw2

dx

∣∣∣∣
x=L

= dw4

dx4

∣∣∣∣
x4=0

(47)

u1|x=0 = u3|x3=l1 (48)

Q∗
1 = Q∗

2 = 1

L

[
P (t1 + t2 + 2ta)

2
− M∗

1 − M∗
2

]
(49)

The coefficients c1, c2, c3, c4, c5, c6, c7, c8, c9 and M∗
1 , M

∗
2 , Q

∗
1 and Q∗

2 can be determined through solving
Eqs. (44)–(49). Then, the edge moment factor k1 and k2 can be obtained as follows:

k1 = 2M∗
1

P (t1 + ta)
, k2 = 2M∗

2

P (t2 + ta)
(50)

3 Verification and discussion

In order to validate the applicability and accuracy of the present model, the edgemoment factors, the transverse
deflections of bonded region and interfacial stress distributions for the unbalanced SLJ are determinedwith four
different methods (i.e., the present model, nonlinear finite element analysis (NFEA), Cheng’s model or B-C
model) in this section. Then, the comparisons among the solutions of the four different models are conducted.
The geometrical parameters and material properties for the unbalanced SLJ are shown in Table 1. In case 1, 2
and 3, Ea/E1 = 0.01, 0.05 and 0.1 corresponding to flexible, semiflexible and inflexible adhesive materials,
respectively.
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Table 1 Material properties and geometrical parameters for unbalanced SLJ

Case Material properties Geometrical parameters P (N)

Upper adherend Lower adherend Adhesive layer

1 E1 = 70GPa, ν1 = 0.34 E2 = 140GPa, ν2 = 0.34 Ea = 0.7GPa, νa = 0.4 l1 = l2 = 40mm, t1 = t2 =
2mm, ta = 0.2mm, b = 1mm

600

2 E1 = 70GPa, ν1 = 0.34 E2 = 280GPa, ν2 = 0.34 Ea = 3.5GPa, νa = 0.4 l1 = l2 = 20mm, t1 = 2mm, t2 =
1mm, ta = 0.2mm, b = 1mm

600

3 E1 = 70GPa, ν1 = 0.34 E2 = 35GPa, ν2 = 0.34 Ea = 7.0GPa, νa = 0.4 l1 = l2 = 80mm, t1 = 2mm, t2 =
3mm, ta = 0.2mm, b = 1mm

500

(a)

(b) (c)

Fig. 5 Boundary conditions and refined mesh near two free ends of adhesive layer for unbalanced SLJ: a boundary condition; b
refined mesh for region A; c refined mesh for region B

3.1 Finite element model

The geometrically nonlinear finite element model for the unbalanced SLJ under the static tensile loading is
conducted with the finite element software ANSYS. The loading and boundary conditions for the typical
FE model are shown in Fig. 5a. Two adherends and the adhesive layer are meshed by the 2D plane strain
eight-node element (i.e., Plane82 element), which has large deflection capability. The material linearity is
employed in the geometrically nonlinear finite element model. In order to determine accurately the peak
interface stresses near two free ends of the adhesive layer, a very fine mesh with the smallest element of
dimensions 0.05mm × 0.02mm is used to mesh region A and region B, as shown in Fig. 5b. The adhesive
layer is divided into 10 sections along its thickness. During the geometrically nonlinear analysis for the typical
FEmodel, the Newton’s method is used and 40 equal load increments are employed. Based on the stress results
using the NFEA, the edge moment factors for the unbalanced SLJ can be determined as follows [11,29,38]:

⎧⎪⎨
⎪⎩

σbending1 = σB−σA
2 , MNF

1 = bt21σbending1
6 , kNF1 = bt21σbending1

3P(t1+ta)

σbending2 = σC−σD
2 , MNF

2 = bt22σbending2
6 , kNF2 = bt22σbending2

3P(t2+ta)

(51)
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where σA, σB ,σC and σD are the longitudinal stresses of top/bottom surface points A, B, C and D, which are
shown in Fig. 5b, c; σbending1 and σbending2 are bending stresses at two edge sections for the bonded region,
respectively; MNF

1 , MNF
2 are bending moments at two edge sections for the bonded region, respectively; kNF1

and kNF2 are bending moment factors at two edge sections for the bonded region, respectively.

3.2 Results and discussion

The edge moment factors for the unbalanced SLJ under static tensile loading obtained with the present model,
Cheng’s model and NFEA are presented along the parameter β1(L/2) in Figs. 6, 7 and 8. Similarly, the

(a) (b)

Fig. 6 Edge moment factors for unbalanced SLJ under case 1: a edge moment factor k1; b edge moment factor k2

(a) (b)

Fig. 7 Edge moment factors for unbalanced SLJ under case 2: a edge moment factor k1; b edge moment factor k2

(a) (b)

Fig. 8 Edge moment factors for unbalanced SLJ under case 3: a edge moment factor k1; b edge moment factor k2
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(a) (b)

Fig. 9 Transverse deflections for unbalanced SLJ under case 1: a L = 100; b L = 200

(a) (b)

Fig. 10 Transverse deflections for unbalanced SLJ under case 2: a L = 100; b L = 200

(a) (b)

Fig. 11 Transverse deflections for unbalanced SLJ under case 3: a L = 100; b L = 220

transverse deflections of the overlap region and interfacial stress components in the middle plane of adhesive
layer for the unbalanced SLJ determined with the present model, Cheng’s model (or B-C model) and NFEA
are presented along the normalized bonded length (i.e., ξ = x/L) in Figs. 9, 10, 11, 12, 13 and 14.

3.2.1 Edge moment factors

The edge moment factors for the unbalanced SLJ under case 1, 2 and 3 are shown in Figs. 6, 7 and 8. From
Figs. 6, 7 and 8, it can be noted that the edgemoment factors k1 and k2 decrease as β1(L/2) increases gradually.
This phenomenon is induced by the eccentric loading path of unbalanced SLJ. Meanwhile, the edge moment
factors determined by the present model agree extremely well with the results of NFEA. The relative errors
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(a) (b)

(c) (d)

Fig. 12 Interfacial stresses for unbalanced SLJ with L = 200 under case 1: a shear stress along 0 ≤ ξ ≤ 0.2; b peel stress along
0 ≤ ξ ≤ 0.2; c shear stress along 0.8 ≤ ξ ≤ 1.0; d peel stress along 0.8 ≤ ξ ≤ 1.0

between the present model and NFEA are<7%. Comparatively speaking, the results predicted by the Cheng’s
model have more deviations, especially for the long SLJ (i.e., β1(L/2) ≥ 1). The most relative error between
the Cheng’s model and NFEA is more than 30% for the unbalanced long SLJ under case 1. The excessive
deviation is due to the fact that the geometric nonlinear effect of the overlap is neglected when the Cheng’s
model determined the edge moment factors. And the present model obtains the edge moment factors through
considering simultaneously the effects of the interfacial compliance and the large deflection for the overlap
and the adherends. That is, for the long unbalanced SLJ, the effects of the interfacial compliance and the large
deflection of the overlap region and the adherends cannot be neglected when the edge moment factors are
determined. Therefore, the present model considering simultaneously the geometrically nonlinear effect and
the interface compliance can predict accurately the edge moment factors for the unbalanced SLJ, whatever the
SLJ composed of flexible, semiflexible and inflexible adhesive layer.

3.2.2 Transverse deflections for bonded region

From Figs. 9, 10 and 11, it can be obtained that the transverse deflections in overlap region of the long
unbalanced SLJ predicted by the present model correlate extremely well with the results of the NFEA under
case 1, 2 and 3. Both the present analysis and the NFEA are the displacement-based solutions. The good
agreement in transverse deflections of the upper and lower adherend between the results predicted by present
model and the NFEA indicates vividly that the governing Eqs. (23) and (24) capture the main features of
the geometrically nonlinearity for the unbalanced SLJ under static tensile load. Comparatively speaking, the
Cheng’s model which neglected the geometrically nonlinear effect of the overlap predicted the transverse
deflections of overlap regions for the long unbalanced SLJ with large deviations. Therefore, the effects of the
interfacial compliance and the large deflection for the overlap and the adherends should not be neglected when
the transverse deflections of the overlap regions are determined.
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(a) (b)

(c) (d)

Fig. 13 Interfacial stresses for unbalanced SLJ with L = 200 under case 2: a shear stress along 0 ≤ ξ ≤ 0.2; b peel stress along
0 ≤ ξ ≤ 0.2; c shear stress along 0.8 ≤ ξ ≤ 1.0; d peel stress along 0.8 ≤ ξ ≤ 1.0

3.2.3 Interfacial stress

In Figs. 12, 13 and 14, the comparisons for the shear stresses and peel stresses of adhesive interface in the
regions of 0 ≤ ξ ≤ 0.2 and 0.8 ≤ ξ ≤ 1.0 are presented. Due to the fact that the present model and B-C
model have the disadvantage of neglecting the variation of adhesive stresses through the thickness, the adhesive
stresses at middle plane are chosen for the results of NFEA, where the stress distribution is variable across the
thickness. From Figs. 12a, c, 13a, c and 14a, c, it can be obtained that the interfacial shear stresses of two free
ends determined by NFEA approach zero after reaching the peak values near the two free ends. The present
model and B-Cmodel based on the one-dimensional beam theory cannot model the edge stress-free conditions,
which can be captured using the two-dimensional NFEA. Compared with the B-C model, the present model
based on the flexible interface theory predicts more accurate shear stresses for the long unbalanced SLJ. Except
for two free ends, the shear stresses of adhesive interface determined by the present model correlate extremely
well with the results predicted by NFEA. The small differences between the results of present model and
the NFEA are induced to treat linearly the nonlinear terms in Eq. (18) and neglect the nonlinear terms in
Eqs. (10) and (13). Similarly, from the Figs. 12b, d, 13b, d and 14b, d, it can be noted that the peel stresses of
adhesive interface predicted by the present model agree well with the results determined by the NFEA. Due
to neglecting the effect of geometrically nonlinearity for overlap region and interfacial compliance, the B-C
model predicts the peel stresses of the adhesive interface with large deviations. Therefore, for adhesive stress
analysis of the unbalanced SLJ, the effects of the interfacial compliance and the large deflection for the overlap
and the adherends cannot be neglected.

Generally speaking, the geometrically nonlinear model based on flexible interface theory is validated
through comparing with Cheng’s model, B-C model and the NFEA. It is indicated vividly that the present
one-dimensional beam model can predicate accurately the edge moment factors, transverse deflections and
interfacial stresses for the unbalanced SLJ.
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(a) (b)

(c) (d)

Fig. 14 Interfacial stresses for unbalanced SLJ with L = 220 under case 3: a shear stress along 0 ≤ ξ ≤ 0.2; b peel stress along
0 ≤ ξ ≤ 0.2; c shear stress along 0.8 ≤ ξ ≤ 1.0; d peel stress along 0.8 ≤ ξ ≤ 1.0

(a) (b)

Fig. 15 Edge moment factors for unbalanced SLJ vary with different E2/E1: a edge moment factor k1; b edge moment factor k2

4 Parametric study

For the unbalanced SLJ under tensile loading, it is vital whether the edge moment factors are determined with
high accuracy. Therefore, in order to further understand the edge moment factors for the unbalanced SLJ,
the parametric studies concerning Young’s modulus ratio and thickness ratio are performed using the present
model in this section.

4.1 Effect of Young’s modulus ratio E2/E1

The edge moment factors for the unbalanced SLJ with different E2/E1 are shown in Fig. 15. From the
Fig. 15a, it can be noted that the edge moment factor k1 decreases gradually as the Young’s modulus ratio
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(a) (b)

Fig. 16 Edge moment factors for unbalanced SLJ vary with different t2/t1: a edge moment factor k1; b edge moment factor k2

E2/E1 increases when β1(L/2) < 4. While β1(L/2) approaches 10, the edge moment factor k1 increases
firstly and then decreases as the E2/E1 increases. Similarly, from Fig. 15b it is obtained that the edge moment
factor k2 increases gradually as E2/E1 increases when β1(L/2) < 6. As β1(L/2) approaches 10, the edge
moment factor k2 decreases firstly and then increases when the E2/E1 increases.

4.2 Effect of thickness ratio t2/t1

From Fig. 16a, it can be obtained that the edge moment factor k1 for the unbalanced SLJ increases as the
thickness ratio t2/t1 increases gradually. Compared with the condition of β1(L/2) < 4, the increase in
amplifications of k1 diminish when β1(L/2) ≥ 4, especially t2/t1 from 2 to 3. From Fig. 16b, it can be noted
that the edge moment factor k2 increases gradually as t2/t1 increases when 3 ≤ β1(L/2) ≤ 7.5. In contrast,
when β1(L/2) approaches 0.7, the edge moment factor k2 decreases gradually when the E2/E1 increases.

5 Conclusions

In this paper, the one-dimensional beam model considering simultaneously the effects of interface compliance
and large deflection for the overlap and the adherends is presented. The edge moment factors, transverse
deflections and interfacial stress distributions for the unbalanced SLJ under static tensile loading are predicted
with the present solutions. Meanwhile, the applicability and accuracy of the present model are validated
through comparing with the Cheng’s model, B-C model and the results of NFEA. Finally, the effects of
Young’s modulus ratio and thickness ratio on the edge moment factors are studied using the present model.
Some main conclusions are drawn, as follows:

(1) The governing equations based on the displacement compatibility condition of the flexible interface theory
can capture the main features of geometrical nonlinearity for the unbalanced SLJ under static tensile
loading.

(2) The present model can predict accurately the edge moment factors, transverse deflections and interfacial
stresses for the unbalanced SLJ, whatever the unbalanced SLJ is composed of flexible, semiflexible or
inflexible adhesive layer.

(3) As E2/E1 increases, the edge moment factor k1 decreases when β1(L/2) < 4 and the edge moment
factor k2 increases gradually when β1(L/2) < 6; as t2/t1 increases, the edge moment factor k1 increases
accordingly and the edge moment factor k2 increases gradually when 3 ≤ β1(L/2) ≤ 7.5.

(4) To further understand the nonlinear behavior of the unbalanced SLJ under static tensile loading, the
theoretical studies considering the effects of the geometrically nonlinearity and material nonlinearity
should be performed in the future.
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