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Abstract A high-order theory for beams based on expansion of the two-dimensional (2-D) equations of ther-
moelasticity and heat conductivity into Legendre polynomials series has been developed. The 2-D equations
of thermoelasticity and heat conductivity have been expanded into Legendre polynomials series in terms of a
thickness coordinate. Therefore, all equations of thermoelasticity and heat conductivity including Hooke’s and
Fourier’s laws have been transformed into corresponding equations for coefficients of Legendre polynomials
expansion. Then, the system of differential equations in terms of displacements and temperature and bound-
ary conditions for the coefficients of Legendre polynomials expansion has been obtained. Cases of the first
and second approximations have been considered in detail. For obtained boundary-value problems, a finite
element method has been used and numerical calculations have been done with COMSOL Multiphysics and
MATLAB. Developed theory has been applied for study stress–strain state and temperature distribution in the
microelectromechanical and nanoelectromechanical systems and structures.

Keywords High-order beam theory · Legendre polynomials · MEMS · NEMS · Thermoelasticity

1 Introduction

Microelectromechanical systems (MEMS) are microscale devices or miniature embedded systems involving
one or more components that enable higher-level functionality. MEMS have a characteristic length scale
between 1 mm and 1 µm. Similarly, Nanoelectromechanical systems (NEMS) are nanoscale devices. NEMS
have a characteristic length scale between 1 nm and 100 µm [1,6,12,13,30]. The micro- and nanodevices are
widely used in engineering industries, communications, defense systems, health care, information technology,
environmental monitoring, etc. [12,13,21]. Fabrication of the MEMS and NEMS rapidly increases from year
to year. Therefore modeling, simulation and mathematical analysis are very important for optimizing process
of their fabrication and further safety exploration.

At the beginning of MEMS developments, the majority of research has been directed toward methods of
fabrication with little presented on modeling and simulation. Hence, researchers had been using simple math-
ematical models and analytical methods based on crude approximations or complicated FEM-based models
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using software that are not geared for MEMS. The result of either approach was simulation results that con-
tradict or in disagreement with the laboratory data [11,15,29,31,35,47]. Therefore, there is a great need for
creation of new relatively simple and adequate mathematical models and methods for MEMS and NEMS sim-
ulation. Indeed, right mathematical models and simulation tools allow designers to develop devices of higher
quality and improved features based on robust knowledge gained from simulation results, reducing the design
time and cost. They also allow designers to optimize the performance of existing devices and design novel
devices. This is one of the biggest advantages of simulation tools. They increase our knowledge and help us
gain solid understanding of the behavior of MEMS and NEMS devices and the natural phenomena associated
with them. Because MEMS and NEMS touch on so many application areas, the ideal simulation tool must
follow, suite and provide a vast range of coupled multiphysical effects. In reality, no single tool caters to all
the needs of the MEMS community. Hence, MEMS developers, designers and researchers have to develop
new mathematical models and appropriate simulation tools for that task. That is why scientists have been
actively discussing the possibility of application methods of classical mechanics to micro- and nanoobjects.
In the references [9,17,18,27], it was shown that in spite of the fact that the mechanical characteristics corre-
sponding to nanosize structure elements such as beams and plates can differ from mechanical characteristics
corresponding to structures of the same material, which have “normal” geometrical sizes, classical elasticity
can be extended to the micro- and nanoscale. In application of the continuum mechanics theory to micro- and
nanoscale objects have to be taken into account the physical phenomenon that can occur in such structures and
devices [4,5,10,15,37,39,40,49].

Thermal actuation is the most widely used in variousMEMS-based applications due to the simplicity of the
fabrication process, favorable scaling laws, ability to develop large forces, low power consumption and possi-
bility of integration with a standard integrated circuit environment [11,20,22,32,34,43]. Thermally actuated
MEMS are a special class of MEMS that use thermal expansion force as the driving mechanism in sensing and
actuation. They are currently used in automotive electronics, medical equipment, smart portable electronics,
hard disk drives and computer peripherals, etc., as transistors, switches, micromirrors, accelerometers, pres-
sure sensors, micropumps, moving valves and microgrippers [6,21,22,26,28,38,47,50]. Thermally actuated
MEMS also find applications in the characterization of the material properties of thin films, such as elastic
constants and residual stresses. Additional information and comprehensive review of modeling of thermally
actuated MEMS can be found in [1,6,7,15,21,26,30,33,37,48], etc.

In many cases, the MEMS and NEMS structures and devices are exposed to high temperature. As it is
reported in [11,19,20,43], temperature in thermal actuators reaches values 300–600 ◦Cand even can exceed the
value 900 ◦C[14,29,31,45]. Therefore, thermal analysis and optimization of such structures are very important.
In the case if temperature is distributed irregularly or deformation caused by temperature field are restricted,
thermomechanical loading in the same way as mechanical loading can cause significant stress concentrations
and in some circumstances can result in structural destruction or even failure [5,16,30,37,40,42,46]. This
clearly shows the importance of accurate stress analysis of thermal loaded MEMS and NEMS structures.
Therefore, development of new mathematical models and simulation tools for MEMS and NEMS represents
an essential need for designers and researchers to advance the technology to the next levels.

ManyMEMSandNEMSstructures and devices can be considered as thin-walled structures that are exposed
to high-temperature fields and are in thermal contact with other structural elements and massive bases through
thin heat-conducting layers. Often in the analysis and simulation of such devices, classic models based on
Euler–Bernoulli or Timoshenko hypothesis give an inaccurate result. For accurate analysis and simulation
of such structures and devices, high-order theories may be more preferable. These theories are based on
expansion of the stress–strain and temperature field components into polynomial series in terms of thickness.
It was proposed byCauchy and Poisson and at that timewas not popular. Significant extension and development
of that method were done by Kil’chevskii [26]. Vekua has used Legendre polynomials for the expansion of
the equations of elasticity and reduction of the 3-D problem to 2-D one [44]. Such an approach has significant
advantages because Legendre polynomials are orthogonal and as result obtained equations are simpler. This
approach was extended and applied to dynamical thermoelasticity in [16,36]. More applications and recent
developments in the theory of thin-walled structures can be found in [2,3,24,35,41].

The approach based on the use of Legendre polynomials series expansion has been applied to thermoelastic
contact problems of plates and shells whenmechanical and thermal conditions are changed during deformation
in our previous publications [24,51–59]. The mathematical formulation, differential equations and contact
conditions for the cases of plates and axisymmetric cylindrical shells have been developed in [24,52]. Then,
proposed approach and methodology were further developed and extended to non-stationary processes in
[51,53], thermal and mechanical contact of plates and shells with rigid bodies through heat-conducting layer in
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[58], thermoelasticity of the laminated compositematerialswith possibility of delamination andmechanical and
thermal contact in temperature field in [55], the pencil-thin nuclear fuel rods modeling in [54], electrostatically
actuated MEMS in [58] and functionally graded shells in [56,59]. Analysis and comparison with classical
theory of thermoelasticity of plated and shells have been done in [57].

In this paper, an approach based on expansion of the 2-D equations of thermoelasticity and heat conductivity
into Fourier series in terms of Legendre polynomials has been developed and applied to high-order theory of
beams. For that purpose, we expand functions that describe stress–strain and temperature state of thermoelastic
body into Fourier series in terms of Legendre polynomials with respect to thickness and find corresponding
relations of thermoelasticity and heat conductivity for Fourier coefficients of those expansions. Then, using
techniques developed in our previous publications, we find system of differential equations and boundary
conditions for Fourier coefficients. Case of first and second approximation theory is considered in more detail,
and all relations and equations are explicitly presented.Anessential new feature of the approachproposedhere is
taking into account the change of the conditions of heat exchange between the beam and solid foundation during
the beam deformation. As a result of such approach, the equations of elasticity and heat conductivity become
coupled and nonlinear even for statically applied mechanical and thermal load. For the numerical solution
of the developed equations, the FEM implemented in the commercial software COMSOL Multiphysics and
MATLAB have been used. Developed models used for thermoelastic analysis of the MEMS have been done
using developed first- and second-order theories. Comparative analysis of the results obtained with and without
considering influence of the beam deformation during thermal load has been done.

2 The thermally based MEMS/NEMS, their design and simulation

Exploration of the MEMS and NEMS rapidly increases from year to year. The MEMS and NEMS are a
process technology used to create tiny integrated devices or systems that combine mechanical and electrical
components. They are fabricated using integrated circuit (IC) batch processing techniques and can range in size
from a few nanometers to millimeters. These devices (or systems) have the ability to sense, control and actuate
on the micro-/nanoscale and generate effects on the macroscale. In the most general form, MEMS/NEMS
consist of mechanical nanodevices, microdevices and structures, such as: transducers, sensors, actuators,
valves, pumps, flow channels, gears, turbines, different engines, mechanically functional structures and other
electronic devices all integrated onto the same silicon chip [1,6,12,13,21,26,30,33,42].

A transducer is a device that transforms one form of signal or energy into another form. The term transducer
can therefore be used to include both sensors and actuators and is the most generic and widely used term in
MEMS/NEMS.A sensor is a device thatmeasures information froma surrounding environment and provides an
electrical output signal in response to the parameter it measured. It detects changes in the system environment
by measuring mechanical, thermal, magnetic, chemical or electromagnetic information or phenomena. An
actuator is a type of device for moving or controlling a mechanism or system. It is operated by a source of
energy, typically electric or thermal current, hydraulic or pneumatic pressure and converts that energy into an
action. It can create a force to manipulate itself, other mechanical devices, or the surrounding environment to
perform some useful function.

Because of their small size, light weight, high resolution, enhanced performance and reliability and low
cost, MEMS/NEMS have been applied in automotive and aerospace systems, health care, chemical and bio-
medical engineering, environmental monitoring and control, instrumentation, communication, computers, etc.
They promise to revolutionize measurements of extremely small displacement and extremely weak forces,
particularly at the molecular level. For example, NEMS devices can be so small that hundreds of them can be
fit in the same space as one single microdevice that performs the same function.

In this study, we concentrated mostly on thermal and thermoelastic phenomena problems involving heat
transfer at the micro- and nanoscale. A large number of such MEMS/NEMS are based on thermal and ther-
moelectric principles. They use thermoelastic and thermoelectric phenomena for sensor or actuator operation.
Thermal-based sensors are also often used to measure non-thermal measurements. It appears that multifunc-
tional transducers for radiation, pressure, position, level, flow or biological and chemical reactions can all
be constructed on the basis of temperature or temperature-difference sensors. Hence, complex micro- and
nanosystems for utilization in above-mentioned areas of application all contain thermally based micro- and
nanodevices, such as sensors, actuators, resistors, converters.

Thermoresistors are devices for temperature measurement that use the temperature sensitivity of electrical
conductive materials like metals or semiconductors. The dependence of the resistivity of these materials
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on temperature has been intensively investigated, so that by measuring the resistance, the temperature can
be deduced directly from database. Thermoelectric sensors and actuators are based on the thermoelectric
effects, which consists in the direct conversion of temperature differences to electric voltage and vice versa. A
thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a
voltage is applied to it, it creates a temperature difference. Widely used thermoelectric actuators are bimorphs,
bent-beam and chevron-type actuators. The crucial feature of such devices is the high thermal insulation of
“hot” contacts, which can be performed by etching thin suspended membranes or preparing cantilever beams.
Some of the thermoactuators are based on volumetric expansion of gas or liquid. They can be used for various
actuation processes, for example, to produce valves that can sustain differential pressures. Micromirrors also
can be actuated thermoelectrically, and they have extensive application in optical switches, displays and many
other areas optoelectronics.

Because of all above temperature changes must therefore be analyzed carefully when designing a
MEMS/NEMS working on thermomechanical principle, not only for sensitivity optimization but also for reli-
ability purposes. Therefore, development of newmathematical models and simulation tools for MEMS/NEMS
is very important task for designers and researchers to advance the development and production of the devices
to the high level. Because MEMS/NEMS touch on so many application areas, the ideal simulation tool must
follow suite and provide a vast range of coupled multidomain physical effects. In reality, no single tool caters
to all the needs of the MEMS/NEMS community. Hence, MEMS/NEMS designers carry the burden to find
the appropriate tools and strategy for their task. In this situation, researchers had been using simple math-
ematical models and analytical methods based on crude approximations or complicated FEM-based models
using commercial software that are not geared forMEMS/NEMS simulation. The result of either approach was
simulation results that contradict or in disagreement with the laboratory data. It is because simple mathemat-
ical models cannot take into account all multiphysical phenomenons and commercial FEM software usually
designed for general purposes, and it badly suit to address particular problems that appear in MEMS/NEMS
simulation. Therefore, there is a great need for creating new relatively simple and adequate mathematical mod-
els and methods for MEMS/NEMS simulation. Indeed, right mathematical models and simulation tool allow
designers to develop devices of higher quality and improved features based on robust knowledge gained from
simulation results, reducing the design time and cost. They also allow designers to optimize the performance
of existing devices and design novel devices. This is one of the biggest advantages of simulation tools. They
increase our knowledge and help us gain solid understanding of the behavior of MEMS/NEMS devices and
the natural phenomena associated with them. Because MEMS/NEMS touch on so many application areas, the
ideal simulation tool must follow suite and provide a vast range of coupled multiphysical effects. In reality,
no single tool caters to all the needs of the MEMS/NEMS community. Hence, MEMS/NEMS developers,
designers and researchers have to develop new mathematical models and appropriate simulation tools for that
task.

Many thermally based MEMS/NEMS devices as structural elements can be considered as beams exposed
to high-temperature fields and interact with other structural elements and rigid supports through thin heat
conducting layers. Temperature change causes deformation of the structural elements and as result change of
the heat-conducting layer thickness. This causes a change in the conditions of heat exchange and temperature
distribution. Unfortunately, existing mathematical models of the MEMS/NEMS devises do not consider all
multiphysical phenomenons that occur. In this study, we develop mathematical models of the thermally based
MEMS and NEMS devices that more accurately take into account mentioned above heat exchange conditions.

3 2-D formulation

Let us consider a linear elastic beam in 2-D Euclidian space domain V = �×[−h, h]with a smooth boundary
∂V . Here 2h is thickness of the beam, � = [0, L] is the middle line of the beam, L its length and b its width.
Boundary of the beam ∂V can be presented in the form ∂V = S ∪ �+ ∪ �−, where �+ and �− are the
upper and lower sides and S is a sheer side. The beam is situated on a rigid foundation with an initial gap h0
in the temperature field. There is a heat-conducting medium in the gap between the foundation and the beam.
The medium does not resist the beam deformation, and heat exchange between the foundation and the beam
is due to the thermal conductivity of the medium. We assume that gap h0 is commensurable with the beam
displacements which are assumed to be small.

Thermodynamic state of the plane beam as 2-D thermoelastic body is defined by stress σi j and εi j strain
tensors with components {σ11, σ22, σ12} and {ε11, ε22, ε12}, respectively, and displacements ui , traction pi and
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body forces bi vectors with components {u1, u2}, {p1, p2} and {b1, b2} and θ , χ , the temperature and specific
strength of the internal heat sources, respectively. These quantities are not independent; they are related by
equations of linear thermoelasticity.

The equations of equilibrium have the form

∂σ11

∂x1
+ ∂σ12

∂x2
+ b1 = 0

∂σ21

∂x1
+ ∂σ22

∂x2
+ b2 = 0 (1)

The Cauchy relations have the form

ε11 = ∂u1
∂x1

, ε22 = ∂u2
∂x2

, ε12 = ∂u1
∂x2

+ ∂u2
∂x1

. (2)

The stress σi j tensor, tensor of deformation εi j and temperature θ are related by Hooke’s law

σi j = ci jklεkl − βi jθ, ci jkl = c jikl = c jilk = ckli j , βi j = β j i (3)

where ci jkl and βi j are elastic modulus and the coefficients of linear thermal expansion. In the isotropic case

ci jkl = λδi jδkl + μ(δikδ jl + δilδk j ), βi j = (μ + 3λ)αT δi j (4)

where λ andμ are the Lame constants, αT are the coefficients of linear thermal expansion and δi j is a Kronecker
delta tensor.

It is important to mention that in the case of the rods and beams in order to take into account Poisson’s
effect one has to use the modified Lame constants in the form

λ = 2Eν

1 − ν2
, μ = E

2(1 + ν)
(5)

The differential equations of equilibrium for the displacement vector components may be presented in the
form

Ai j u j + Aiθ + bi = 0 (6)

with

Ai j = ci jkl
∂

∂xk

∂

∂xl
, Ai = βi j

∂

∂x j
,

Ai j = μ2δi j
∂

∂xk

∂

∂xk
+ (λ + μ)

∂

∂xi

∂

∂x j
, Ai = (μ + 3λ)αT

∂

∂xi
(7)

in anisotropic and isotropic case, respectively.
On the boundary of the body ∂V , it is necessary to establish boundary conditions. We consider the mixed

mechanical boundary conditions in the form

ui (x) = φi (x), ∀x ∈ ∂Vu,

pi (x) = σi j (x)n j (x) = Pi j [u j (x)] = ψi (x), ∀x ∈ ∂Vp (8)

The differential operator Pi j : u j → pi is referred to as the stress operator. It transforms the displacements
into the tractions. For homogeneous anisotropic and isotropic media, they have the forms

Pi j = cik jlnk
∂

∂xl
and Pi j = λδi j nk

∂

∂xk
+ μ

(
ni

∂

∂x j
+ n j

∂

∂xi

)
(9)

respectively. Here ni are the components of the outward unit normal vector, and ∂n = ni∂i is the derivative in
the direction of the vector n(x) normal to the surface ∂Vp.

We assume that heat distributes in the beam and in the heat-conducting media according to Fourier low

qi = λi j
∂θ

∂x j
(10)
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Here qi is a vector of thermal flow, and λi j is the tensor of coefficients of thermal conductivity of the body.
In the isotropic case

λi j = δi jλT , (11)

where λT is the coefficients of thermal conductivity of the body.
Then, linear equations for heat conductivity for the beam as 2-D body have the form

λi j
∂

∂xi

∂θ

∂x j
− χ = 0, or λT�θ − χ = 0, ∀x ∈ V (12)

in anisotropic and isotropic cases, respectively. Here � = δi j
∂

∂xi
∂

∂x j
is Laplace operator.

The temperature distribution within the heat-conducting medium is described by the equations of heat
conductivity

λ∗
i j

∂

∂xi

∂θ∗
∂x j

− χ∗ = 0, or λ∗
T�θ − χ = 0, ∀x ∈ V ∗ (13)

Here λ∗
i j is the tensor of coefficients of thermal conductivity of the heat-conductingmedium. In the isotropic

case

λ∗
i j = δi jλ

∗
T , (14)

where λ∗
T is the coefficients of thermal conductivity of the heat-conducting medium.

Boundary conditions for temperature and heat flux may be presented in one of the following forms

θ = θb, ∀x ∈ ∂Vθ , qi = qbi ,∀x ∈ ∂Vq or niλi j
∂θ

∂x j
+ β

(
θ − θb

)
= 0, (15)

where θb and qbi denote prescribed temperature and thermal flux on the boundary, respectively, λi j is the
tensor of coefficients of thermal conductivity of the body and coefficient β depends on thermal properties of
surroundings.

We assume that the lower part of the boundary �− is in thermal contact with foundation through the
heat-conducting layer and classical thermal contact conditions with heat conducting taking place. It means
that temperature and thermal flux of the beam and media on contact area are equal. Therefore, conditions of
heat conductivity through the heat-conducting medium have the form

θ∗ = θ, λ∗
i j nk

∂θ∗
∂xk

= λi j nk
∂θ

∂xk
(16)

where θ∗ is a temperature and λ∗
i j is the tensor of coefficients of thermal conductivity of the heat-conducting

layer.
In some cases, under action of mechanical load and temperature field lower side �− of the beam can be

in unilateral mechanical contact with the rigid foundation. In this case, the area of close mechanical contact
∂Ve and contact forces are not known in advance. Therefore, unilateral mechanical contact conditions have
the form of inequalities [2]

un =≥ h0, qn ≥ 0, (un − h0)qn = 0, ∀x ∈ ∂Ve (17)

and thermal conditions (16) are transformed into the form

qθ = αe(θ − θ∗), ∀x ∈ ∂Ve (18)

where qθ is the heat flux passing across the close mechanical contact area, αe is the coefficient of the contact
surface thermal conductivity.

Now the problem consists in join solution of the equations of thermoelasticity (6) and heat conductivity
(12) and (13) with boundary conditions (8) and (15). In the case when close mechanical contact takes place,
the unilateral contact conditions (17) and thermal conditions (18) have to be satisfied. Analysis of the problem
encounters mathematical difficulties caused by the dimension of the problem, as well as by its nonlinearity. The
problem can be partially simplified considering thin-walled bodies. In this case, we can reduce the dimension
of the problem.
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4 1-D formulation

We expand the physical parameters that describe the thermodynamical state of the beam into the Legendre
polynomials series along the coordinate x3. Such expansion can be done because of any function f (p), which
is defined in domain −1 ≤ p ≤ 1 and satisfies Dirichlet’s conditions (continuous, monotonous and having
finite set of discontinuity points), can be expanded into Legendre series according to formulas

f (p) =
∞∑
k=0

ak Pk(p) where an = 2k + 1

2

1∫
−1

f (p)Pk(p)dp (19)

Any function of more than one independent variable can also be expanded into Legendre series with respect
to, for example, variable x3 ∈ [−1, 1], but first the new normalized variable ω = x3/h ∈ [−1, 1] has to be
introduced. Taking into account (19), we have

σi j (x) =
∞∑
k=0

σ k
i j (x1)Pk(ω), εi j (x) =

∞∑
k=0

εki j (x1)Pk(ω),

ui (x) =
∞∑
k=0

uki (x1)Pk(ω), θ(x) =
∞∑
k=0

θk(xα)Pk(ω). (20)

where

σ k
i j (x1) = 2k + 1

2h

h∫
−h

σi j (x1, x2)Pk(ω)dx2, εki j (x1) = 2k + 1

2h

h∫
−h

εi j (x1, x2)Pk(ω)dx2,

uki (x1) = 2k + 1

2h

h∫
−h

ui (x1, x2)Pk(ω)dx2, θk(xα) = 2k + 1

2h

h∫
−h

θ(xα, x2)Pk(ω)dx2. (21)

Substituting these expansions in Eqs. (1)–(7) and (10)–(12) and taking into account that

2k + 1

2h

h∫
−h

∂σi j

∂x1
Pk(ω)dx2 = ∂σ k

i j

∂x1
,

2k + 1

2h

h∫
−h

∂ui
∂x1

Pk(ω)dx2 = ∂uki
∂x1

,
2k + 1

2h

h∫
−h

∂θ

∂x1
Pk(ω)dx2 = Qk

2

(22)

and

2k + 1

2h

h∫
−h

∂σi2

∂x2
Pk(ω)dx2 = σ k

i2, σ k
i2 = −2k + 1

h

(
σ k−1
i2 + σ k−3

i2 + ...
)

,

2k + 1

2h

h∫
−h

∂ui
∂x2

Pk(ω)dx2 = uki , uki = 2k + 1

h

(
uk+1
i + uk+3

i + ...
)

,

2k + 1

2h

h∫
−h

∂2θ

∂x2
Pk(ω)dx2 = Qk

2, Qk
2 = −2k + 1

h

(
Qk−1

2 + Qk−3
2 + ...

)
(23)

we obtain corresponding relations for Legendre polynomials series coefficients.
Then, the differential equations of thermoelasticity of the beam (6) are transformed into the 1-D form

Lu · u + Lθ · θ + f = 0 (24)
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where matrix differential operators Lu and Lθ and vectors u, θ, and f have the form

Lu =

∣∣∣∣∣∣∣∣∣∣∣

L00
11 L00

12 · · · L0n
11 L0n

12
L00
21 L00

22 · · · L0n
21 Lnn

22
...

... · · · ...
...

Ln0
11 Ln0

12 · · · Lnn
11 Lnn

12
Ln0
21 Ln0

22 · · · Lnn
21 Lnn

22

∣∣∣∣∣∣∣∣∣∣∣
, Lθ = E ·

∣∣∣∣∣∣∣∣∣∣

L0
1

L0
2

...
Ln
1

Ln
2

∣∣∣∣∣∣∣∣∣∣
, u =

∣∣∣∣∣∣∣∣∣∣

u01
u02
...
un1
un2

∣∣∣∣∣∣∣∣∣∣
, θ =

∣∣∣∣∣∣∣∣∣∣

θ01
θ02
...
θn1
θn2

∣∣∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣∣∣

f 01
f 02
...
f n1
f n2

∣∣∣∣∣∣∣∣∣∣
(25)

The differential equations of the beam heat conductivity (12) are transformed into the 1-D form

Lθθ · θ + Q + χ = 0 (26)

where matrix differential operators Lθθ and vectors Q, and χ have the form

Lθθ =

∣∣∣∣∣∣∣
L0 · · · 0
... · · · ...
0 · · · Ln

∣∣∣∣∣∣∣
= E ·

∣∣∣∣∣∣∣
L0

...
Ln

∣∣∣∣∣∣∣
, Q =

∣∣∣∣∣∣∣
Q0

2
...
Qn

2

∣∣∣∣∣∣∣
, χ =

∣∣∣∣∣∣∣
χ̄0

...
χ̄n

∣∣∣∣∣∣∣
(27)

In (24) and (26), components of the vectors f and χ, respectively, have the form

f ki = 2k + 1

h

[
σ+
i2 − (−1)kσ−

i2

]
− bki and χ̄k = 2k + 1

h

[
Q+

2 − (−1)k Q−
2

]
+ χk

λ0
(28)

The boundary conditions at the sheer sides (8) and (15) can be easily transformed into 2-D form. Applying
expansion into Legendre polynomials series, we obtain boundary conditions for coefficients of the expansion
in the form

pki (x1) = ψk
i , ∀x1 ∈ ∂�p; uki (x1) = φk

i , ∀x1 ∈ ∂�u,

θk = θkb , ∀x ∈ ∂�θ ; qki = Qk
i , ∀x1 ∈ ∂�q (29)

Here ψk
i (x1) and φk

i (x1) are coefficients of the expansion Legendre polynomials of the displacement and
traction vector components.

Surface forces and displacements on upper and lower sides of the beam are calculated in the form

∞∑
k=0

pki = p+
i ,

∞∑
k=0

(−1)kuki = u+
i , ∀x2 ∈ �+,

∞∑
k=0

(−1)k pki = p−
i ,

∞∑
k=0

uki = u−
i , ∀x2 ∈ �− ,

∞∑
k=0

θk = θ+,

∞∑
k=0

(−1)kqki = Q+
i , ∀x ∈ �+ ,

∞∑
k=0

(−1)kθk = θ−,

∞∑
k=0

qki = Q−
i , ∀x ∈ �−. (30)

We used here relations for Legendre polynomials Pk(1) = 1 and Pk(−1) = (−1)k .
The coefficients of Legendre polynomials series for temperature and its derivative with respect to x2 are

related by equation

2θki
h

= Qk−1
i

2k − 1
− Qk+1

i

2k + 3
, (k = 1, . . . , n) (31)

As it was shown in [51], unilateral mechanical contact conditions cannot be formulated for coefficients of
Legendre polynomial series due to their nonlinearity. Thermal contact conditions depend on thermal boundary
conditions on upper side�+ and foundation and also on order of polynomial approximation of the temperature
in the beam and heat-conducting layer. For some specific cases, they will be considered in next sections.
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Thus, we obtain infinite set of 1-D differential equations for coefficients of the Legendre polynomials
series expansion (24) and (26) with corresponding boundary (29) and contact conditions. In order to simplify
the problem, we have to construct approximate theory and keep only finite set of members in the expansions
(20)–(21). Order of the approximation depends on assumption regarding thickness distribution of the thermo-
dynamical parameters of the beam. We consider here the case of relatively small thickness in comparison with
length of the beam. Therefore, we can keep only two and three members in polynomial expansion (20). In this
case, we will get first- and second-order approximation equations for thermoelasticity of beam.

5 First-order approximation

In this case, only the first two terms of the Legendre polynomials series expansions (20) have to be taken into
account. Then, the parameters, which describe the thermodynamical state of the beam, have the form

σi j (x) = σ 0
i j (x1)P0(ω) + σ 1

i j (x1)P1(ω)

εi j (x) = ε0i j (x1)P0(ω) + ε1i j (x1)P1(ω)

ui (x) = u0i (x1)P0(ω) + u1i (x1)P1(ω)

θi (x) = θ0i (x1)P0(ω) + θ1i (x1)P1(ω) (32)

In this particular case, equations of thermoelasticity and heat conductivity have the same form as (24) and
(26), respectively, but matrix operators (25) and (27) now have simpler form

Lu =

∣∣∣∣∣∣∣∣

L00
11 0 0 L01

12
0 L00

22 L01
12 0

0 L01
12 L11

11 0
L10
21 0 0 L11

22

∣∣∣∣∣∣∣∣
, Lθ = E ·

∣∣∣∣∣∣∣∣

L0
1

L0
2

L1
1

L1
2

∣∣∣∣∣∣∣∣
, u =

∣∣∣∣∣∣∣∣

u01
u02
u11
u12

∣∣∣∣∣∣∣∣
, θ =

∣∣∣∣∣∣∣∣

θ01
θ02
θ11
θ12

∣∣∣∣∣∣∣∣
, f =

∣∣∣∣∣∣∣∣

f 01
f 02
f 11
f 12

∣∣∣∣∣∣∣∣
(33)

Lθθ =
∣∣∣∣ L

0 0
0 L1

∣∣∣∣ , Q =
∣∣∣∣ Q

0
2

Q1
2

∣∣∣∣ , χ =
∣∣∣∣ χ̄

0

χ̄1

∣∣∣∣ (34)

where

L00
11 = (λ + 2μ)

∂2

∂x21
, L01

12 = λ
1

h

∂

∂x1
, L00

22 = μ
∂2

∂x21
, L01

21 = μ

h

∂

∂x1
,

L10
12 = −3μ

h

∂

∂x1
, L11

11 = (λ + 2μ)
∂2

∂x21
− μ

3

h2
, L10

21 = −3λ

h

∂

∂x1
, L11

22 = μ
∂2

∂x21
− (λ + 2μ)

3

h2

L0 = λT
∂2

∂x21
− 3λT

h2
, L1 = λT

∂2

∂x21
− 15λT

h2
(35)

Parameters Q0
2 and Q1

2 can be calculated using Eqs. (23) and (31) and heat-conducting conditions on upper
and lower sides of the beam and conditions of heat exchange through heat conduction layer. For specific case of
temperature set on upper side of the beam θ+(x1) and foundation θ−(x1), respectively, and contact conditions
through heat conduction layer, we have

Q0
2 = 1

2h
(θ+ − Tk), Q1

2 = 3

2h

(
θ+ + Tk

) − 3θ1

2h
, Q2

2 = 5Q0
1 − 5

h
θ1, (36)

Tk = λT (h0 − u2)
(
3θ+ + 6θ0 − 10θ1

) + λ∗
T hθ−

9λT (h0 − u2) + λ∗
T h

(37)

Here u2(x1) is calculated using representation (32) for the displacements.
Thus, we obtained the 1-D system of differential equations which is called the first approximation theory

of thermoelasticity and heat conductivity of beam. Together with corresponding boundary conditions and
conditions of thermal and mechanical contact, it can be used for the stress–strain and temperature calculation
for the beam.
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6 Second-order approximation

In the second-order approximation, first three terms of the Legendre polynomials series have to be taken into
account. In this case, the parameters, which describe the stress–strain state of the shell, can be presented in the
form

σi j (x) = σ 0
i j (x1)P0(ω) + σ 1

i j (x1)P1(ω) + σ 2
i j (x1)P2(ω),

εi j (x) = ε0i j (x1)P0(ω) + ε1i j (x1)P1(ω) + ε2i j (x1)P2(ω),

ui (x) = u0i (x1)P0(ω) + u1i (x1)P1(ω) + u2i (x1)P2(ω),

θi (x) = θ0i (x1)P0(ω) + θ1i (x1)P1(ω) + θ2i (x1)P2(ω). (38)

In this particular case, equations of thermoelasticity and heat conductivity have the same form as (24) and
(26), respectively, but matrix operators (25) and (27) now have simpler form

Lu =

∣∣∣∣∣∣∣∣∣∣∣∣

L00
11 0 0 L01

12 0 0
0 L00

22 L01
21 0 0 0

0 L10
12 L11

11 0 0 L12
12

L10
21 0 0 L11

22 0 0
0 0 0 L21

12 0 L22
12

0 0 L21
21 L12

21 0 L22
22

∣∣∣∣∣∣∣∣∣∣∣∣
, Lθ = E ·

∣∣∣∣∣∣∣∣∣∣∣∣

L0
1

L0
2

L1
1

L1
2

L2
1

L2
2

∣∣∣∣∣∣∣∣∣∣∣∣
, u = ·

∣∣∣∣∣∣∣∣∣∣∣∣

u01
u02
u11
u12
u21
u22

∣∣∣∣∣∣∣∣∣∣∣∣
, θ =

∣∣∣∣∣∣∣∣∣∣∣∣

θ01
θ02
θ11
θ12
θ21
θ22

∣∣∣∣∣∣∣∣∣∣∣∣
, f = ·

∣∣∣∣∣∣∣∣∣∣∣∣

f 01
f 02
f 11
f 12
f 21
f 22

∣∣∣∣∣∣∣∣∣∣∣∣
(39)

Lθθ =
∣∣∣∣∣∣
L0 0 0
0 L1 0
0 0 L2

∣∣∣∣∣∣ , Q =
∣∣∣∣∣∣
Q0

2
Q1

2
Q2

2

∣∣∣∣∣∣ , χ =
∣∣∣∣∣∣
χ̄0

χ̄1

χ̄2

∣∣∣∣∣∣ (40)

where

L00
11 = (λ + 2μ)

∂2

∂x21
, L01

12 = λ

h

∂

∂x1
, L00

22 = μ
∂2

∂x21
, L01

21 = μ

h

∂

∂x1
,

L10
12u

0
2 = −3μ

h

∂u02
∂x1

, L11
11 = (λ + 2μ)

∂2

∂x21
− 3μ

h2
, L12

12 = 3λ

h

∂

∂x1
,

L10
21 = −3λ

h

∂

∂x1
, L11

22 = μ
∂2

∂x21
− 3(λ + 2μ)

h2
,

L21
22 = −5λ

h

∂

∂x1
, L22

11 = (λ + 2μ)
∂2

∂x21
− 15μ

h2
,

L21
21 = −5λ

h

∂

∂x1
, L21

21 = −5λ

h

∂

∂x1
, L22

22 = μ
∂2

∂x21
− 15(λ + 2μ)

h2
,

L0 = λT
∂2

∂x21
− 5λT

h2
, L1 = λT

∂2

∂x21
− 15λT

h2
, L2 = λT

∂2

∂x21
− 35λT

h2
(41)

Parameters Q0
2 and Q1

2 can be calculated using Eqs. (23) and (31) and heat-conducting conditions on upper
and lower sides of the beam and conditions of heat exchange through heat conduction layer. For specific case of
temperature set on upper side of the beam θ+(x1) and foundation θ−(x1), respectively, and contact conditions
through heat conduction layer, we have

Q0
2 = 1

2h

(
θ+ − Tk

)
, Q1

2 = 3

2h

(
θ+ + Tk

) − 3θ1

2h
, Q2

2 = 5

2h

(
θ+ − Tk)

) − 5

h
θ1,

Q3
2 = 7

2h

(
θ+ + Tk

) − 7

h

(
θ2 + θ0

)
(42)

Here Tk is calculated by (37) and u2(x1) is calculated using representation (38) for the displacements.
Thus, we obtained the 1-D system of differential equations which is called the second approximation theory

of thermoelasticity and heat conductivity of beam. Together with corresponding boundary conditions and
conditions of thermal and mechanical contact, it can be used for the stress–strain and temperature calculation
for the beam.
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Foundation

Microbeam

Fig. 1 Microbeam settles above the rigid foundation in the thermal field

7 Thermoelastic analysis of microbeams

Let us consider an elastic microbeam of the length 2l, width b and thickness 2h, which is settled above
the rigid foundation with an initial gap h0 in the thermal field as it is shown in Fig. 1. There is a heat-
conducting medium in the gap between the foundation and the beam. The medium does not resist the beam
deformation, and heat exchange between the foundation and the beam is due to the thermal conductivity of
the medium. We assume that the gap h0 is commensurable with the beam displacements which are assumed
to be small.

It is important to mention that systems of differential equations of thermoelasticity (33) and (39) and heat
conductivity (34) and (40), respectively, are coupled. Their connectedness is not the one usually related to
dynamical thermoelasticity. We consider stationary problem, and here the connectedness of the corresponding
equations is caused by change of the heat-conducting conditions during the microbeam deformations. One
can see that in the equations of heat conductivity (34) and (40) is presented member function u2(x1) that is
deflection of the microbeam. The presence of the function u2(x1) in the equation (37) turns the problem into
nonlinear one.

For solution of the problem, we use iterative algorithm developed in [51,53]. In the first step of iteration,
we assume that deflection of the microbeam u2(x1) = 0. In this case, we have traditional uncoupled problem
of thermoelasticity and heat conductivity. For that uncoupled problem, any analytical or numerical method can
be used and corresponding equations of thermoelasticity and heat conductivity can be solved independently.
We refer below to this case as uncoupled or traditional formulation. In the next step of iterations, we substitute
in (37) deflection u2(x1) obtained from the solution of the problem in previous step of iteration. Our previous
and this research shows that in the problems under consideration algorithm is convergent and convergence is
fast enough.

In this study the differential equations of thermoelasticity (33) and (39) and heat conductivity (34) and
(40) we solve numerically using finite element method (FEM). All calculations and post-processing analy-
sis have been done using commercial software MATLAB and COMSOL Multiphysics. We performed finite
element analysis with COMSOL Multiphysics. We used PDE mode with coefficient form impute module.
The differential equations (33), (34) and (39), (40) are presented in the form convenient for COMSOL Mul-
tiphysics input. In 1-D PDE coefficient module are used finite elements of Lagrange type from linear to
quantic order. Also in COMSOL Multiphysics there is option for mesh refinement. For details we refer to the
corresponding software manuals. Our numerical experiments show that for the problem under consideration
FEM has good convergence and use of quadratic elements with one mesh refinement gives accurate results.
Obtained using embedded in COMSOLMultiphysics FEM tools date then have been transferred to MATLAB
environment for further analysis, visualizations and comparison with results obtained using Euler–Bernoulli
theory.

For convenience we introduce the coordinate x̂1 = x1/ l. For numerical calculations and analysis, we
consider the simply supported microbeam with the following physical and geometrical parameters presented
in Table 1.

Below we perform thermoelastic analysis of simply supported microbeam using first-order and second-
order approximation theories for the following two problems. Our analysis show that distribution and val-
ues of the displacements and temperature calculated using first-order and second-order theories for rela-
tively thin microbeam differ not much. As soon as thickness of the microbeam increases, difference of
the results obtained using first-order and second-order theories also increase and for h/ l > 0.2 becomes
greater.
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Table 1 Properties of investigated microbeam

Parameter Value

Young’s modulus E(GPa) 175
Poisson ratio (ν) 0.25
Tensile strength (GPa) 1.55
Thermal conductivity of the microbeam (V/m◦C) 50
Thermal conductivity of the heat-conducting layer (V/m◦C) 15
Thermal expansion (1/◦C) 1.5 × 10−5

Length 2l(μm) 100
Thickness 2h (μm) 0.05l
Width b (μm) 2.5h
Initial gap h0 (μm) 0.25h

Table 2 Deflection u2, stresses σ11 and temperature θ in the midpoint

Approx. u+
2 (μm) u−

2 (μm) σ+
22(MPa) σ−

22(MPa) θ+ ◦C θ− ◦C

h0 = 0.25h h = 0.05l

1 0.900
0.647

0.903
0.651

105.60
72.183

−105.60
−72.183

520
529

280
366

2 0.899
0.647

0.902
0.651

79.200
54.037

−79.200
54.305

520
529

280
366

h0 = 0.25h h = 0.1l

1 0.450
0.400

0.436
0.407

105.60
92.925

−105.60
−92.925

520
523

280
314

2 0.449
0.399

0.455
0.406

79.200
69.485

−79.200
−70.109

520
523

280
314

h0 = 0.15h h = 0.05l

1 1.001
0.717

1.003
0.721

129.07
78.834

−129.07
−78.834

513
527

220
349

2 1.100
0.717

1.102
0.721

96.800
58.993

−96.800
−59.349

513
527

220
349

h0 = 0.15h h = 0.1l

1 0.552
0.468

0.556
0.474

129.07
107.71

−129.07
−107.71

513
527

220
349

2 0.551
0.467

0.555
0.473

96.800
80.453

−96.800
−81.442

513
519

220
277

7.1 On the outer side of microbeam and foundation set the temperature θ+ = 550 ◦C, θ− = 0 ◦C

In this case deflection of the microbeam directed up u2 > 0 and initial gap h0 increase during the microbeam
deformation. In Table 2, we presented results of calculation performed using traditional approach (in our case
first iteration) and presented in here coupled theory. In columns 2–7 are presented deflection u2, stresses σ11 and
temperature θ distributions calculated in the midpoint of the microbeam on top and bottom sides. Upper values
correspond to calculations using traditional uncoupled theory, and lower values correspond to calculations
using coupled theory presented here. Analysis of the presented data shows that results obtained using two
above-mentioned approaches are different and some time difference is significant. We consider that coupled
theory presented here is more consistent with physical processes occurring at the microbeam deformation in
temperature field with taking into account heat conductivity through thin heat-conducting layer.

Distribution of the Legendre coefficients of the displacements uk2(x1) and temperature θk(x1) is presented
in Table 1, and data are presented in Fig. 2. Surfaces of the displacements u2(x1, x2), stresses σ11(x1, x2) and
temperature θ(x1, x2) distribution are presented in Fig. 3. Calculations have been done using coupled approach
proposed here and second-order theory of microbeam.

7.2 On the outer side of microbeam and foundation set the temperature θ+ = 30 ◦C, θ− = 170 ◦C

In this case, deflection of the microbeam happens downward u2 < 0 and initial gap h0 decreases during the
microbeam deformation. In Table 3, we presented results of calculation performed using traditional approach



A high-order theory of a thermoelastic beams and its application to the MEMS/NEMS analysis and simulations 1267

Fig. 2 Legendre coefficients of the displacements uk2(x1) and temperature θk(x1)

(in our case first iteration) and coupled theory presented here. In columns 2–7 are presented deflection u2,
stresses σ11 and temperature θ distributions calculated in the midpoint of the microbeam on top and bottom
sides. Upper values correspond to calculations using traditional uncoupled theory, and lower values correspond
to calculations using coupled theory presented here. Analysis of the presented data shows that results obtained
using two above-mentioned approaches are different, and sometimes difference is significant. Once again
we consider that coupled theory presented here is more consistent with physical processes occurring at the
microbeam deformation in temperature field with taking into account heat conductivity through thin heat-
conducting layer.

Distribution of the Legendre coefficients of the displacements uk2(x1) and temperature θk(x1) is presented
in Table 1, and data are presented in Fig. 4. Surfaces of the displacements u2(x1, x2), stresses σ11(x1, x2) and
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Fig. 3 Surfaces of the displacements u2(x1, x2), stresses σ11(x1, x2) and temperature θ(x1, x2) distribution

Table 3 Deflection u2, stresses σ11 and temperature θ in the midpoint

Approx. u+
2 (μm) u−

2 (μm) σ+
22(GPa) σ−

22(GPa) θ+ ◦C θ− ◦C

h0 = 0.25h h = 0.05l

1 −0.146
−0.188

−0.148
−0.190

−17.28
−23.25

17.28
23.25

34.90
36.62

74.18
89.67

2 −0.146
−0.188

−0.147
−0.189

−12.96
−17.48

12.96
17.38

34.90
36.62

74.18
89.67

h0 = 0.25h h = 0.1l

1 −0.723
−0.790 10

−1 − 0.750
0.790 10

−1 −17.28
−18.32

17.28
18.32

34.90
35.21

74.18
77.01

2 −0.721
−0.761 10

−1 − 0.748
0.788 10

−1 −12.96
−13.76

12.96
13.70

34.90
35.22

74.18
77.02

h0 = 0.15h h = 0.05l

1 −0.219
−0.370

−0.220
−0.370

−25.81
−36.09

25.81
35.64

37.33
43.70

96.00
153.0

2 −0.219
−0.370

−0.220
−0.370

−19.36
−47.91

19.36
47.91

37.33
43.67

96.00
153.5

h0 = 0.15h h = 0.1l

1 −0.109
−0.119

−0.111
−0.120

−25.81
−28.27

25.81
28.27

37.33
38.05

96.00
102.6

2 −0.109
−0.118

−0.111
−0.120

−19.36
−21.25

19.36
21.13

36.33
38.07

96.00
102.6
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Fig. 4 Legendre coefficients of the displacements uk2(x1) and temperature θk(x1)

temperature θ(x1, x2) distribution are presented in Fig. 5. Calculations have been done using coupled approach
proposed here and second-order theory of microbeam.

In order to simplify situation, we chose for calculations data presented in Table 2 geometric parameters of
the microbeam and temperature so as to avoid mechanical contact of microbeam and foundation. The cases
of unilateral mechanical contact have been considered in our previous publications using classical theory. We
are planning to consider unilateral mechanical contact in frame of high-order theory in further publications,
taking into account that this problem has many applications in MEMS and NEMS design and simulation.
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Fig. 5 Surfaces of the displacements u2(x1, x2), stresses σ11(x1, x2) and temperature θ(x1, x2) distribution

8 Conclusions

A high-order theory for homogeneous thermoelastic beams has been developed and applied for thermal and
stress–strain analysis of the MEMS/NEMS structures and devices. The proposed approach is based on the
expansion of the 2-D equations of elasticity into Fourier series in terms of Legendre polynomials. Starting from
the 2-D equations of thermoelasticity and heat conductivity, the stress and strain tensors, the displacement,
traction, body force vectors and temperature have been expanded into Fourier series in terms of Legendre
polynomials in the thickness coordinate. Therefore, all equations of thermoelasticity and heat conductivity
including Hooke’s and Fourier’s laws have been transformed to the corresponding equations for the series
expansion coefficients. The system of differential equations in terms of the displacements and temperature and
corresponding boundary conditions for the expansion coefficients has been obtained. The first- and second-
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order approximations of the exact shell theory have been considered in more detail. All necessary equations
and their expansion coefficients have been derived explicitly, and the corresponding boundary-value problems
have been formulated. In the approach proposed here, there is essential new method of taking into account the
change of the thermal conditions between the beam and solid foundation during the beam deformation.

As a result it leads to the coupled nonlinear system of the equations of elasticity and heat conductivity even
for statically applied mechanical and thermal load. For the numerical solution of the formulated problems,
the FEM implemented in the commercial software COMSOL Multiphysics and MATLAB have been used.
Developedmodels have been used for thermomechanical analysis andmodelingMEMS structures and devices.
Numerical calculations show that in many situations for accurate thermal and stress–strain analysis of the
MEMS and NEMS structures and devices subjected to high-temperature thermal contact conditions proposed
here that take into account deformation of the beam during thermal loading have to be used. Classical thermal
contact conditions are not acceptable in such because they cannot take into account physical processes related
to deformation and heat exchange.
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