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Abstract Based on the nonlinear von Kármán strain and the associated linear stress, the coupling nonlinear
dynamic equations of a rotating, double-tapered, cantilever Timoshenko beam are derived using the Hamilton
principle. The equation of motion is discretized via the Galerkin method in which the eigenfunctions of a
clamped-free Euler–Bernoulli beam are utilized. The natural frequencies and the nonlinear responses of the
rotating Timoshenko beam are investigated. Some interesting phenomena of frequency veering and mode
shift are observed in the rotating tapered beam due to the coupling effect. The effects of the dimensionless
parameters on the natural frequencies of a rotating double-tapered Timoshenko beam are studied through
numerical examples.

Keywords Nonlinear dynamic equations · Rotating tapered Timoshenko beam · Free vibration · Responses

1 Introduction

Rotating cantilever beams, especially tapered ones, are found in several practical engineering examples such
as the rotating machinery, helicopter blades, and wind turbine blades. More reliable dynamic models of
these structures are required for reliable and practical design of the structures. Rotating beam differs from
a nonrotating beam in having an additional centrifugal force and Coriolis effects on its dynamics. The
elastic vibrations are caused by axial and transverse deformations, which have been investigated by many
researchers.

In the early 1970s, Weidenhammer [1] derived the nonlinear dynamic model of turbine blades in a cen-
trifugal field based on the Euler–Bernoulli beam theory, in which the axial vibration and bending vibrations
are coupled with each other for an arbitrary setting angle. Bazoune and Khulief [2] developed a finite beam
element for vibration analysis of a rotating double-tapered Timoshenko beam. This work was further extended
to account for different boundary conditions [3]. Lee and Lin [4] derived the governing differential equa-
tions for the pure bending vibrations of a rotating nonuniform Timoshenko beam without considering the
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Coriolis force, the influence of taper ratio, elastic root restraint, setting angle, and rotational speed on the
bending natural frequencies of a rotating Timoshenko beam, which have been investigated using a semi-exact
numerical method. Banerjee [5] developed the dynamic stiffness matrix of a centrifugally stiffened Tim-
oshenko beam and used the matrix to carry out a free vibration analysis. Using the differential transform
method in [6], Ozdemir and Kaya [7] investigated flexural vibration of a rotating double-tapered Euler–
Bernoulli beam, the flapwise bending vibration of a rotating tapered cantilevered Bernoulli–Euler beam [8],
and the flapwise bending vibration of a rotating double-tapered Timoshenko beam [9]. Sapountzakis and
Dourakopoulos [10,11], taking into account the effects of shear deformation and rotary inertia, investigated
the vibration of beams with arbitrary doubly symmetric simply or multiply connected constant cross section,
undergoing moderate large displacements and small deformations under general boundary conditions by a
boundary element method. Zhu [12] investigated the free vibration of a rotating, double-tapered, cantilever
Timoshenko beam that undergoes flapwise transverse vibration using the hybrid deformation variables, and
the tuned angular speed is found for a uniform rotating Timoshenko beam. In all these studies, the steady-
state normal force (or centrifugal force) was used to examine the centrifugally stiffened effect, and the cen-
trifugal force that is directly proportional to the square of the rotational speed and the identical centrifugal
force are given by other authors [13–16], However, the extensional deformation was not considered in the
centrifugal stiffening force term, even though it might have been considered in the governing differential
equations.

Lin and Hsiao [17] used the fully geometrically nonlinear beam theory and a method based on the power
series solution to solve the natural frequency of the rotating Timoshenko beam. Lee and Sheu [18] investigated
the free vibration of an inclined rotating uniform beam taken into account the effect of extensional deformation
and the Coriolis force. These equations of motion are only for the flapwise vibrations analysis of a rotating
beam. Huang et al. [19] investigated the natural frequency of the axial, chordwise, and flapwise vibrations
for a rotating Euler–Bernoulli beam. The method based on the power series solution described in [17] is
used to solve the natural frequency of a slender rotating beam at a high angular velocity. However, these
studies are only for the free vibration analysis of a rotating beam. Kim and Yoo [20] investigated the natural
frequency and time responses of a rotating Euler–Bernoulli beam, and the axial force due to the centrifugal
effect is obtained according to the perturbation method. The results of numerical examples and time responses
show that the described equations of motion are more reliable than the equations of the other modeling
methods.

In this work, based on the nonlinear von Kármán strain and the associated linear stress, the nonlinear
dynamic equations of a rotating, double-tapered, cantileverTimoshenkobeamare derivedbyusing theHamilton
principle. The effect of angular speed, hub radius, slenderness ratio, and the height and width taper ratios on the
frequencies of the rotating Timoshenko beam is investigated in this study when the rotation beam is in a steady
state, in which the extensional deformation of the beam is considered. In addition, the nonlinear responses of
the Timoshenko beam are investigated in this study.

2 Dynamic modeling and equations of motion

The double-tapered flexible Timoshenko beam is shown in Fig. 1, which is fixed to a rotating rigid hub at point
o. The coordinate system OXY Z is the inertial system, fixed on the axis of symmetry of a rigid hub with a
radius a, the hub rotates about the vertical axis passing through point O , and the rotating speed of the cantilever
beam and hub is θ̇ . The coordinate system ox ′y′z′ is the relative one that is fixed on the beam and rotates with
the hub, and the coordinate system oxyz is the local one that is fixed on the beam. The axes x and x ′ are along
the undeflected beam, the y′ axis is in the rotation plane of the beam, and the z′ axis is parallel to the rotation
axis of the beam. The angle between the xy plane and the x ′y′ plane (or the xy plane and the x ′y′ plane) is
the setting angle of the beam γ . The beam has length L , cross-sectional area A(x), mass density ρ, Young’s
modulus E , and area moments of inertia about the y and z axes Iy(x) and Iz(x), respectively. The width and
height at the root of the beam are defined as b0 and h0, respectively. Assume the planar cross sections that are
initially perpendicular to the neutral axis of the beam remain plane, but no longer perpendicular to the neutral
axis during the motion. The coupling effect between the bending and torsional motions is neglected, and the
torsional behavior of the beam is not discussed in this paper. When point P0 on the beammoves to point P , the
deformation of point P in the local coordinate system is described by the axial deformation u and the bending
deformations v and w, as shown in Fig. 1c.
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Fig. 1 Rotating double-tapered flexible Timoshenko beam and the deformation: a the configuration of the beam; b the setting
angle and the local coordinate system; c the deformation on the neural axis of the beam

The location vector of the point P in the inertial system OXY Z is represented by Rp and is given by

Rp = A1A2rp = A1A2(ro + rp0 + up) (1)

where the matrix A1 =
⎡
⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ is the rotational transformation matrix from the relative coor-

dinate system ox ′y′z′ to the inertial system OXY Z . The matrixA2 =
⎡
⎣
1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤
⎦ is the rotational

transformation matrix from the relative coordinate system oxyz to the inertial system ox ′y′z′. ro = [a, 0, 0]T

is the location vector of the origin o of the oxy system in theOXYZ system; the vector rp0 is the location vector

of the point P0 in the oxyz system, and its coordinate is given by
[
x, y, z

]T , where the superscript T indicates
the transpose of a vector or matrix; and up is the deformation vector of P in the oxyz system, and its coordinate
is represented by

up = [u − yϕz + zϕy, v, w
]T (2)

There is a geometric relation between the arc length stretch s and the Cartesian variables, and the relation
is given as [21].

u = s + uc = s − 1

2

∫ x

0

[(
∂v

∂σ

)2

+
(

∂w

∂σ

)2
]
dσ (3)

where s is the axial extension quantity; ϕy and ϕz are the rotational angle of the cross section around the y
and z axes, respectively; the parameter uc is the second-order coupling term corresponding to the shrinking
quantity in the x axial caused by the transverse displacement v and w.

In the zeroth-order approximation couplingmodel, the small deformation assumption in structural dynamics
is adopted, and the second-order term is not taken into account in modeling. However, for a flexible hub–beam
systemwith high-speed rotation, it has significant effect on the system performance and it should be considered
in the modeling (see Ref. [22]). This has been demonstrated by numerical simulation and experimental studies,
e.g., Ref. [14].

Based on Eq. (1), the inertia velocity of point P on the beam is

Ṙp = A1A2ṙp + AθA2θ̇
(
ro + rp0 + up

)
(4)
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where the superposed dot denotes the time derivative, and

Aθ = ∂A
∂θ

=
⎡
⎣

− sin θ − cos θ 0
cos θ − sin θ 0
0 0 0

⎤
⎦

Substituting Eqs. (1) and (2) into (4), we obtain

Ṙ =
⎡
⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦
⎡
⎣

(u̇ − yϕ̇z + zϕ̇y) − [(v + y) cos γ − (w + z) sin γ
]
θ̇

(a + x + u − yϕz + zϕy)θ̇ + (v̇ cos γ − ẇ sin γ )
v̇ sin γ + ẇ cos γ

⎤
⎦ (5)

The kinetic energy of the beam can be expressed as

K = 1

2

∫ L

0
ρAṘ · Ṙdx (6)

Substituting Eq. (5) into Eq. (6) and making use of some trigonometric properties, the kinetic energy of
the beam can be written as

K = 1

2

∫ L

0
ρA

〈 [
(a + x + u − yϕz + zϕy)θ̇ + (v̇ cos γ − ẇ sin γ )

]2
+ {(u̇ − yϕ̇z + zϕ̇y) − [(v + y) cos γ − (w + z) sin γ

]
θ̇
}2 + (v̇ sin γ + ẇ cos γ )2

〉
dx

(7)

Neglecting the gravitational potential energy and material damping, considering the nonlinearity of the
beam, the von Kármán strain theory is adopted in the formulation. Using the von Kármán strain theory, the
following strain components can be easily obtained

εs = ∂u

∂x
+ 1

2

(
∂v

∂x

)2

+ 1

2

(
∂w

∂x

)2

− y
∂ϕz

∂x
+ z

∂ϕy

∂x
(8a)

γxz = ∂w

∂x
− ϕy (8b)

γxy = ∂v

∂x
+ ϕz (8c)

The corresponding linear stress σscan be expressed as

σs = Eεs = E

(
∂u

∂x
− y

∂ϕz

∂x
+ z

∂ϕy

∂x

)
(9a)

τxy = κGγxy (9b)

τxz = κGγxz (9c)

The potential energy of the beam is then given by

U =
∫ L

0
A
(
σsεs + τxyγxy + τxzγxz

)
dx (10)

Substituting Eqs. (8) and (9) into Eq. (10), the total potential energy of the beam can be written as

U = 1

2

∫ L

0

{
E A

(
∂u

∂x

)2

+ 1

2
E A

∂u

∂x

[(
∂v

∂x

)2

+
(

∂w

∂x

)2
]

+ E Iz

(
∂ϕz

∂x

)2

+ E Iy

(
∂ϕy

∂x

)2

+ κGA

(
∂v

∂x
− ϕz

)2

+ κGA

(
∂w

∂x
+ ϕy

)2
}
dx (11)

The virtual work is given by

δW = 0 (12)
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The equation of motion for the rotation Timoshenko beam can be obtained from the following Hamilton’s
principle

∫ t2

t1
(δK − δU + δW ) dt = 0 (13)

Substituting Eqs. (7), (11), and (12) into Eq.(13), we obtain the following differential equations of the
deformation u, v, and w, and the rotation angle ϕy, ϕz due to bending:

ρA

[
∂2u

∂t2
− θ̇2u − 2θ̇

(
∂v

∂t
cos γ − ∂w

∂t
sin γ

)
− θ̈ (v cos γ − w sin γ )

]
− ∂

∂x

(
E A

∂u

∂x

)
= ρAθ̇2(a + x)

(14a)

ρA

[
∂2v

∂t2
− θ̇2

(
v cos2 γ − w sin γ cos γ

)+ 2θ̇
∂u

∂t
cos γ + θ̈u cos γ

]

− ∂

∂x

(
E A

∂u

∂x

∂v

∂x

)
− ∂

∂x

[
κGA

(
∂v

∂x
− ϕz

)]
= −ρAθ̈ (a + x) cos γ (14b)

ρA

[
∂2w

∂t2
− θ̈u sin γ + θ̇2

(
v cos γ sin γ − w sin2 γ

)− 2θ̇
∂u

∂t
sin γ

]

− ∂

∂x

(
E A

∂u

∂x

∂w

∂x

)
− ∂

∂x

[
κGA

(
∂w

∂x
+ ϕy

)]
= ρAθ̈ (a + x) sin γ (14c)

ρ Iz

(
θ̇2ϕz − ∂2ϕz

∂t2

)
+ ∂

∂x

(
E Iz

∂ϕz

∂x

)
+ κGA

(
∂v

∂x
− ϕz

)
= 0 (14d)

ρ Iy

(
θ̇2ϕy − ∂2ϕy

∂t2

)
+ ∂

∂x

(
E Iy

∂ϕy

∂x

)
− κGA

(
∂w

∂x
+ ϕy

)
= 0 (14e)

And furthermore, since the beam is clamped at x = 0 and free at x = L , the boundary conditions of the
beam are given by

u = v = w = ϕy = ϕz = 0 at x = 0; ∂u

∂x
= ∂ϕy

∂x
= ∂ϕz

∂x
=
(

∂v

∂x
− ϕz

)
=
(

∂w

∂x
+ ϕy

)
= 0 at x = L

(15)

The dynamic model described by Eq. (14) is a complete representation of the vibration motion for a
double-tapered rotating Timoshenko beam. The Coriolis effect of a rotating beam is related to the term
2θ̇
(

∂v
∂t cos γ − ∂w

∂t sin γ
)
of Eq. (14a), 2θ̇ ∂u

∂t cos γ of Eq. (14b), and 2θ̇ ∂u
∂t sin γ of Eq. (14c). The term E A ∂u

∂x
in Eqs. (14b) and (14c) represents the axial force of the rotating beam that results in a stiffening effect in
the transverse vibrations (v and w). The equations of the axial motion u and transverse motions v and w are
coupled with each other for setting angles other than γ = 0 ◦ and 90 ◦.

When γ = 0 ◦, the equations of motion described by Eq. (14a) can be reduced as

ρA

(
∂2u

∂t2
− θ̇2u − 2θ̇

∂v

∂t
− θ̈v

)
− ∂

∂x

(
E A

∂u

∂x

)
= ρAθ̇2(a + x) (16a)

ρA

(
∂2v

∂t2
− θ̇2v + 2θ̇

∂u

∂t
+ θ̈u

)
− ∂

∂x

(
E A

∂u

∂x

∂v

∂x

)
− ∂

∂x

[
κGA

(
∂v

∂x
− ϕz

)]
= −ρAθ̈ (a + x)

(16b)

ρA
∂2w

∂t2
− ∂

∂x

(
E A

∂u

∂x

∂w

∂x

)
− ∂

∂x

[
κGA

(
∂w

∂x
+ ϕy

)]
= 0 (16c)

ρ Iz

(
θ̇2ϕz − ∂2ϕz

∂t2

)
+ ∂

∂x

(
E Iz

∂ϕz

∂x

)
+ κGA

(
∂v

∂x
− ϕz

)
= 0 (16d)

ρ Iy

(
θ̇2ϕy − ∂2ϕy

∂t2

)
+ ∂

∂x

(
E Iy

∂ϕy

∂x

)
− κGA

(
∂w

∂x
+ ϕy

)
= 0 (16e)
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As shown in Eq. (16), the motion u described by Eq. (16a) is called the axial motion, the motion v described
by Eqs. (16b) and (16d) is called the chordwise motion (purely in the xy plane), and the motionw described by
Eqs.(16c) and (16e) is called the flapwise motion (purely in the xz plane). The chordwise motion and flapwise
motion are coupled with the axial motion, and the axial and chordwise motions are coupled with each other.
For γ = 90 ◦, the motion equations have the same expression as those when γ = 0 ◦, but in this case the
motion v is called the flapwise motion and the motion w is called the chordwise motion.

The dynamic model, as represented by Eq. (16), can be reduced if sufficiently large shear stiffness is
assumed, meaning κGA → ∞. In this case, due to Eqs. (16d) and (16e), we have

ϕz = ∂v

∂x
, ϕy = −∂w

∂x
(17)

This means that the shear deformation is difficult, and only pure flexural deformation takes place. Therefore,
the governing Eq. (16) becomes

ρA

(
∂2u

∂t2
− θ̇2u − 2θ̇

∂v

∂t
− θ̈v

)
− ∂

∂x

(
E A

∂u

∂x

)
= ρAθ̇2(a + x) (18a)

ρA

(
∂2v

∂t2
− θ̇2v + 2θ̇

∂u

∂t
+ θ̈u

)
+ ∂

∂x

[
ρ Iz

(
θ̇2

∂v

∂x
− ∂3v

∂x∂t2

)]

− ∂

∂x

(
E A

∂u

∂x

∂v

∂x

)
+ ∂2

∂x2

(
E Iz

∂2v

∂x2

)
= −ρAθ̈ (a + x) (18b)

ρA
∂2w

∂t2
+ ∂

∂x

[
ρ Iy

(
θ̇2

∂w

∂x
− ∂3w

∂x∂t2

)]
− ∂

∂x

(
E A

∂u

∂x

∂w

∂x

)
+ ∂2

∂x2

(
E Iy

∂2w

∂x2

)
= 0 (18c)

This is governing equation of Rayleigh beams. If we further neglect the influence of rotational inertia,
meaning ρ Iy = ρ Iz = 0, from (18) we then get

ρA

(
∂2u

∂t2
− θ̇2u − 2θ̇

∂v

∂t
− θ̈v

)
− ∂

∂x

(
E A

∂u

∂x

)
= ρAθ̇2(a + x) (19a)

ρA

(
∂2v

∂t2
− θ̇2v + 2θ̇

∂u

∂t
+ θ̈u

)
− ∂

∂x

(
E A

∂u

∂x

∂v

∂x

)
+ ∂2

∂x2

(
E Iz

∂2v

∂x2

)
= −ρAθ̈ (a + x) (19b)

ρA
∂2w

∂t2
− ∂

∂x

(
E A

∂u

∂x

∂w

∂x

)
+ ∂2

∂x2

(
E Iy

∂2w

∂x2

)
= 0 (19c)

This is in accordance with that of Euler–Bernoulli beams given in Refs. [13,21] once the applied forces
are zero (pv = pw = 0).

In the present study, the following tapering relations for the height and width of the beam are used.

b(x) = b0
(
1 − cb

x

L

)
(20a)

h(x) = h0
(
1 − ch

x

L

)
(20b)

where b0 and h0 are the width and height at the root of the beam, respectively, and cb, and ch are the width
and height taper ratios, respectively, defined by

cb = 1 − bL
b0

(21a)

ch = 1 − hL
h0

(21b)

in which bL and hL are the width and height at the free end of the beam, respectively.
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With Eq. (20), the variations of the cross-sectional properties can be obtained as

A(x) = A0

(
1 − cb

x

L

) (
1 − ch

x

L

)
(22a)

Iy(x) = Iy0
(
1 − cb

x

L

) (
1 − ch

x

L

)3
(22b)

Iz(x) = Iz0
(
1 − ch

x

L

) (
1 − cb

x

L

)3
(22c)

where A0 and I0 are area and the principal moment of inertia at the root cross section of the beam, respectively.
Here b0 = h0 and c = cb = ch are used to model a beam with a square cross section and tapers linearly in
two planes. Then

A(x) = A0

(
1 − c

x

L

)2
(23a)

I (x) = Iy(x) = Iz(x) = I0
(
1 − c

x

L

)4
(23b)

With the above tapering relations, we can rewrite the equations of motion in a dimensionless form. For this
transformation, several dimensionless variables and parameters are defined as follows:

τ = t

√
E I0

ρA0L4 , Ω = θ̇

√
ρA0L4

E I0
, β =

√
A0L2

I0
, η = κG

E
, ξ = x

L
,

δ = a

L
, û = u

L
, ŵ = w

L
, ϕ̂y = ϕy v̂ = v

L
, ϕ̂z = ϕz (24)

Substituting the dimensionless variables defined in Eq. (24), and parameters in Eq. (23) into Eqs. (14) and
(15), the dimensionless equations of motion can be written as

(1 − cξ)2
∂2û

∂τ 2
− 2Ω(1 − cξ)2

(
∂v̂

∂τ
cos γ − ∂ŵ

∂τ
sin γ

)
− Ω2(1 − cξ)2û − Ω̇(1 − cξ)2

(
v̂ cos γ − ŵ sin γ

)

− β2 ∂

∂ξ

(
(1 − cξ)2

∂ û

∂ξ

)
= Ω2(1 − cξ)2(δ + ξ) (25a)

(1 − cξ)2
[

∂2v̂

∂τ 2
+ 2Ω

∂ û

∂τ
cos γ + Ω̇ û cos γ − Ω2 (v̂ cos2 γ − ŵ sin γ cos γ

)]− β2 ∂

∂ξ

(
(1 − cξ)2

∂ û

∂ξ

∂v̂

∂ξ

)

− ηβ2 ∂

∂ξ

[
(1 − cξ)2

(
∂v̂

∂ξ
− ϕ̂z

)]
= −Ω̇(1 − cξ)2 (δ + ξ) cos γ (25b)

(1 − cξ)2
[
∂2ŵ

∂τ 2
− 2Ω

∂ û

∂τ
sin γ − Ω̇ û sin γ + Ω2 (v̂ cos γ sin γ − ŵ sin2 γ

)]− β2 ∂

∂ξ

(
(1 − cξ)2

∂ û

∂ξ

∂ŵ

∂ξ

)

− ηβ2 ∂

∂ξ

[
(1 − cξ)2

(
∂ŵ

∂ξ
+ ϕ̂y

)]
= Ω̇(1 − cξ)2 (δ + ξ) sin γ (25c)

(1 − cξ)4
∂2ϕ̂z

∂τ 2
+ ηβ4(1 − cξ)2ϕ̂z − Ω2(1 − cξ)4ϕ̂z − β2 ∂

∂ξ

(
(1 − cξ)4

∂ϕ̂z

∂ξ

)
− ηβ4(1 − cξ)2

∂v̂

∂ξ
= 0

(25d)

(1 − cξ)4
∂2ϕ̂y

∂τ 2
+ ηβ4(1 − cξ)2ϕ̂y − Ω2(1 − cξ)4ϕ̂y − β2 ∂

∂ξ

(
(1 − cξ)4

∂ϕ̂y

∂ξ

)
+ ηβ4(1 − cξ)2

∂ŵ

∂ξ
= 0

(25e)

and the boundary conditions

û = v̂ = ŵ = ϕ̂y = ϕ̂z = 0 at ξ = 0; ∂ û
∂ζ

= ∂ϕ̂y
∂ζ

= ∂ϕ̂z
∂ζ

=
(

∂v̂
∂ζ

− ϕ̂z

)
=
(

∂ŵ
∂ζ

+ ϕ̂y

)
= 0 at ζ = 1

(26)
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3 Discretization of the equations of motion

In order to analyze the equations numerically, the continuous system is discretized to one with a finite number
of degrees of freedom. Galerkin’s discretization method will be applied to the equations of motion. The
deformation of beam can be expressed as

û(ξ, τ ) =
N∑
i=1

Ai (ξ)qui (τ ) (27a)

v̂(ξ, τ ) =
N∑
i=1

Bi (ξ)qv
i (τ ) (27b)

ŵ(ξ, τ ) =
N∑
i=1

Bi (ξ)qw
i (τ ) (27c)

ϕ̂z(ξ, τ ) =
N∑
i=1

Ci (ξ)qϕz
i (τ ) =

N∑
i=1

B ′
i (ξ)

iπ
qϕz
i (τ ) (27d)

ϕ̂y(ξ, τ ) =
N∑
i=1

−Ci (ξ)qϕy
i (τ ) =

N∑
i=1

−B ′
i (ξ)

iπ
qϕy
i (τ ) (27e)

where N is the total number of comparison functions and qi (τ ) denotes the i th generalized coordinates of
the transverse displacement and rotation, respectively. In the following sections, the modes of a nonrotating
Euler–Bernoulli cantilever beam are used as the comparison functions in the simulation. These mode functions
are given by

Ai (ξ) = sin(2i − 1)
πξ

2
(28a)

Bi (ξ) = cos(λiξ) − cosh(λiξ) − cosh(λi ) + cos(λi )

sin(λi ) + sinh(λi )
(sin(λiξ) − sinh(λiξ)) (28b)

where λi is the i th root of

cos λi cosh λi = −1

Substituted Eq. (27) into Eq. (25), multiplying the resultant equation by corresponding eigenfunction, and
integrating with respect ξ over the domain [0, 1], let

A(ξ) = [A1(ξ), A2(ξ), . . . , An(ξ)],
B(ξ) = [B1(ξ), B2(ξ), . . . , Bn(ξ)],
C(ξ) = [C1(ξ),C2(ξ), . . . ,Cn(ξ)],
q j (t) = [q j

1 (τ ), q j
2 (τ ), . . . , q j

n (τ )] ( j = u, v, w, ϕz, ϕy)

The following discretized equations are derived
⎡
⎢⎢⎢⎣

Mu

Mv

Mw

Mϕz

Mϕy

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̈u

q̈v

q̈w

q̈ϕz

q̈ϕy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎣

0 Guv Guw

Gvu 0
Gwu 0

0
0

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̈u

q̈v

q̈w

q̈ϕz

q̈ϕy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎣

Ku Kuv Kuw

Kvu Kv(qu) Kvw Kvϕz

Kwu Kwv Kw(qu) Kwϕy

Kϕzv Kϕz

Kϕyw Kϕy

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qu

qv

qw

qϕz

qϕy

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f u

f v

fw

0
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(29)
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where

Mu =
∫ 1

0
(1−cξ)2ATAdξ, Mv=Mw=

∫ 1

0
(1−cξ)2BTBdξ, Mϕz = Mϕy =

∫ 1

0
(1 − cξ)4CTCdξ

Guv = −2Ω cos γ

∫ 1

0
(1 − cξ)2ATBdξ, Guw = 2Ω sin γ

∫ 1

0
(1 − cξ)2ATBdξ

Gvu = 2Ω cos γ

∫ 1

0
(1 − cξ)2BTAdξ, Gwu = −2Ω sin γ

∫ 1

0
(1 − cξ)2BTAdξ

Ku = β2
∫ 1

0
(1 − cξ)2A′TA′dξ − Ω2

∫ 1

0
(1 − cξ)2ATAdξ, Kuv = −Ω̇ cos γ

∫ 1

0
(1 − cξ)2ATBdξ

Kuw = Ω̇ sin γ

∫ 1

0
(1 − cξ)2ATBdξ

Kv(qu) = −Ω2 cos2 γ

∫ 1

0
(1 − cξ)2BTBdξ + β2

∫ 1

0
(1 − cξ)2B′TA′q1B′dξ + ηβ2

∫ 1

0
(1 − cξ)2B′TB′dξ

Kvu = Ω̇ cos γ

∫ 1

0
(1 − cξ)2BTAdξ, Kvw = Ω2 sin γ cos γ

∫ 1

0
(1 − cξ)2BTBdξ

Kw(qu) = −Ω2 sin2 γ

∫ 1

0
(1 − cξ)2BTBdξ + β2

∫ 1

0
(1 − cξ)2B′TA′q1B′dξ + ηβ2

∫ 1

0
(1 − cξ)2B′TB′dξ

Kwu = −Ω̇ sin γ

∫ 1

0
(1 − cξ)2BTAdξ, Kwv = Ω2 sin γ cos γ

∫ 1

0
(1 − cξ)2BTBdξ

Kϕz = Kϕy = ηβ4
∫ 1

0
(1 − cξ)2CTCdx − Ω2

∫ 1

0
(1 − cξ)4CTCdξ + β2

∫ 1

0
(1 − cξ)4C’TC’dξ

Kϕzv = Kϕyw = −ηβ4
∫ 1

0
(1 − cξ)2CTB’dξ, Kvϕz = Kwϕy = −ηβ2

∫ 1

0
(1 − cξ)2B’TCdξ

f u = Ω2
∫ 1

0
(1 − cξ)2(δ + ξ)AT dξ, f v = −Ω̇ cos γ

∫ 1

0
(1 − cξ)2(δ + ξ)BT dξ

fw = Ω̇ sin γ

∫ 1

0
(1 − cξ)2(δ + ξ)BT dξ

4 Dynamical characteristics of the steady-state rotating

In the case of steady-state rotating (i.e., θ̈ = 0), the term E A ∂u
∂x in Eqs. (14b) and (14c) represents the axial

force of the rotating beam that imposes a stiffening effect on the lateral motions v andw. According to reference
[20], the steady-state axial elastic equilibrium equation is obtained

∂

∂x

(
E A

∂u

∂x

)
= −ρAθ̇2(a + x + u) (30)

Because the extensional deformation u is much smaller than (a+x) and is usually ignored on the right-hand
side of Eq. (30), the centrifugal stiffening force term can be expressed as follows [6,16]

E A
∂u

∂x
=
∫ L

x
ρAθ̇2 (a + x) dx = ρAθ̇2

[
a(L − x) + 1

2
(L2 − x2)

]
(31)

It is interesting that this axial force is identical to that given by other authors [14,15] based on a hybrid set
of deformation variables.

And when the extensional deformation of the beam is not ignorable, the exact solution of Eq. (30), which
satisfies boundary conditions in Eq. (15), may be given by [17–19,21].
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Table 1 Convergence characteristics of the natural frequencies for the flapwise motion (δ = 0, γ = 0, c = 0.4 and β = 12.5)

N Ref. [11] Ref. [22]

4 5 6 7 8 9 10 11 12

1st 4.1014 4.101 4.0991 4.0988 4.0979 4.0977 4.0986 4.0985 4.0978 4.0941 4.1064
2nd 16.364 16.266 16.26 16.221 16.215 16.194 16.164 16.137 16.136 16.0970 16.1453
3rd 35.357 35.322 35.04 35.024 34.848 34.675 34.542 34.516 34.511 34.4189 34.5222
4th 58.541 56.978 56.305 56.077 55.832 55.677 55.572 55.551 55.432 55.3024 55.4683

(a)

Ref.[18 ] with Eq.(33)
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Fig. 2 Variation of the dimensionless natural frequencies with the increasing rotating speed when δ = 0, β = 12.5, and c = 0:
a the axial and chordwise motions for η = 0.33; b the flapwise motion for η = 0.25

u(x) = ak cos [k(1 − x/L)] + L sin(kx/L)

k cos k
− (a + x) (32)

where k = θ̇L
√

ρ
E

Then the centrifugal stiffening force term can be expressed as follows

E A
∂u

∂x
= E A

[
cos(kx/L)

cos k
− 1

]
+ ka sin [k(1 − x/L)]

L cos k
(33)

The linearized free vibrations equations around the equilibrium deformation for the transverse motions v̂ and
ŵ are obtained after introducing E A ∂u

∂x described by Eqs. (31) or (33) into Eqs. (14b) and (14c).
Firstly, the convergence characteristics of the natural frequencies ω are considered, when the beam is

nonrotating and with a zero setting angle (θ̇ = 0, γ = 0), the first four natural frequencies for the flapwise
motion shown in Table 1. The number of modes “N” represents the number of the assumed modes for each
individual deformation variable. It can be seen that the natural frequencies converge rapidly as more modes
are added in the computation, and using 12 modes for each individual deformation variable is sufficient to
obtain a reasonable accuracy for the first four natural frequencies. In the case of the chordwise motion, the
convergence test is identical to those of the bending modes for the flapwise motion presented in Table 1.

4.1 Effect of hub rotational velocity on the natural frequencies

The natural frequencies of the rotating beam obtained from the two different centrifugal stiffening forces
described by Eqs. (31) and (33) are considered in this section. For comparison purpose, calculations with
γ = 0, δ = 0, β = 12.5 and c = 0 are performed, and the variations of the natural frequencies with respect
to the rotational speed are plotted in Fig. 2. In this figure, the solid lines represent the natural frequencies
computed with the centrifugal stiffening force described by Eq. (33), while the dotted lines represent the
frequencies computed with the centrifugal stiffening force described by Eq. (31). The calculation results are
in good agreement with those in Ref. [9,12,18]. As expected, the natural frequencies of transverse vibration
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Fig. 3 Variation of the dimensionless natural frequencies for different setting angle with the increasing rotating speedwhen δ = 0,
β = 12.5, η = 0.25, and c = 0

increase with increasing rotational speed due to the stiffening effect of the centrifugal force. However, the
natural frequencies of axial vibration are almost constant, especially for the higher modals.

As shown in Fig. 2b, the natural frequencies of the flapwise motion (ωw) monotonically increase with the
rotating speed. However, as shown in Fig. 2a, the axial stretching modes (ωu) are coupled with the bending
modes (ωv). This coupling effect between the stretching and bending modes results in the well-known veering
phenomena [13,16,21,23], where the two natural frequency loci veer rather than crossing when they are close
to each other. For instance, the second mode of axial motion and the fourth mode of the chordwise motion
veer at Ω = 8.9, and the fifth mode and the sixth mode of the chordwise motion do at Ω = 14.0. The natural
frequencies computed with different centrifugal stiffening force do not exhibit large differences in the low
rotating speed range. However, the natural frequencies of the beam considering the extensional deformation in
the centrifugal stiffening force term are greater than those without considering the extensional deformation in
the centrifugal stiffening force term in the high rotating speed range, and the differences will be more obvious
with the increase in rotational speed.

4.2 Effect of the setting angle γ on the natural frequencies

As mentioned in Sect. 2, the axial motion û and bending motions v̂ and ŵ are coupled with each other for
setting angles other than γ = 0 ◦ and 90 ◦. For the purpose of convenience, the axial motion û is assumed to
be zero, and the centrifugal stiffening force described by Eq. (31) is used to calculate the natural frequency ωv

for chordwise motion v̂, and ωw for flapwise motion ŵ. The results of the first two natural frequencies ωvare
shown in Fig. 3. The results indicate that the effect of increasing the setting angle γ leads to increasing natural
frequency for all modes, where this effect becomes significantly larger as the mode number is decreased. On
the contrary, through the similar calculation, we can find that the frequency ωwfor all modes decreases with
increasing setting angle γ . In this study, for the beam with square cross section, ωwis exactly the same as ωv

when the setting angle γ = π/4.
Then, when setting angle γ = 0 ◦, consider the extensional deformation of the beam, the effect of hub

radius ratio δ, slenderness ratio β, and taper ratios c on the natural frequencies, which are discussed in the
following section.

4.3 Effect of hub radius ratio δ on the natural frequencies

Figure 4a shows the variations of the natural frequencies of the axial and chordwise motions of the rotating
double-tapered Timoshenko beam with different hub radius ratios, and Fig. 4b shows the first four natural
frequencies of the flapwise motion of the beam. β = 30, c = 0.2, η = 0.33, and three hub radius ratios
(δ = 0, 0.5, and 1) are considered in the calculation. It can be seen that the natural frequencies of chordwise
and flapwise motions increase with the increasing hub radius ratio, but the different of hub radius ratios has no
obvious effect on the natural frequencies of the axial motion unless the frequency veering phenomena happens.

4.4 Effect of slenderness ratio β on the natural frequencies

The effect of the slenderness ratio on the natural frequencies is shown in Fig. 5. It is seen that the natural
frequencies increase as the slenderness ratio increases. Moreover, for the flapwise motion, it is noticed that
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the effect of the slenderness ratio is dominant on the higher modes and this effect diminishes rapidly as the
slenderness ratio increases. This is something expected because the Timoshenko beam theory is generally used
when the higher-mode frequencies are of interest. However, the effect of the slenderness ratio on the natural
frequencies for the axial and chordwise motions is complicated due to the frequencies’ veering. In general, the
effect of the slenderness ratio is more significant on the higher modes for all axial, chordwise, and chordwise
motions.

4.5 Effect of taper ratios c on the natural frequencies

In order to observe the effect of the taper ratios on the natural frequencies, consider the nonrotating beam first.
Figure 6 shows the ratios of the natural frequencies over the natural frequencies of a nontapered Timoshenko
beam. It is clear that the taper ratios have a significant increasing effect on the first natural frequency for
axial and bending (flapwise and chordwise) motion and a little decreasing effect on other frequencies. This
conclusion is consistent with those in Ref. [12].

However, consider the effect of rotating speed on the natural frequencies of a rotating double-tapered
Timoshenko beam; Fig. 7 shows the effect of the taper ratio on the natural frequencies of a rotating double-
tapered Timoshenko beam with a nonzero rotating speed Ω = 10. It is seen that the effect of the taper ratio
on the natural frequencies is different from that of the nonrotating beam. The taper ratio has a more intense
increasing effect on the first natural frequencies of chordwise motion. It is worth noting that a increasing effect
on the second natural frequencies of chordwise and flapwise motions is found. At the same time, these effects
become more obvious with increasing taper ratio. The taper ratio has a little decreasing effect on the other
natural frequencies.
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5 Time responses at the tip

In this section, time responses for a rotating double-tapered Timoshenko beam are computed when the rotating
speed is prescribed. The smooth speed profile is given by

Ω =
{

Ω0
T τ − Ω0

2π sin
( 2π
T τ
)

(0 ≤ τ ≤ T )

Ω0 (τ > T )
(34)

where Ω0 = 10 and T = 10 are the steady-state angular velocity and the time to reach the angular velocity,
respectively. This motion smoothly increases the angular velocity until it reaches the steady state and the
steady-state angular velocity is sustained. It is so smooth and slow that the lateral oscillation after reaching
the steady state remains quite small. The zero initial conditions are imposed on the axial, chordwise, and
flapwise deformations. No force is applied in the axial and chordwise directions, but an initial model velocity
q̇v
1

= 0.0001 is exerted in the flapwise direction. The time responses of the deformation computed at the tip
of beam depend on different taper ratios presented in Fig. 8, where the hub radius ratio δ = 0.01, slenderness
ratio β = 30, and η = 0.33.

The dotted lines represent the responses without considering the extensional deformation in the centrifugal
stiffening force term, and others are computed considering the extensional deformation in the centrifugal
stiffening force term. For the nontapered beam (c = 0), comparing the responses of the two studies described
by the dotted lines and solid lines, the main differences are found in the time responses of the axial and
chordwise deformations, as shown in Fig. 8a, b. The time responses have more high-frequency vibrations in the
axial and chordwise motions when considering the extensional deformation in the centrifugal stiffening force.
Moreover, the amplitude of the steady-state oscillate is much larger than that computed without considering
the extensional deformation in the centrifugal stiffening force. However, the flapwise deformations have little
or even no different between the two cases that whether or not considering the extensional deformation in the
centrifugal stiffening force. Moreover, comparing the responses of different taper ratios, it is clear that the
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deformations and the amplitude of steady-state oscillate decrease as the taper ratios increase for all the axial,
chordwise, and flapwise motions.

6 Conclusions

The dynamic model derived in this paper provides a complete representation of the vibration motion for a
double-tapered rotating Timoshenko beam. Based on whether or not the extensional deformation is considered
in the stiffening effect force of the rotating beam, there are two different expressions about the centrifugal
stiffening force in previous studies. The effects of different dimensionless parameters on the natural frequencies
and time responses are numerically studied. The following results are obtained:

The setting angle has a significant effect on the natural frequencies of transverse vibration for all modes,
especially on the lower modes. This paper lays emphasis on the axial and transverse motions when the setting
angle is zero, i.e., the axial motion, chordwise motion, and flapwise motion.

The differences in the natural frequencies computed with the two different expressions are small in the
low rotating speed range, but the differences become large in the high speed range. Therefore, the centrifugal
stiffening force with considering the extensional deformation is more reasonable for a more accurate numerical
simulation than that without considering the extensional deformation. The time responses have more high-
frequency vibration and larger steady-state oscillation amplitude for the axial and chordwise motions when
the extensional deformation is considered in the centrifugal force.

The natural frequencies of the chordwise and flapwisemotions increase with the increasing rotational speed
and hub radius ratio, and the rate of increase becomes larger with increasing rotation speed and hub radius
ratio. The rotation speed and hub radius ratio have no effect on the natural frequencies of the axial motion.

The slenderness ratio has a significant effect on the natural frequencies for all the axial, chordwise, and
flapwise motions, especially on the higher modes and when the slenderness ratio is smaller.

The taper ratio for a nonrotating beam has an increasing effect on the first natural frequency of all the axial,
chordwise, and flapwise motions, and the other natural frequencies decrease as the taper ratio increases. For
the rotating beam, the taper ratio has a slight increasing effect on the second bending natural frequency except
on the first. The time responds indicate that higher taper ratio results in the low response amplitude.
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