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Abstract Clarifying the geometry of the fractional tangent space of a curve, fractional differential geometry
of curves has already been revisited, Lazopoulos and Lazopoulos (2015), defining also the curvature vector.
Fractional bending of a beam is introduced, applying Euler–Bernoulli bending principle. The proposed theory
is implemented to the bending deformation of a cantilever beam under continuously distributed loading.

Keywords Fractional tangent space · Fractional differential geometry · Curvature vector · Fractional
bending · Euler–Bernoulli bending principle · A cantilever beam

1 Introduction

Fractional derivative models account for long-range (non-local) dependence of phenomena and result in bet-
ter description of their behavior. Various material models based upon fractional time derivatives have been
presented, for describing their viscoelastic interaction (Refs. [4,5]). Lazopoulos [6] has proposed a model for
lifting Noll’s axiom of local action (Truesdell [7]). Fractional calculus, originated by Leibniz [1], Liouville [2],
and Riemann [3], has recently applied to modern advances in physics engineering. Carpinteri et al. [8] have
also proposed a fractional approach to non-local mechanics. Applications in various physical areas may be also
found in various books Refs. [9–12]. Tarasov [13] has also presented a book including fractional mathematics
and its applications to various physics areas.

Nevertheless, the clear picture of the fractional tangent space of a manifold is missing. References [14,
15] are concerned with fractional geometry in manifolds, with extensive information concerning fractional
differential geometry topics. However, a clear picture of the fractional differential geometry is missing, since
the picture of the fractional tangent space of a manifold has not been clarified.

Lazopoulos and Lazopoulos [16] have presented a work clarifying the picture of the virtual tangent space of
a curve and helping in the accurate description of the fractional differential of curves. Likewise, the fractional
curvature vectors and the fractional normal plane were defined.

The interesting aspect of fractional calculus is that it expresses the contribution of the non-local strain in
the constitutive equations when the microstructure, characterized by microcracks, microdefects, micrononuni-
formities, etc., influences the deformation geometry of the material. It is obvious that conventional theories
can express the local influence at a point, based upon Noll’s local axiom for deformations of simple materi-
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als. Sometimes, models recall fractal patterns that do not accept derivatives of integer order. Hence, another
mathematical tool for this case should be recalled, and that tool is fractional calculus.

In the present work, outlining the procedure for defining the fractional curvature of a curve, the fractional
curvature of plane curves is defined. In addition for fractional beam small deflection, the fractional curvature is
approximated. Introducing that curvature approximation to Bernoulli’s bending principle, fractional bending
theory of beams is established. This is the novelty of this article compared to [16]. The nonlinear fractional
curvature formula [16] is approximated for small deformations. Therefore, linearizing the curvature formula,
Bernoulli’s bending principle is invoked, just to describe bending in linear fractional elasticity. Universal
equation of the fractional deflection beam curve is also presented. Implementation of the proposed theory
to the fractional cantilever beam under continuously distributed loading is presented. The present fractional
bending theory is quite general and may be used for describing vibrations of the beam (may be viscoelastic),
buckling, and optimization problems.

2 Basic properties of fractional calculus

Fractional calculus has become lately a branch of pure mathematics with many applications in physics and
engineering (Tarasov [13,17]). Fractional calculus is originated by Leibniz, looking for the possibility of
defining the derivative dng

dxn when n = 1
2 . The detailed properties of fractional derivatives may be found in

Kilbas et al. [9], Podlubny [10], and Samko et al. [11]. Many definitions of fractional derivatives exist. They
are not local, contrary to the conventional ones. Those derivatives exhibit some advantages over the others.
Nevertheless, they all share one common property of non-locality.

Starting from Cauchy formula for the n-fold integral of a primitive function f (x)

a I
n
x f (x) = 1

(n − 1)!
x∫

a

(x − s)n−1 f (s)ds, x > 0, n ∈ N (1)

and

x I
n
b f (x) = 1

(n − 1)!
b∫

x

(s − x)n−1 f (s)ds, x > 0, n ∈ N (2)

We define the left and right fractional integrals of f as:

a I
a
x f (x) = 1

Γ (α)

x∫

a

f (s)

(x − s)1−a
ds (3)

x I
a
b f (x) = 1

Γ (α)

b∫

x

f (s)

(s − x)1−a
ds (4)

In Eqs. (3, 4), we assume that α is the order of fractional integrals with 0 < a ≤ 1, consideringΓ (x) = (x−1)!
with Γ (α) Euler’s Gamma function.

Thus, the left and right Riemann–Liouville (R–L) derivatives are defined by:

aD
a
x f (x) = d

dx

(
a I

1−a
x f (x)

)
(5)

and

x D
a
b f (x) = − d

dx

(
b I

1−a
x f (x)

)
(6)

Nevertheless, the fact that the R–L derivatives of a constant c are not zero, imposed the need for Caputo’s
derivative that is more friendly in the description of physical systems, although it is more restrictive. In fact,
Caputo derivatives are defined by:
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C
a D

a
x f (x) = 1

Γ (1 − α)

x∫

a

f ′(s)
(x − s)a

ds (7)

and

C
x D

a
b f (x) = − 1

Γ (1 − α)

b∫

x

f ′(s)
(s − x)a

ds (8)

Evaluating Caputo’s derivatives for functions of the type

f (x) = (x − a)n or f (x) = (b − x)n,

we get:

C
a D

a
x (x − a)ν = Γ (ν + 1)

Γ (−α + ν + 1)
(x − a)ν−α (9)

and for the corresponding right Caputo’s derivative:

C
x D

a
b (b − x)ν = Γ (ν + 1)

Γ (−α + ν + 1)
(b − x)ν−α

Likewise, Caputo’s derivatives are zero for constant functions:

f (t) = c. (10)

3 The geometry of fractional differential

It is reminded that the a-fractional differential of a function f (x) is defined by [18]:

da f (x) = C
0 D

a
x f (x)(dx)

a (11)

Since C
0 D

a
x x �= 1, the a-fractional differential of the variable x is:

dax = C
0 D

a
x x(dx)

a (12)

Hence,

da f (x) =
C
0 D

a
x f (x)

C
0 D

a
x x

dax (13)

It is evident that da f (x) is a nonlinear function of dx , although it is a linear function of dax . That fact makes
possible the consideration of the virtual fractional tangent space that we propose.

In fact, in Fig. 1, the function y = f (x) has been drawn with the corresponding first differential space at
a point x .

It is well known that the differential space is not tangent to the function at x0, but intersects the figure
y = f (x) at least at one point x0. Further considering a point x0 + dx in the neighborhood of x0, we have

� f = f (x0 + �x) − f (x0) (14)

Now, magnifying the neighborhood of x0, we may define a space (dαx, � f ) (see Fig. 2).
According to Eq. (3), the first differential da f (x) is a linear function of dax and tangent space of � f at the

point x0. This space, we introduce, is called virtual tangent space, that is updated at any point x . Nevertheless,
we may consider the virtual fractional tangent space and the virtual normal at any point. Hence, we are able
to work combining some kind of fractional differential geometry with the fractional field theory. It is evident
that when α = 1, the virtual tangent space coincides with the tangent space.
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Fig. 1 The nonlinear differential of f (x)

Fig. 2 The virtual tangent space of the f (x)

4 The fractional arc length

Let y = f (x) be a function which may be non-differentiable but has a fractional derivative of order α, 0 <
α < 1. The fractional differential of y = f (x) in the virtual differential space is defined by:

da y =
C
0 D

a
x f (x)

C
0 D

a
x x

dax (15)

Therefore, the arc length is defined by:

s1(x, a) = 0 I
a
x

[
(da y)2 + (dax)2

]1/2 = 0 I
a
x

⎡
⎣

(
C
0 D

a
x f (x)

C
0 D

a
x x

)2

+ 1

⎤
⎦

1
2

dax (16)

Furthermore, for parametric curves of the type:

y = f (t), x = g(t) (17)

The fractional α-differentials are defined by:

dax =
C
0 D

a
t g(t)

0Da
t t

dat

da y =
C
0 D

a
t f (t)

0Da
t t

dat, (18)

and the fractional differential of the arc length is expressed by:

das =
√

(da y)2 + (dax)2 =
⎡
⎣

(
C
0 D

a
t f (t)

C
0 D

a
x t

)2

+
(

C
0 D

a
t g(t)

C
0 D

a
x t

)2
⎤
⎦

1
2

dat (19)
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and

s = 0 I
a
x d

as = 0 I
a
t

⎡
⎣

(
C
0 D

a
t f (t)

C
0 D

a
x t

)2

+
(

C
0 D

a
t g(t)

C
0 D

a
x t

)2
⎤
⎦

1
2

(20)

5 The fractional tangent space

Let r = r(s) be a natural representation of a curve C where s is the α-fractional length of the curve. Since the
velocity of a moving material point on the curve r(s) defines the tangent space, the fractional tangent space of
the curve r = r(s)is defined by the first derivative:

r1 = dar
das

=
C
0 D

a
s r

C
0 D

a
s s

(21)

Since

da |r| = das (22)

The length |r1| of the fractional tangent vector is unity.
The tangent space lines of the curve r = r(s) at the point r0 = r(s0) are defined by:

r = r0 + kt0 0 < k < ∞ (23)

where t0 = t(s0) is the unit tangent vector at r.
The plane through r0 orthogonal to the tangent line at �r0 is called the normal plane to the curve C at s0.

The points yof that orthogonal plane are defined by:

(y − r0) · t(s0) = (y − r0) · r1(s0) = 0 (24)

6 Fractional curvature of curves

Considering the fractional tangent vector:

t = r1(s) =
C
0 D

a
s r

C
0 D

a
s s

we may consider its fractional derivative:

r2(s) = dat
das

=
C
0 D

a
s t

C
0 D

a
s s

= t1(s) (25)

The vector t1(s) is called the fractional curvature vector on C at the point r(s) and is denoted by κ = κ(s) =
t1(s).

Since t is a unit vector

t · t = 1 (26)

Restricted to fractional derivatives that yield zero for a constant function, such as Caputo’s derivatives, the
curvature vector on C t1(s) is orthogonal to t and parallel to the normal plane. The magnitude of the fractional
curvature vector:

κ = |κ(s)| (27)

is called the fractional curvature of C at r(s). The reciprocal of the curvature κ is the fractional radius of
curvature at r(s):

ρ = 1

κ
= 1

|κ(s)| (28)
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7 The fractional radius of curvature of a curve

Following Porteous [19], for the fractional curvature of a plane curve r, we study at each point r(t) of the
curve how closely the curve approximates there to a parameterized circle. Now in the virtual space at a point
r(t0), the circle with center c and radius ρ consists of all r(t) in the virtual differential space such that:

(r − c) · (r − c) = ρ2 (29)

Further, Eq. (29) yields:

c · r − 1

2
r · r = 1

2
(c · c − ρ2) (30)

with the right-hand side been constant.
Therefore, the derivation of the function

V (c): t → c · r(t) − 1

2
r(t) · r(t) (31)

Hence,

V (c)1 = (c − r(t)) · r1(t) = 0 (32)

V (c)2 = (c − r(t)) · r2(t) − r1(t) · �r1(t) = 0 (33)

Suppose that r is a parametric curve with r(t) in the virtual tangent space. Then, V (c)1(t) = 0 when the vector
c − r(t) in the virtual space is orthogonal to the virtual tangent vector r1(t) = 0. Indeed, when the point c in
the virtual space lies on the normal to r(t) at t , that is the line in the virtual space through r(t) orthogonal to
the tangent line in the virtual space.

When r2(t) is not linearly dependent upon r1(t), there will be a unique point c �= r(t) on the normal line
such that also V (c)2(t) = 0.

Considering plane curves,

r (x) = x i + y (x) j (34)

Eqs. (32, 33), defining the fractional centers of curvature c = c1i + c2j, become

(c1 − x) + (c2 − y (x)) D1y (x) = 0

(c2 − y (x)) D2y (x) − (
1 + D1y (x)2

) = 0. (35)

Since the fractional radius of curvature is defined by,

ρα = ρα
1 i + ρα

2 j = (c1 − x) i + (c2 − y (x)) j (36)

the components of the fractional curvature are given by,

ρα
1 = −1 + D1y (x)2

D2y (x)
D1y (x)

ρα
2 = 1 + D1y (x)2

D2y (x)
(37)

Further, for the case of |y (x)| 	 1, which we consider in linear bending, Eq. (19) yields

das = dax + o
(
dax

)2 (38)

yields

D1 ( ) =
C
0 D

α
x ( )

C
0 D

α
x x

, D2 ( ) =
C
0 D

α
x

(
C
0 Dα

x ( )

0Dα
x x

)

C
0 D

α
x x

(39)

with

ρα = ∣∣rα
∣∣ ≈ 1

D2y (x)
(40)
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8 Bending of fractional beams

Let us consider a fractional beam with its source point (x, y, z) = (0, 0, 0). That means that the u fractional
derivatives of any function concerning the beam are defined by

C
0 D

a
u f (u) = 1

Γ (1 − α)

u∫

0

f ′(s)
(u − s)a

ds

where u might be one of the variables (x, y, z).
Recalling conventional bending, we consider a beam with its main principal axis along the x-direction and

its height along the y-direction. Then, according to the conventional theory, the strain

εxx = − y

R
(41)

where R is the curvature of the unstressed elastic curve. Further, the longitudinal stress

σxx = Eεxx = − Ey

R
(42)

with E Young’s elastic modulus. Then, the bending moment is equal to

M = −b

h/2∫

−h/2

yσxxdy (43)

Hence,

M = E I

R
(44)

with I the moment of inertia of the cross section and

σxx = −M

I
y (45)

for fractional bending, the fractional strain,

εα
xx = − y

ρα
(46)

where the fractional curvature is defined by

1

ρα
= D2w (x) = 1

C
0 D

α
x x

C
0 D

α
x

(
C
0 D

α
x w (x)

C
0 D

α
x x

)
(47)

where w(x) denotes the elastic line of the beam.
Likewise, the fractional bending moment is expressed by:

M = −2

h/2∫

0

σα
xx yd

α y = E I α

ρα
(48)

with the fractional stress (see Lazopoulos and Lazopoulos [16]),

σα
xx = − M

I α
y (49)
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and

I α = 2b

Γ (α) Γ (2 − α)

h/2∫

0

y3−αdy( h
2 − y

)1−α
= (3 − α)(2 − α)bh3πCsc (απ)

24Γ (α) Γ (−α)
(50)

Hence, the fractional bending of beam formula is revisited and expressed by:

M = E I αD2w (x) = E I α

C
0 D

α
x x

C
0 D

α
x

(
C
0 D

α
x w(x)

C
0 D

α
x x

)
(51)

Therefore, the deflection curve W (x) is defined by,

w(x) =
x∫

0

C
0 D

α
x s

⎛
⎝

s∫

0

M(t)

E I α
C
0 D

α
t t dt

α

⎞
⎠dsα + c1x + c2 (52)

In conventional integration, the deflection curve is defined by,

w(x) =
x∫

0

s1−α

Γ (2 − α)

⎛
⎝

s∫

0

M(t)

E I α

t1−α

Γ (2 − α)

1

Γ (α) (s − t)1−α
dt

⎞
⎠ ds

(x − s)1−α
+ c1x + c2 (53)

In the above equations, α is the fractional order corresponding to the non-smooth beam deformation due to
the microcracks, microvoids, and microdefects generally; b is the width and h the height of the beam.

9 The fractional cantilever beam under continuously distributed loading

Let us consider the cantilever beam of Fig. 3, with isotropic fractional linear dimension α, under the continu-
ously distributed loading q . The vertical force reaction A at the clamped end is equal to,

A = Q0 = 1

Γ (α)

L∫

0

qdαx = 1

Γ (α) Γ (2 − α)

L∫

0

qs1−α

(x − s)1−α
ds = Lq. (54)

The moment reaction at the clamped end is equal to

M0 = −
L∫

0

qxdαx = − q

Γ (α) Γ (2 − a)

L∫

0

s2−αds

(L − s)1−a = (α − 2) L2πqCsc (απ)

2Γ (α)
. (55)

Further, the bending moment at a point x of the fractional beam is defined by

M = −M0 + Q0x −
x∫

0

qxdαx = −M0 + Q0x −
x∫

0

q

Γ (α) Γ (2 − α)

(x − s) s1−α

(x − s)1−α
ds

= − (α − 2) L2πqCsc (απ)

2Γ (α)
+ Lqx − απqx2Csc (απ)

Γ (α) Γ (1 − α)
(56)

The figures that follow bending moment diagrams will be shown for various values of the fractional dimension
α and for beam length L = 1. Thus, Fig. 4 shows the bending moment diagram for the conventional case
a = 1 (Figs. 5, 6).

It is clear that reducing the fractional dimension, the bending moment increases.
The fractional moment of inertia of the cross section is, Eq. (50),

I α = (3 − α) (2 − α) bh3π2Csc (απ)2

24Γ (1 − α)2 Γ (α)2
(57)
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Fig. 3 The geometry of the cantilever beam

Fig. 4 Bending moment diagram for the conventional case α = 1

Fig. 5 Bending moment diagram for the case α = 0.66

For the conventional case with the fractional dimension α = 1, I 1 = bh3
12 . Hence,

I α

I 1
= (3 − α) (2 − α) π2Csc (απ)2

2Γ (1 − α)2 Γ (α)2
(58)

With the help of Mathematica computerized algebra pack, the flexure curve is defined by Eq. (53). Since the
boundary conditions for the clamped end (x = 0) require c1 = 0, c2 = 0, Eq. (53) becomes,

w(x) = q

E I α

(2−α) (1−α)2π2x2Csc (απ)2
(−72L2Γ (3−α) + (24LΓ (4−α) + (−3 + α) αxΓ (5−α))

)
288Γ (2−α)3 Γ (α)2

(59)

With the help ofMathematica, the flexure curve for various isotropic fractional dimensions has been drawn.
In Fig. 7, the flexure curve in the conventional case α = 1 has been drawn. Further, in Fig. 8, the flexure curve
with fractional dimension α = 0.66 has been shown. In addition, Fig. 9. corresponds to the case with α = 0.33.
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Fig. 6 Bending moment diagram for the case α = 0.33

Fig. 7 The flexure curve of the fractional cantilever beam for α = 1

Fig. 8 The flexure curve of the fractional cantilever beam for α = 0.66

It is evident from Figs. 7, 8, and 9 that increasing the isotropic fractional dimension α the beam is more
stiff. Moreover, small α (e.g., α = 0.33) represents a beam with many microvoids and dislocations which
cause a beam to curl at the end. The higher the fractional dimension α, the less dislocations and microvoids in
the beam which results to a more “linear” beam.

For the non-isotropic fractional casewith axial fractional dimensiondifferent from the fractional dimensions
in the other directions, we might expect different results. In the case it is studied in the remaining section,
the beam with fractional axial dimension is different one; however, in the other directions y, z, the fractional
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Fig. 9 The flexure curve of the fractional cantilever beam for α = 0.33

Fig. 10 The flexure curve of the fractional cantilever beam for α = 0.66

Fig. 11 The flexure curve of the fractional cantilever beam for α = 0.33

dimension is the conventional one (α = 1). In this case, I α = I 1 in Eq. (59). Figure 10 indicates the flexural
curve for axial-only fractional dimension α = 0.66.

Finally, Fig. 11 shows the flexural curve for axial-only fractional dimension α = 0.33.
Figure 12 compares the flexural curves of the beam for various values of the axial fractional dimensions.
Figure 13 shows the flexural curves of the beam for the isotropic case and the axial case with fractional

dimension α = 0.66. It is evident that the axial case fractional beam is stiffer than the isotropic case.
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Fig. 12 The flexural curves for various axial fractional dimensions

Fig. 13 The flexural curves of the beam for the isotropic and axial fractional cases

10 Conclusion—further research

Taking into consideration the fractional differential geometry of the curves (Lazopoulos and Lazopoulos [16]),
fractional bending theory of beams is established based uponBernoulli’s principle. Isotropic and axial fractional
dimension cases are studied and compared. For fractional order α = 1, conventional beam bending theory is
shown up. It is proven that the higher the fractional order α, the stiffer the beam is. Further research includes
numerical procedures, vibration, and stability analyses.
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