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Abstract Beams (columns) subjected to axially distributed load (e.g., self-weight) are commonly treated
using the classical Euler–Bernoulli beam theory, which ignores the transverse shear effect. Adopting the
Engesser and Haringx shear theories, respectively, we study in this article the stability and initial post-buckling
of sandwich (or laminated composite) beams under terminal force and axially distributed load. Nonlinear
governing equations are derived from geometrical compatibility, equilibrium of forces, and moments. The
critical buckling load, modal shapes of deformation, and shear force together with bendingmoment at buckling
can be obtained by using theGalerkin’smethod in terms of trigonometric functions, and the initial post-buckled
configuration of the beam is determined employing the shooting method. Predictions based on the Engesser
theory agree with finite element simulation results, while the Haringx theory overestimates the buckling load.
The effects of transverse shear and various different end constraint conditions on static buckling and initial
post-buckling of sandwich beams are systematically explored.
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1 Introduction

Standing columns (beams) are widely used as structural members such as braces, pipelines, chimneys, and
high buildings. In such cases, the standing column is subjected to its own weight (gravity), while accelerating
mobile structures could generate body forces equivalent to gravity as a kind of axially distributed load. The
axially distributed load developed in the column due to its weight and/or acceleration along column axis
affects its potential energy and, consequently, its stability characteristics and natural frequencies. Accordingly,
considering the effect of axially distributed load on stability is important in the analysis and design for such
column–beam structures.

The stability of a column subjected to gravity was first posed and solved by Euler in 1757 [1], although
the solution was erroneous. Later in 1778, Euler himself found the mistake and corrected the solution. One
hundred years later, Greenhill analyzed the same problem and obtained an improved solution [2]. When a
tip load (terminal force) was added, Timoshenko and Gere [3] and Kato [4] derived approximate formulas,
while Wang and Drachman [5] and Wang [6] presented exact analysis in terms of Bessel functions. Noting
the difficulty in obtaining exact solutions, Chai and Wang [7] used a differential transformation method to
determine the critical buckling load of an axially compressed heavy column having different support (end
constraint) conditions. Although the method could convert differential equations into a set of recursive alge-
braic equations without the need for integration, a fairly large number of terms are required for convergence.
Subsequently, making use of generalized hypergeometric functions, Duan and Wang [8] obtained analytical
solutions for elastic buckling of a heavy Euler–Bernoulli beam with various combinations of end conditions.
These solutions may be used as benchmark solutions to assess the accuracy of approximate formulas and
numerical solutions. Recently, Wang [9] used an exact initial value integration method to solve the buckling
problem of a braced standing column under tip load and self-weight, whereas Li et al. [10] employed an
integral equation method to analyze the buckling of a standing or hanging nonprismatic column subjected to
compressive force and distributed axial load. There also exists relevant literature concerning post-buckling of
beams under self-weight. Virgin and Plaut [11] studied post-buckling of a linearly elastic cantilevered column
under self-weight by means of the perturbation method. Vaz and Mascaro [12] and Liu et al. [13] investigated
the post-buckling behavior of a slender rodwith double-hinged boundary condition subjected to terminal forces
and self-weight. Using the differential quadrature method, Sepahi et al. [14] determined the post-buckling con-
figurations of a beam with one end hinged and the other fixed under terminal forces and self-weight. However,
existing researches on the stability or post-buckling of vertical standing columns or beams subjected to axially
distributed load and terminal force were carried out using the classical Euler–Bernoulli beam theory. Further,
there is yet a study focusing on the stability or post-buckling behavior of a moderately thick standing sandwich
(or laminated composite) column under self-weight, for which the effect of transverse shear should not be
neglected.

The increasing application of laminated composites and sandwich columns as structural members has
stimulated interest in accurate prediction of their stability characteristics. However, as these structures typically
have low ratio of transverse shear modulus to in-plane modulus, the classical Euler–Bernoulli beam theory is
not applicable for stability analysis. Even for homogenous beams subjected to terminal forces, the critical loads
can be overestimated if transverse shear is not included [3]. The effect of transverse shear on post-buckling
behavior can likewise be significant [24]. It is expected that this is also applicable for beams under axially
distributed load (self-weight).

With transverse shear accounted for, the well-known Timoshenko beam theory has been widely used to
solve static and dynamic problems. In this theory, the cross sections posterior to deformation are no longer
perpendicular to the central line. Accordingly, two typical approaches—the Engesser theory and the Haringx
theory—are often utilized to describe the cross section of shear force [3,15]. For Euler–Bernoulli beams with
deformed cross sections still normal to the central line, the two theories are identical. Up to now, there is still
a controversy about which theory is more reasonable. The arguments for and against Engesser and Haringx
theorieswere debated byZielger [16] andBlaauwendraad [17]who supported theEngesser theory, andReissner
[18] and Aristizabal-Ochoa [19] who supported the Haringx theory. Additionally, Bazant and Beghini [20,21]
found that the Engesser-type buckling formula for short sandwich columns gave much smaller critical loads
than the Haringx type. While finite element (FE) computations showed agreement with the Engesser-type
formula predictions, the Haringx-type prediction could be obtained with FE simulation somewhat artificially
(by updating the core modulus as a function of axial stress in the face sheets). The Engesser theory is the only
one that allows using a constant tangential shear modulus for the core when the strains are small enough for
the core to remain in the elastic range. Theoretical analysis for sandwich beams by Bazant and Beghini [22]



Stability and initial post-buckling of a standing sandwich beam 1065

supported the Engesser theory since its predictions agreed well with the experimental data of Fleck and Sridhar
[23]. For global buckling of sandwich beams or wide panels having orthotropic phases, the Engesser formula
with Huang and Kardomateas shear correction [24] gives conservative predictions, which are very close to
the elasticity solution and, in many cases, identical to the elasticity solution for the entire range of face-sheet
thickness examined [25]. For structures in building and civil engineering, Blaauwendraad [26] showed that
the Haringx theory seriously overestimates the critical loads and the Engesser theory is preferred. Zhang et al.
[27] also found that the Engesser theory is more reasonable and preferred for shear beam–columns.

As a summary of existing literature, the Engesser theory is more preferable for sandwich columns and
homogenized lattice (or built-up) columns, while the Haringx theory is favored in problems associated with
elastomeric bearings and helical springs, for which the theory was initially developed [28,29].

In this paper, the stability and initial post-buckling of symmetric sandwich (or laminated composite) beams
including transverse shear under terminal force and axially distributed load are analyzed for selected boundary
conditions. To account for the transverse shear effect, both the Engesser and Haringx theories are employed,
leading to two sets of nonlinear differential governing equations for buckling and initial post-buckling. For
simplicity, local buckling is not included in the present study. While the buckling problems are directly solved
using the Galerkin method in terms of specific trigonometric functions, the initial post-buckling configurations
for beams without end lateral forces are determined using the shooting method. For buckling of sandwich
beams with clamped–free and clamped–clamped end conditions, predictions from the Engesser and Haringx
shear theories compared with FE simulation results are made. The effects of transverse shear and end constraint
conditions on both the static buckling and initial post-buckling of sandwich beams are discussed.

2 Mathematical formulation

2.1 Governing equations for a beam with shear

In this section, new governing equations are presented for the stability analysis of sandwich (or laminated
composite) beams under self-weight; both the Engesser and Haringx theories are used.

Consider an elastic, initially straight sandwich beam of length l in a buckled configuration between sections
i and j , as shown in Fig. 1. The beam is taken as an elastica (inextensible, with bending moment proportional
to curvature). Elastic buckling of the beam is conditioned by the end constraints and the magnitude of the
terminal force P at its upper end and that of the axially distributed load q contributed by its self-weight. In
the buckled configuration, the moments Mi and Mj (assumed positive counterclockwise) and the axial forces
Pi and Pj together with the equal and opposite lateral forces Q at the ends are set up. A reference Cartesian
coordinate system is introduced, with the x-axis coinciding with the neutral axis of the un-deformed beam and
the y-axis aligned in the direction of the off-axis deformation. Besides the Euler coordinates x and y, the arc
length s, as a Lagrange coordinate, is also used in the following analysis.

The geometric relationship of the sandwich beam is given as:

dx

ds
= cosβ,

dy

ds
= sin β, x(s) =

∫ s

0
cosβ(η)dη, y(s) =

∫ s

0
sin β(η)dη (1)

where β is the slope of the deflected beam axis. From force equilibrium, one has:

Pi = P

Pj = P +
∫ l

0
qdη (2)

The moment m at a distance s (Fig. 1) is:

1

ρ
= dθ

ds
= − m

(E I )eq
(3)

where ρ is the radius of curvature, θ is the bending angle defined as the rotation of the cross section due to
bending, and (E I )eq refers to the equivalent flexural stiffness of the sandwich beam. Frommoment equilibrium,
one obtains:

m = Pj y(s) −
∫ s

0
q [y(s) − y(η)] dη − Qx(s) − Mj (4)
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Fig. 1 A buckled beam subjected to terminal force and self-weight

When Eq. (4) is differentiated with respect to s, and Eqs. (1), (2), and (3) are used, the general nonlinear
governing equation of the sandwich beam can be obtained as:

d

ds

[
(E I )eq

dθ

ds

]
+

[
P +

∫ l

s
qdη

]
sin β − Q cosβ = 0 (5)

In the case of an axially uniform beam, Eq. (5) is reduced to:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
]
sin β − Q̄ cosβ = 0 (6)

where the following dimensionless quantities are introduced:

ξ = s

l
, (P̄, q̄, Q̄) = (P, ql, Q)l2

(E I )eq
(7)

The rest of this paper will focus exclusively on axially uniform sandwich beams.
If transverse shear deformation is neglected, θ = β so that Eq. (5) is reduced to the classic Euler–Bernoulli

beam theory [30]. When transverse shear deformation is taken into account, the slope β of the deflected beam
axis is no longer equal to the bending angle θ . The difference is equivalent to the section shear angle γeq based
on the Timoshenko beam theory [3]:

γeq = β − θ = αV/(GA)eq (8)

where V is the shear force that rotates as the beam is deflected, (GA)eq is the equivalent shear stiffness, and
α is the shear correction coefficient. Assuming small shear strains, reasonable for the buckling and initial
post-buckling states studied here, one has sin γeq = γeq and cos γeq = 1. It thence follows from Eq. (8) that:

sin β = sin(θ + γeq) = sin θ + γeq cos θ (9)

In the subsequent analysis, two alternative governing equations based separately upon the Engesser shear
theory and the Haringx shear theory are derived.
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Fig. 2 a Engesser model, with shear force V on cross section normal to deflection curve; b Haringx model, with shear force V
on rotated cross section normal to beam axis in initial undeflected state [15]

2.1.1 Governing equation based on Engesser shear theory

As shown in Fig. 2a, the Engesser shear theory assumes that the shear force V due to end axial load P and
lateral force Q is aligned on the cross section that is normal to the deflected beam axis. Consequently, V is
expressed by:

V = [P + q(l − s)] sin β − Q cosβ (10)

Inserting Eq. (10) into Eq. (8) leads to:

γeq = Ā
([
P̄ + q̄(1 − ξ)

]
sin β − Q̄ cosβ

)
(11)

where the dimensionless parameter Ā = α(E I )eq/(GA)eql2 is defined as the structural stiffness ratio of
bending to shear. Combining (9) with (11) yields:

sin β = sin θ − ĀQ̄ cos θ cosβ

1 − Ā
[
P̄ + q̄(1 − ξ)

]
cos θ

(12)

Substituting (12) into (6) and multiplying by
(
1 − Ā

[
P̄ + q̄(1 − ξ)

]
cos θ

)
, a new governing equation based

on the Engesser theory is obtained as:

(
1 − Ā

[
P̄ + q̄(1 − ξ)

]
cos θ

) d2θ
dξ2

+ [
P̄ + q̄(1 − ξ)

]
sin θ − Q̄ cosβ = 0 (13)

For buckling, one may adopt the usual assumption that β and θ are small. Therefore, sin θ ∼= θ , cos θ ∼= 1,
and cosβ ∼= 1, so that Eq. (13) becomes:

(
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d2θ
dξ2

+ [
P̄ + q̄(1 − ξ)

]
θ − Q̄ = 0 (14)

Finally, differentiating (14) with respect to ξ , a differential equation with Q̄ eliminated is obtained:

(
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d3θ
dξ3

+ Āq̄
d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] dθ
dξ

− q̄θ = 0 (15)
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2.1.2 Governing equation based on Haringx shear theory

Different from the Engesser theory, the Haringx theory assumes that the shear force V is aligned on the cross
section that is normal to the beam axis in the initial undeflected state (see Fig. 2b), and thus is expressed by:

V = [P + q(l − s)] sin θ − Q cos θ (16)

Correspondingly, the equivalent shear angle γeq is given by:

γeq = Ā
([
P̄ + q̄(1 − ξ)

]
sin θ − Q̄ cos θ

)
(17)

from which one gets:

sin β = 1

2
Ā

[
P̄ + q̄(1 − ξ)

]
sin 2θ + sin θ − ĀQ̄ cos2 θ (18)

Inserting (18) into (6) leads to the following Haringx-type governing equation:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] (

1

2
Ā

[
P̄ + q̄(1 − ξ)

]
sin 2θ + sin θ − ĀQ̄ cos2 θ

)
− Q̄ cosβ = 0 (19)

For buckling, one can assume cos θ ∼= 1, sin 2θ ∼= 2θ , sin θ ∼= θ , and cosβ ∼= 1 under the hypothesis of
small deformation. Then, Eq. (19) becomes:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] (
1 + Ā

[
P̄ + q̄(1 − ξ)

])
θ − (

1 + Ā
[
P̄ + q̄(1 − ξ)

])
Q̄ = 0 (20)

To eliminate Q̄, differentiating (20) twice with respect to ξ yields the following differential equation for
buckling:

d4θ

dξ4
+ [

P̄ + q̄(1 − ξ)
] [

Ā
(
P̄ + q̄(1 − ξ)

) + 1
] d2θ
dξ2

− 2q̄
[
2 Ā

(
P̄ + q̄(1 − ξ)

) + 1
] dθ
dξ

+ 2 Āq̄2θ = 0

(21)

If shear deformation is ignored for buckling analysis, one has Ā = 0. In this case, both the Engesser and
Haringx theories are degraded to the classical Euler–Bernoulli theory. And Eq. (15) is reduced to:

d3θ

dξ3
+ [

P̄ + q̄(1 − ξ)
] dθ
dξ

− q̄θ = 0 (22)

which is identical to the fourth-order differential equation governing the stability of an Euler column [7,8].

2.2 Modal analysis

Equations governing the initially post-buckling behavior and critical buckling load for static stability are
obtained in the previous section based on different shear theories. Correspondingly, the modal shear force,
bending moment, and mode shapes at buckling are determined in this section.

2.2.1 Engesser type

With sin β = β and cosβ = 1 assumed for buckling, Eq. (10) may be rewritten as:

V̄ = [
P̄ + q̄(1 − ξ)

]
β − Q̄ (23)

where V̄ = Vl2/(E I )eq is the dimensionless shear force of the beam cross section. The slope of the beam
axis is:

β = θ − ĀQ̄

1 − Ā
[
P̄ + q̄(1 − ξ)

] (24)
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and it follows from Eq. (14) that:

Q̄ = (
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d2θ
dξ2

+ [
P̄ + q̄(1 − ξ)

]
θ (25)

Inserting the above equation into Eq. (24), one can rewrite the slope of beam axis as:

β = − Ā
d2θ

dξ2
+ θ (26)

Similarly, Eq. (23) can be rewritten as:

V̄ = Vl2

(E I )eq
= −d2θ

dξ2
(27)

2.2.2 Haringx type

For buckling, from Eq. (16), the dimensionless shear force can be written as:

V̄ = [
P̄ + q̄(1 − ξ)

]
θ − Q̄ (28)

and the beam axis has a slope given by:

β = (
1 + Ā

[
P̄ + q̄(1 − ξ)

])
θ − ĀQ̄ (29)

From Eq. (20), one has:

Q̄ = 1

1 + Ā
[
P̄ + q̄(1 − ξ)

] d2θ
dξ2

+ [
P̄ + q̄(1 − ξ)

]
θ (30)

Upon inserting (30) separately into (28) and (29), the dimensionless shear force and slope of beam axis are
obtained as:

V̄ = − 1

1 + Ā
[
P̄ + q̄(1 − ξ)

] d2θ
dξ2

(31)

β = θ − Ā

1 + Ā
[
P̄ + q̄(1 − ξ)

] d2θ
dξ2

(32)

For bothEngesser andHaringx theories, the expression M̄ = m/(E I )eql = −dθ/dξ for dimensionless bending
moment is employed. To determine the mode shapes at buckling based upon small deformation assumption,
from Eq. (1), one can replace x with s and employ y = ∫ s

0 βdη to obtain beam lateral deflection. To obtain
beam configurations of initial post-buckling, Eq. (1) is used directly with Eq. (12) for the Engesser theory or
Eq. (18) for the Haringx theory.

2.3 Beams with classical boundary conditions

Table 1 lists the likely boundary conditions for the beam ends. Accordingly, as shown in Table 2, seven possible
combinations of the above boundary conditions are considered in the present study, i.e., clamped–free (CF),
clamped–sliding restraint (CS), clamped–hinged (CH), clamped–clamped (CC), hinged–sliding restraint (HS),
hinged–hinged (HH), and hinged–clamped (HC).

3 Methods of numerical solutions

Governing equations for bucking and initial post-buckling of sandwich beams have been derived based upon
Engesser and Haringx shear theories, respectively. Due to nonlinearity of these governing equations, however,
analytical solutions are often difficult to obtain. Therefore, numerical methods for solving the problems are
given next.
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Table 1 Classical boundary conditions [31]

Boundary condition Constraint conditions

Clamped end (C) y = 0, dy
ds = 0

Hinged end (H) y = 0, dθ
dξ = 0

Sliding restraint (S) dy
ds = 0, Q̄ = 0

Free end (F) dθ
dξ = 0, Q̄ = 0

Table 2 Combination of boundary conditions for sandwich beam

Bottom end Top end

Clamped (C) Hinged (H) Sliding restrainta (S) Free (F)

Clamped (C) CC CH CS CF
Hinged (H) HC HH HS –

a Top sliding important as it represents one leg of a structure which buckles by side sway

Table 3 Basic functions of θ for beams with different boundary conditions

Boundary conditions θm (ξ)

HH cosmπξ

HS and HC cos (2m−1)πξ
2

CF and CH sin (2m−1)πξ
2

CS and CC sinmπξ

3.1 Solutions of buckling

To find the critical buckling loads (P̄cr, q̄cr), one may expand the bending angle θ(ξ) at buckling in terms of an
infinite series. By taking a sufficient number of terms in the series, it is possible to approach the exact solution
of the problem. Hence, θ(ξ) may be truncated as a finite sum as:

θ(ξ) =
M∑

m=1

amθm(ξ), 0 ≤ ξ ≤ 1 (33)

where am is unknown coefficient, θm is the corresponding basic function, andM is the number of terms required
for convergence.

In the present study, specific trigonometric functions are employed as the basic function θm for beams with
different combinations of boundary conditions, as shown in Table 3. Subsequently, the Galerkin method is used
to translate the differential governing equation into a homogeneous system of algebraic linear equations with
the same number of unknown coefficients as Eq. (33). To solve such an eigenvalue problem, the determinant
of the coefficient matrix of the system is set to zero. Accordingly, solving the characteristic equation, one can
obtain the critical buckling load P̄cr or q̄cr by seeking the lowest root of the equation.

Beams with seven combinations of boundary conditions as listed in Table 2 can be classified into two
cases: beams with or without lateral force Q. In the following, details for each case are presented to solve the
buckling problem.

3.1.1 Beams without lateral force at ends (Q̄ = 0)

If one end of the beam is either free or sliding restrained so that the end can move freely laterally, the opposite
lateral forces at the beam ends Q must be zero to satisfy the overall equilibrium; namely, the last term on the
left-hand side of Eq. (14) or (20) can be eliminated. This situation is applied to beamswith boundary conditions
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of HS, CF, and CS, for which cases the lateral translation of the top end is not constrained. Consequently, the
trigonometric functions specified for HS, CF, and CS as shown in Table 3 automatically satisfy the boundary
conditions given in Table 1.

Applying Galerkin’s method and using ∂θ/∂ak as the weighting function, one can solve the Engesser-type
differential equation of (14) with Q̄ = 0 as:

∫ 1

0

{(
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d2θ
dξ2

+ [
P̄ + q̄(1 − ξ)

]
θ

}
∂θ

∂ak
dξ = 0 (34)

where k varies from 1 to M . In view of Eq. (33), Eq. (34) can be rewritten as a set of homogeneous equations,
as:

M∑
m=1

∫ 1

0

{(
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d2θm
dξ2

+ [
P̄ + q̄(1 − ξ)

]
θm

}
θkdξ · am = 0, k = 1, . . . , M (35)

Setting the determinant of the coefficient matrix of the above system to be zero, one can obtain the critical
buckling load parameter P̄cr or q̄cr by seeking the lowest root of the equation.

Similarly, the Haringx-type differential equation of (20) with Q̄ = 0 can be solved with:

M∑
m=1

∫ 1

0

{
d2θm
dξ2

+ [
P̄ + q̄(1 − ξ)

] (
1 + Ā

[
P̄ + q̄(1 − ξ)

])
θm

}
θkdξ · am = 0, k = 1, . . . , M (36)

3.1.2 Beams with lateral force Q at ends (Q̄ �= 0)

For beamswith boundary conditions of HH, HC, CH, and CC under axially distributed force (e.g., self-weight),
the end lateral forces Q are not zero in an asymmetric buckled state. Thus, to eliminate the unknown Q, Eq.
(15) of the Engesser type or Eq. (21) of the Haringx type is employed.

By applying Galerkin’s method, Eq. (15) can be solved with:

M∑
m=1

∫ 1

0

{(
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d3θm
dξ3

+ Āq̄
d2θm
dξ2

+ [
P̄ + q̄(1 − ξ)

] dθm
dξ

− q̄θm

}
θkdξ · am = 0, k = 1, . . . , M (37)

For beams with double-hinged ends (HH), the corresponding trigonometric function as shown in Table 3
automatically satisfies the boundary conditions given in Table 1. However, for beams with boundary conditions
HC, CH, and CC, which share the same basic functions as those of HS, CF, and CS, respectively (see Table
3), all the boundary constraints are satisfied except for the constraint that the lateral translation at the top end
is zero. This implies that for HC, CH, and CC, a supplementary constraint equation has to be considered as:

y(1) =
∫ 1

0

dy

ds
dξ =

∫ 1

0
βdξ = 0 (38)

Inserting (26) and (33) into (38) leads to:

M∑
m=1

∫ 1

0

(
θm − Ā

d2θm
dξ2

)
dξ · am = 0 (39)

Table 4 lists detailed expressions of (39) for HC, CH, and CC.
When Eq. (39), which is linear, is taken into account together with Eq. (37) in solving the eigenvalue

problem, one finds that a superfluous equation must be removed to determine a unique solution in connection
with (39). In the present study, the last equation related to k = M in (37) is replaced with (39), leading to an
analogous procedure to determine am (m = 1, . . . , M). Thus, an eigenvalue problem subjected to a constraint
is obtained.
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Table 4 Engesser-type supplementary constraint equations for beams with end lateral force Q

Boundary conditions Supplementary constraint equation
∫ 1
0

dy
ds dξ = 0

HH –

HC
∑M

m=1
4+ Ā(2m−1)2π2

2(2m−1)π (−1)mam = 0

CH
∑M

m=1
4+ Ā(2m−1)2π2

2(2m−1)π am = 0

CC
∑M

m=1
1+ Ā(mπ)2

mπ
[1 − (−1)m ]am = 0

Similarly, the Haringx-type differential equation of (21) can be solved with:

M∑
m=1

∫ 1

0

{
d4θm
dξ4

+ [
P̄ + q̄(1 − ξ)

] [
Ā

(
P̄ + q̄(1 − ξ)

) + 1
] d2θm
dξ2

− 2q̄
[
2 Ā

(
P̄ + q̄(1 − ξ)

) + 1
] dθm
dξ

+ 2 Āq̄2θm

}
θkdξ · am = 0, k = 1, . . . , M (40)

Similar to those listed in Table 4, the Haringx-type supplementary constraint equations can be obtained by
employing Eqs. (32), (33), and (38). As the procedure is analogous to that of the Engesser type, detailed
expressions of these equations for HH, HC, CH, and CC are omitted here.

For buckling analysis of all the cases in present study, it has been found to be sufficient to truncate the
series expansion at M = 10. This method is more convenient than those published before and has more broad
applicability.

3.2 Solution of initial post-buckling for beams without end lateral force (Q̄ = 0)

To determine initial post-buckling, geometrically nonlinear terms should be considered in the governing equa-
tion. For beams with boundary conditions HH, HC, CC, and CH (lateral force Q not negligible), the governing
equations of both the Engesser andHaringx types for initial post-buckling are highly nonlinear. Explicit expres-
sions of Q are difficult to obtain, especially for statically indeterminate cases such as HC, CC, and CH. As
a result, solving the initial post-buckling problem becomes considerably complicated and hence will be dis-
cussed in a separate study. The present study considers only beams with Q̄ = 0 at the ends, i.e., with boundary
conditions HS, CF, and CS.

With Q̄ eliminated, the governing equation for initial post-buckling, i.e., (13) of the Engesser type or (19)
of the Haringx type, is greatly simplified. For instance, Eq. (13) is reduced to:

(
1 − Ā

[
P̄ + q̄(1 − ξ)

]
cos θ

) d2θ
dξ2

+ [
P̄ + q̄(1 − ξ)

]
sin θ = 0 (41)

This second-order nonlinear ordinary differential equation, together with boundary conditions specified at both
beam ends (see Table 1), characterizes a two-point boundary value problem (BVP). As it is difficult to obtain an
analytical solution, the shooting method is employed to transform the BVP into an initial value problem (IVP)
that can be solved using the Runge–Kutta method. A bisection method is cooperatively used to converge to the
appropriate initial value, which satisfies the original boundary conditions. Finally, equivalent initial conditions
are acquired, and thus a numerical solution of Eq. (41) is obtained.

Similarly, for the Haringx shear formula, Eq. (19) becomes:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] (

1

2
Ā

[
P̄ + q̄(1 − ξ)

]
sin 2θ + sin θ

)
= 0 (42)

The procedure of solving Eq. (42) is analogous to that described above for Eq. (41).
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Fig. 3 Dimensionless parameter Ā plotted as a function of α = f/c for selected values of η = t/ l: a sandwich beam with
soft core, e.g., stainless steel face sheets and Rohacell 51 foam core; b sandwich beams with hard core, e.g., woven glass–epoxy
composite face sheets and closed-cell aluminum foamwith porosity of 0.76 as the core [32]. Both the core and face sheet materials
are assumed to have a Poisson ratio of 0.3

4 Numerical results and discussions

For stability and initial post-buckling problems of both the Engesser and Haringx types, it is seen from the
aforementioned theoretical analysis that the dimensionless buckling loads, modal shapes, and configurations
of initial post-buckling depend only on a single dimensionless parameter Ā that represents the structural
stiffness ratio of bending to shear. A larger value of Ā implies that transverse shear occurs more easily. For
sandwich beams considered in the present study, the effective bending and shear stiffness of the cross section
are presented in “Appendix 1.” For a symmetric sandwich beam, of which the face sheets and the core are
taken as isotropic linear elastic, the key parameter Ā is mainly dependent on three dimensionless parameters,
i.e., the thickness ratio of the face sheet to core α = f/c, the slenderness ratio η = t/ l, and the elastic modulus
ratio of the core to face sheet Ec/E f . Here, f and c are separately the thickness of the core and face sheet; l
and t are the length and total thickness of the sandwich beam; Ec and E f are the elastic modulus of the core
and face sheet, respectively.

For sandwich beams having either relatively soft or hard cores, the dependence of Ā upon α and η is
presented in Fig. 3. As α is increased, Ā increases till α reaches 0.5 at which point the total thickness of the
face sheets is equal to that of the core. Ā also increases with increasing η, implying that short beams correspond
to larger Ā. By comparing Fig. 3a with Fig. 3b, it can be seen that different collocation of component materials
for sandwich beams results in different order of Ā values. For instance, larger Ec/E f corresponds to smaller Ā.

As a case in point, for slender sandwich beams (η = 0.02) composed of stainless steel face sheets and
Rohacell 51 foam core, Ā falls in the range of 0.001–0.18. This implies that even for such slender beams, Ā
cannot be ignored in the aforementioned governing equations. In the following, numerical results are presented,
and the influence of Ā and boundary conditions on the buckling and initial post-buckling of a sandwich beam
subjected to terminal forces and self-weight is discussed in detail.

4.1 Buckling

Consider first dimensionless critical buckling loads, P̄cr and q̄cr. It is worth noting that beams having the same
Ā share the same q̄cr or P̄cr, but they may have different buckling loads, qcr or Pcr. The values of q̄cr with
P̄cr = 0 and P̄cr with q̄cr = 0 (as listed in Tables 5 and 6, respectively) as well as the concurrent q̄cr and P̄cr
(as illustrated in Fig. 4) for various beam end supports (i.e., CF, HH, CS, CH, CC, and HC) with Ā = 0 are
compared with existing results [8,9]. Excellent agreement is achieved in all cases, demonstrating the validity
and prediction accuracy of the present approach.

The buckling capacity of beams with hinged–sliding (HS) and hinged–clamped (HC) ends has been rarely
reported in the open literature. For Ā = 0, results for both HS and HC cases are presented in Fig. 4. They
share the same critical terminal load P̄cr with those of CF and CH when the self-weight parameter q̄cr = 0, but
divergewhen q̄cr is increased.When the effect of transverse shear is ignored (i.e., Ā = 0), the buckling capacity
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Table 5 Comparison of q̄cr when P̄cr = 0 for beams with Ā = 0

Boundary conditions CF HH CS CH CC HS HC

Present study 7.8373 18.5687 18.9563 52.6644 74.6861 3.4766 29.9211
Exact solution [8] 7.8373 18.5687 18.9563 52.5007 74.6286 – 30.0009a

Difference (%) 0.00 0.00 0.00 0.31 0.08 – 0.27

a Critical buckling load parameter from [9]

Table 6 Comparison of P̄cr when q̄cr = 0 for beams with Ā = 0

Boundary conditions CF HH CS CH CC HS HC

Present study 2.4674 9.8696 9.8696 20.1878 39.4784 2.4674 20.1878
Exact solution [8] 2.4664 9.8688 9.8691 20.1904 39.4782 – 20.1907a

Difference (%) 0.00 0.00 0.00 0.01 0.00 – 0.01

a Critical buckling load parameter from Wang [9]

Fig. 4 Buckling capacity of beams with Ā = 0 under terminal forces and self-weight

curve of beams with CS ends almost coincides with that of beams with HH. Further, when Ā = 0, it is seen
from Fig. 4 that the relationship between P̄cr and q̄cr is nearly linear for beams with different end constraints.

Since no results about the buckling of Timoshenko beams (or beams in shear) under self-weight have been
hitherto reported, finite element (FE) simulations are employed here to validate the present analytical predic-
tions for beams with Ā �= 0. FE calculations are carried out for symmetric sandwich beams satisfying two typ-
ical boundary conditions: CF and CC. Eigenvalue analysis is performed using the FE code ABAQUS/Standard
to compute the critical buckling loads and eigenmodes. Four-noded plane strain quadrilateral elements with
reduced integration (CPE4R) are used for both the face sheets and the core. Perfect bonding between the core
and the face sheets is assumed. Boundary conditions are applied using coupling constraints. Mesh convergence
has been guaranteed for each calculation. To determine the stability of sandwich beams under combined ter-
minal force and self-weight, a two-step analysis is employed: A general step of static analysis is firstly carried
out for calculating the initial stress field under the prescribed “self-weight” with gravity option; subsequently,
a linear perturbation step of buckle analysis is applied, and eigenvalue extraction procedure is carried out using
the Lanczos solver. For beams under sole self-weight or terminal force, only a buckle analysis is needed to
obtain the critical load. Sandwiches consisting of stainless steel face sheets with equal thickness and Rohacell
51 foam core are taken into account, with ρ f = 8030 kg/m3, υ = 0.3 and E f = 210GPa for the face sheets,
and ρc = 51 kg/m3, υ = 0.3, and Ec = 70MPa for the core. Sandwich beams with different values of Ā are
constructed by changing the ratio of beam length to thickness, according to Eq. (48).

As shown in Figs. 5 and 6, the critical loads predicted by the Engesser theory agree well with FE simulation
results, with the difference ranging from 0.14% at small values of Ā to about 5% at large values of Ā, while the
Haringx theory leads to serious overestimates. This implies that for sandwich beams considered in the present
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Fig. 5 Comparison of finite element (FE) calculations with analytical predictions for beams under terminal force and self-weight
with different Ā: a clamped–free (CF), and b clamped–clamped (CC) end constraints

Fig. 6 Comparison of FE calculations with analytical predictions: critical buckling load plotted as a function of Ā for beams with
various boundary conditions under a, c terminal force only (q̄cr = 0) and b, d self-weight only (P̄cr = 0). a, b clamped–free
(CF) boundary condition; c, d clamped–clamped (CC) boundary condition

study, the assumption adopted by the Haringx theory that the shear force induced by end axial load and lateral
force is aligned on the cross section normal to the beam axis in the initial undeflected state is questionable.
Rather, the shear force should be aligned on the cross section normal to the deflected beam axis, as adopted
by the Engesser theory. Consequently, the Engesser theory is employed for all subsequent analysis.

From Fig. 5, one can also find that as Ā is increased (i.e., the effect of transverse shear becomes more sig-
nificant), the q̄cr versus P̄cr relationship becomes increasingly nonlinear and the buckling capacity decreases.
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Fig. 7 Colour online Modal shapes at buckling for beams with different end constraints under only self-weight (P̄cr = 0). Red
and black lines refer to modal shapes with Ā = 0 (Euler–Bernoulli beam) and Ā �= 0 (Engesser beam), respectively; gray dash
lines initial reference state.HS hinged–sliding,CF clamped–free,CS clamped–sliding,HH hinged–hinged,HC hinged–clamped,
CH clamped–hinged, CC clamped–clamped

Fig. 8 Sensitivity of Ā on critical buckling loads for beams with varying boundary conditions under a self-weight only (P̄cr = 0)
andb terminal force only (q̄cr = 0). q̄cr0 and P̄cr0 are defined as critical buckling loads for beamswith Ā = 0 (i.e., Euler–Bernoulli
beams) subjected to self-weight only and terminal force only, respectively

Additionally, the buckling capacity curve is more sensitive to Ā for beams with CC ends than those with CF
ends. Also, Fig. 6 reveals that the dependence of critical buckling load q̄cr when P̄cr = 0 or P̄cr when q̄cr = 0
upon Ā is complicated and highly nonlinear.

For beams with different end constraints under self-weight only, the modal shapes (with lateral deforma-
tion normalized by maximum lateral deflection) at buckling are presented in Fig. 7 based on the Engesser
theory ( Ā �= 0). For comparison, Fig. 7 also includes the corresponding modal shapes predicted using the
Euler–Bernoulli beam theory ( Ā = 0). In comparison with modal shapes with Ā = 0, for modal shapes with
Ā �= 0, the bending deformation is more serious near the bottom end of the beam, and for beams with end
lateral force (i.e., HH, CC, CH and HC), the locations of the maximum lateral deflection for the modal shapes
with Ā �= 0 are closer to the bottom end. Additionally, it should be noted from Fig. 7 that the selected value of
Ā changes when the end constraints of the beam are varied, because the sensitivity of Ā on modal shape also
varies.

Based on the Engesser theory, the sensitivity of Ā on critical buckling loads of beams under self-weight
only or terminal force only for different end constraints is presented in Fig. 8. The relationship between the
buckling load and Ā is nonlinear and highly dependent on end support conditions, as the critical buckling load
is more sensitive to Ā for beams with stronger end constraints. The order of the sensitivity from weak to strong
is HS, CF, and CS beams without end lateral force, followed by HH, HC, CH, and CC beams with end lateral
force. The critical buckling load of beams with CC end constraints is most sensitive to Ā. Additionally, similar
to the results in Fig. 4 when Ā = 0, the curves of CS and HH beams in Fig. 8 nearly coincide with each other
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Fig. 9 Influence of Ā on abscissa and ordinate values (i.e., ȳmax and x̄max) of the upper end of deflected beam without end lateral
force (i.e., CF, CS, and HS beams) under a self-weight only (q̄/q̄cr = 1.10) and b terminal force only (P̄/P̄cr = 1.10) during
initial post-buckling, with ȳmax = ymax/ l and x̄max = xmax/ l

for both cases (self-weight only and terminal force only), but with different modal shapes. For CF and HS
beams subjected to terminal force only, the data for critical buckling loads are quite close to each other, but
diverge for beams subjected to self-weight only.

From a designer’s point of view, the critical values of q̄cr or P̄cr presented here are of great significance
because they furnish the maximum feasible length of a beam.

4.2 Initial post-buckling of CF, CS, and HS beams

As previously mentioned, in this section, only results of initial post-buckling for beams without end lateral
force (i.e., CF, CS, and HS) are discussed.

Figure 9 presents the influence of Ā on the abscissa and ordinate values (i.e., xmax and ymax) of the upper end,
both normalizedwith beam length l, for a deflected beam subjected to self-weight only (q̄/q̄cr = 1.10) or termi-
nal force only (P̄/P̄cr = 1.10) during its initial post-buckling stage. xmax and ymax also represent themaximum
coordinate values along the x-axis and the y-axis. As shown in Fig. 9a, for beams subjected to self-weight only,
the deflectionof a beamwithHSends is nearly independent of Ā,while inFig. 9b for beams subjected to terminal
force only, the deflection curve of a beamwithHS ends is almost coincidentwith that of aCF beam, both slightly
sensitive to Ā. However, Ā affects significantly the deflection of a CS beam during the initial post-buckling
stage, especiallywhen it is subjected to self-weight only. This implies that if transverse shear is not included as in
the classical Euler–Bernoulli theory, the deflection of beamswithCS endsmay be substantially underestimated.

Overall, from Fig. 9, it may be concluded that the influence of Ā on the horizontal and vertical deflections
of the beam upper end, fromweak to strong, is ordered as HS, CF, and CS, which is consistent with the previous
result in Fig. 8 regarding the influence of Ā on critical buckling loads.

For a beam with Ā = 0.10 which reflects a moderate degree of transverse shear (see Fig. 8), Fig. 10a, b
plots the normalized abscissa and ordinate values of its upper end as functions of self-weight q̄/q̄cr and terminal
force P̄/P̄cr, respectively, which represents the initial post-buckling paths of beams with different boundary
conditions. Apparently, the deflection of initial post-buckling is affected by beam boundary conditions. Com-
paratively speaking, the displacement along the x-axis for a CS beam is the largest and, as illustrated in Fig.
10b for beams subjected to terminal force only, the deflection curves of HS and CF beams are almost identical,
similar to the results shown in Figs. 8b and 9b. Generally, beams with stronger end constraints correspond
to more serious deflections (in particular, axial shortening along the x-axis during initial post-buckling), and
these deflections are more sensitive to Ā.

Finally, it should be mentioned that because the present initial post-buckling solution is based upon the
assumption of small shear strain (i.e., sin γeq = γeq, cos γeq = 1), the results would tend to be less accurate
as the loading moves away from the critical point, that is, at the larger values of q̄ or P̄ .



1078 B. Han et al.

Fig. 10 For CF, CS, and HS beams ( Ā = 0.10) without end lateral force, the abscissa and ordinate values of the upper end
of deflected beam plotted as a function of a q̄/q̄cr under self-weight only and b P̄/P̄cr under terminal force only during initial
post-buckling

5 Conclusions

The influence of transverse shear on stability and initial post-buckling of a standing sandwich (or laminated
composite) beam under terminal force and axially distributed load (self-weight) is analyzed. By employing
the Engesser and Haringx shear theories, nonlinear equations governing the buckling and initial post-buckling
behaviors of the sandwich beam are derived, respectively. Critical buckling loads and initial post-buckled
configuration of the beam are determined for a total of seven different boundary conditions. Main findings are
summarized as follows:

(1) Dimensionless buckling load, modal shapes, and configuration of initial post-buckling depend mainly on
a dimensionless parameter Ā of the sandwich beam that represents its structural stiffness ratio of bending
to shear.

(2) The effects of transverse shear should not be neglected for sandwich beams, and compared with finite
element calculations, the Engesser theory leads to better predictions than the Haringx theory.

(3) With transverse shear taken into account, beams exhibit modal shapes quite different from those obtained
using the classical Euler–Bernoulli beam theory.

(4) The dependence of critical buckling load upon Ā is highly nonlinear and heavily dependent upon end
support conditions, as the critical buckling load of a beam with stronger end constraints is more sensitive
to Ā.

(5) If transverse shear is not included as in the classical Euler–Bernoulli theory, the post-buckling deflection
of the beam may be underestimated. Beams with stronger end constraints correspond to more serious
initial post-buckling deflections (in particular, axial shortening along the x-axis), and these deflections are
more sensitive to Ā.

(6) The present theoretical approach not only provides accurate and simple engineering estimates for the
buckling and initial post-buckling of sandwich columns but can also be applied to analyze the stability
and initial post-buckling of nonprismatic or even graded beams.
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Appendix 1: Formulation of dimensionless parameter Ā for sandwich beams

A general asymmetric sandwich section (face sheets not having same thickness and/or material) is presented in
Fig. 11. The sandwich beam consists of two face sheets having density ρ1 and ρ2, thickness f1 and f2, elastic
modulus E f 1 and E f 2, and shear modulus G f 1and G f 2, respectively, and a core of density ρc, thickness c,
elastic modulus Ec, and shear modulus Gc. The beam width is uniform, W .



Stability and initial post-buckling of a standing sandwich beam 1079

Fig. 11 Section of an asymmetric sandwich beam

It is assumed that the shear stresses are distributed uniformly over the entire beam section of area A. An
equivalent shear angle can thence be defined based on the “effective” shear modulus of the section, Ḡ, which
is defined from the compliances of the constituent phases as:

( f1 + c + f2)/Ḡ = f1/G f 1 + c/Gc + f2/G f 2 (43)

where Gi = Ei/2(1 + νi ) (i = f1, f2, and c, denoting upper face sheet, bottom face sheet, and core, respec-
tively).

With respect to the reference axis y through the center of the core (Fig. 11), the neutral axis (N. A.) of the
section is defined at a distance e, as:

e = E f 2 f2( f2 + c) − E f 1 f1( f1 + c)

2(E f 1 f1 + Ecc + E f 2 f2)
(44)

As a result, the equivalent flexural rigidity of an asymmetric sandwich section (E I )eq is given by:

(E I )eq =
(
E f 1

f 31
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+ E f 1 f1
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+ c

2
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f 32
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(
f2
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2
− e

)2

+ Ec
c3

12
+ Ecce

2

)
W

(45)

The shear correction coefficient is calculated from strain energy considerations, accounting for the nonuni-
form distribution of shear stresses throughout the cross section and the contribution of face sheets [24], as:

α = Ḡ AW
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i
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(46)

where

ai = fi + c/2 + (−1)i+1e, bi = c/2 + (−1)i+1e, ci = fi/2 + c/2 + (−1)i+1e (47)

Finally, the nondimensional parameter Ā, in which the small but nonnegligible shear stiffness of the face
sheets and the bending stiffness of the core are taken into account, is obtained as:

Ā = α (E I )eq
(GA)eq l2

= W

l2
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(48)

It should be mentioned that with respect to the reference axis y, the axis of mass center is defined at a
distance g, as:

g = ρ2 f2(c + f2) − ρ1 f1(c + f1)

2(ρ1 f1 + ρcc + ρ2 f2)
(49)
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which is analogous to Eq. (43). Generally, for sandwich beams considered in the present study, the axis of
gravity center (G. A.) is coincident with that of mass center, if the gravity field is uniformly distributed.

It is worth noting that for an asymmetric sandwich beam subjected to axially distributed force, onlywhen its
neutral axis coincides with its gravity center axis (i.e., e = g) and the terminal force is exerted on the line of the
neutral axis, can the relevant stability and initial post-buckling problems be solved using the present approach.
Otherwise, they belong to problems of eccentric loading, which may be treated as imperfection problems.

For symmetric sandwich beams satisfying E f 1 = E f 2, f1 = f2 and ρ1 = ρ2, one has e = g = 0.

Appendix 2: Governing equations of buckling in terms of lateral displacement

As a supplementary, buckling governing equations in terms of lateral displacement for a Timoshenko beam
are derived. Let the dimensionless lateral displacement be defined as ȳ = y/ l. According to Eq. (1), one has:

d ȳ

dξ
= dy

ds
= sin β (50)

Rewriting Eq. (6) and substituting Eqs. (8)–(9) into Eq. (50), we obtain the following coupled system of
ordinary differential equations as the governing equations of a Timoshenko beam:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] d ȳ
dξ

− Q̄ cosβ = 0 (51a)

d ȳ

dξ
= sin θ + γeq cos θ (51b)

For buckling analysis, based upon the assumption of small deformation, we have sin θ ∼= θ, cos θ ∼=
1, sin β ∼= β, cosβ ∼= 1, and thus d ȳ/dξ = β. Then, the coupled Eqs. (51a) and (51b) may be rewritten as:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] d ȳ
dξ

− Q̄ = 0 (52a)

d ȳ

dξ
= θ + γeq (52b)

which are the governing equations for the buckling of Timoshenko beams.
For the buckling of Engesser-type shear beams, making use of Eq. (11), we can rewrite the above coupled

differential governing equations as:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] d ȳ
dξ

− Q̄ = 0 (53a)

d ȳ

dξ
= θ + Ā

([
P̄ + q̄(1 − ξ)

] d ȳ
dξ

− Q̄

)
(53b)

Similarly, for the buckling of Haringx-type shear theory, by rewriting Eq. (17), the coupled differential
governing equations are obtained as:

d2θ

dξ2
+ [

P̄ + q̄(1 − ξ)
] d ȳ
dξ

− Q̄ = 0 (54a)

d ȳ

dξ
= θ + Ā

([
P̄ + q̄(1 − ξ)

]
θ − Q̄

)
(54b)

Finally, through a series of differential operations and rearranging of Eqs. (52b) and Eqs. (B5), we obtain
the uncoupled governing equations for buckling of Engesser-type shear beams in terms of lateral displacement
ȳ, as:

(
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d3 ȳ
dξ3

+ 2 Āq̄
d2 ȳ

dξ2
+ [

P̄ + q̄(1 − ξ)
] d ȳ
dξ

− Q̄ = 0 (55a)

θ = (
1 − Ā

[
P̄ + q̄(1 − ξ)

]) d ȳ
dξ

+ ĀQ̄ (55b)
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and the uncoupled governing equations for buckling of Haringx-type shear beams in terms of ȳ, as:

(
1 + Ā

[
P̄ + q̄(1 − ξ)

])2 d3 ȳ
dξ3

+ 2 Āq̄
(
1 + Ā

[
P̄ + q̄(1 − ξ)

]) d2 ȳ
dξ2

+
{
2 Ā2q̄2 + [

P̄ + q̄(1 − ξ)
] (
1 + Ā

[
P̄ + q̄(1 − ξ)

])3} d ȳ

dξ

+
{
2 Ā3q̄2 − (

1 + Ā
[
P̄ + q̄(1 − ξ)

])3}
Q̄ = 0 (56a)

θ =
d ȳ
dξ + ĀQ̄

1 + Ā
[
P̄ + q̄(1 − ξ)

] (56b)

Equations (55a) and (56a) are the “condensed” buckling governing equations in terms of ȳ for the Engesser
and Haringx shear beams, respectively.

Compared with the governing equation in terms of rotation angle θ , i.e., Eq. (14) or Eq. (20), the governing
equation in terms of lateral displacement ȳ, i.e., Eq. (55a) or Eq. (56a), appears to be more complicated. With
θ chosen as the principal unknown function and trigonometric functions employed as the base function which
automatically satisfy the boundary conditions, it would be more convenient to obtain convergent solutions.
Further, since the post-buckling studied in this paper is a highly nonlinear geometric problem, it may be more
appropriate to employ θ as the unknown function.
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