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Abstract In this paper the instability and vibration phenomena of columns composed of three elements
with different bending and compression stiffnesses are presented. In the internal rod the crack is taken into
consideration and is being modeled by means of a rotational spring with linear characteristic. The boundary
problem has been formulated on the basis of the Hamilton’s principle. The proposed general form of problem
formulation allows one to create five different systems on the basis of one mathematical model. The final
formulation of the boundary problem has been carried out by means of a small parameter method. The
monitoring of the columns is done by the analysis of the characteristic curves and shape modes. The obtained
results are compared to the ones calculated for the uncracked columns. The results of numerical calculation
are concern on vibration frequency, bifurcation load magnitude and bifurcation load–crack size relationship.

Keywords Vibration · Instability · Crack · Euler · Column

1 Introduction

In the supporting systems such as columns which are classified as slender systems due to much greater
length than the cross-sectional area, the monitoring of dynamic behavior is very important. The results of this
process are often presented in the plane external load–vibration frequency. The change in the location of the
characteristic curve can be observed because of modification of the host structure, the change in the connection
stiffness between the elements or by the appearance of cracks. The most dangerous phenomenon in the slender
systems is the presence of the crack. That is why the monitoring of the dynamic behavior allows one to predict
the crack initiation and/or propagation as well as the type of instability (destruction of the structure).

The scientific papers in which cracks were considered have been written inter alia by Anifantis [2], Binici
[6], Chondros [9,10], Chondros and Dimarogonas [11], Chondros et al. [12], Lee and Bergman [15] and Sokół
[26]. The results of these studies were presented as the dynamic characteristics of the investigated systems.

The analysis of the scientific papers allows one to see two main methods of creation and simulation of
cracks in mathematical models. In the first one the cracks are being called always open while in the second the
breathing cracks can be found. In the case when the static deflection is greater than the amplitude of vibration,
the crack can be classified as always open or as a one that opens and closes regularly—linear problem. In the
second case when the static deflection is small in relation to vibration amplitude, the crack opens and closes
in time as vibration amplitude dependent—nonlinear problem.
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Fig. 1 Regions of local and global instability

On the basis of this division Chondros [10] and Qian [23] have investigated the breathing effect. It can be
concluded that if an amplitude is small, the difference in the obtained results for open and breathing cracks is
very small. In the case when an amplitude has greater magnitude, this difference is increasing. On the basis
of those works the reduced cross-sectional area or massless rotational spring has been proposed as an element
which can be used in the crack modeling process.

Peng et al. [22] have proposed crack detection by means of nonlinear output frequency response functions.
The nonlinear output frequency response functions (called by authors NOFRFs) were introduced to detect
cracks in beams using frequency domain information. On the basis of the analysis of the result it have been
concluded that NOFRFs were a sensitive indicator of the presence of cracks. Chati et al. [7] have used the
finite element method in order to investigate the edge crack presence in the cantilever beam.

While the slender systems are taken into account, the instability is caused by buckling of the structure. The
buckling of such system appears in the perpendicular direction to the axis of the column and smaller moment of
inertia. The theoretical and experimental studies were performed by many scientists: Andersen and Thomson
[1], Beck [5], Evensen [13], Przybylski [20,21] and Tomski [27]. In the seventies of the previous century Roodr
and Chilver [24] have proposed new method of solution of the boundary problems corresponding to slender
systems. This method has been presented in detailed form by Osiński [19]. The small parameter method has
been used over years by many scientists, and it allows one to present analytical solutions of the systems with
rectilinear and curvilinear form of static equilibrium.

The instability of the slender systems can be also presented as a comparison of the nonlinear structure with
the linear one. This method allows one to find the local and global instability regions. The local instability of
multi-member systems is associated with lower magnitude of bifurcation load in comparison with critical one
of the linear structure in which only the rods of higher rigidity are used (see Fig. 1).

The local and global instability phenomenon refers to the deflection from the equilibrium position of the
element of the structure which is characterized by a small magnitude of bending and compression stiffnesses
(this element deflects as a first one and causes a deflection of higher-stiffness members). The research on this
phenomenon has been done by Sokół [25], Tomski and Uzny [28,29] and Tomski and Szmidla [30].

The systems investigated in this paper can be treated as a slender ones due to geometrical features (cross-
sectional area and the length of elements). Furthermore the method of appliance of the external load and
its behavior (the force can change from zero up to maximum magnitude) allow one to simulate the dynamic
behavior up to the bifurcation point at which columns are changing the form of equilibrium from the rectilinear
into curvilinear.

In this paper the one mathematical model has been proposed in order to simulate crack and different
combination of boundary conditions. The crack is being modeled as a massless rotational spring. Stiffness
reflects bendingmoments and the depth of the crack aswell as diameter of the cross-sectional area of the cracked
element. The natural boundary conditions allow one to satisfy the continuity of longitudinal and transversal
displacements, shear forces and bending moments in the point of crack presence. In the scientific papers the
authors are focused on one system for which the dedicated method of solution and problem formulation is
being presented. In this paper the general formulation has been shown in order to present the solution which
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can be applied to different systems. This generalization is based on discreet elements whose stiffness allows
one to simulate different boundary conditions. The investigated complex (multi-member) structure shows the
new direction of research into nonlinear slender systems since many scientists have discussed vibrations of
beams or single rod columns [3,4,8,14,17,18].

The main scope of this paper is the monitoring of the dynamic behavior of the five columns and com-
parison of the results of each configuration with the uncracked reference systems. At this point the results of
the monitoring are done on the basis of the analysis of the characteristic curves (curves on the plane natural
vibration frequency–external load). Leung [16], Sokół [25], Tomski and Uzny [28,29], Tomski and Szmidla
[30] and shape modes. The bifurcation load magnitude at which the instability occurs is also presented for
each configuration. The results of numerical simulations allow one to predict crack initiation and can be used
in the diagnostics of the supporting multi-member slender systems loaded by conservative forces with differ-
ent combination of boundary conditions. Furthermore the presented generalized form of boundary problem
formulation can be easily adapted into more complex system and/or subjected to other loads.

2 Problem formulation

The considered in this paper slender supporting system is presented in Fig. 2. It is built out of three elements
with different bending and compression stiffnesses. Additionally in the central element the crack appears.
Crack is being simulated by means of a rotational spring with linear characteristic. The cracked rod has been
divided into two elements (the total length of new elements is equal to the length of the system). The bending
and compression stiffness of the rods have been marked as follows (EJ)i , (EA)i where i = 1, 2, 3, 4 and
(EJ)1 = (EJ)4, (EJ)3 = (EJ)2. The column has been loaded by external compressive Euler’s force (the force
with constant line of action). In order to present one general problem formulation the discreet elements such
as one translational spring and two rotational ones of stiffnesses CT1,CR0,CR1, respectively, have been used.
In this study the five types of supports were taken into account (see Fig. 2). The individual combination of
different types of supports Ej ( j = 1, 2, 3, 4, 5) can be achieved by selection of proper springs parameters
shown in Fig. 2.

The instability problem has been formulated on the basis of the Hamilton’s principle:

δ

t2∫

t1

(Ek − Ep)dt = 0. (1)

Fig. 2 The considered system with different types of support



886 K. Sokół, S. Uzny

The kinetic energy Ek and potential energy Ep are expressed as follows :

Ek = 1
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where Ei , Young modulus; Ji , moment of inertia; Ai , cross-sectional area; ρi , material density; CR, CR0, CR1,
rotational springs stiffness; CT1, translational spring stiffness; P , external load.

Performing variation and integration operations and assuming that virtual displacements δUi (xi , t),
δWi (xi , t) for i = 1, 2, 3, 4 are arbitrary and independent for 0 < xi < li allows one to obtain:

– equations of motion (i = 1, 2, 3, 4):

(EJ)i
∂4Wi (xi , t)

∂x4i
− (EA)i

∂

∂xi

[[
∂Ui (xi , t)

∂xi
+ 1

2

(
∂Wi (xi , t)

∂xi

)2
]

∂Wi (xi , t)

∂xi

]
+(ρA)i

∂2Wi (xi , t)

∂t2
=0,

(4)

– differential equations of longitudinal displacement of the element (i = 1, 2, 3, 4):

∂

∂xi

(
∂Ui (xi , t)

∂xi
+ 1

2

[
∂Wi (xi , t)

∂xi

]2)
= 0. (5)

Internal force in each rod is as follows (i = 1, 2, 3, 4):

Si (t) = − (EA)i

(
∂Ui (xi , t)

∂xi
+ 1

2

[
∂Wi (xi , t)

∂xi

]2)
, (6)

Introduction of (6) into (4) allows one to express (4) in the form:

(EJ)i
∂4Wi (xi , t)

∂x4i
+ Si (t)

∂2Wi (xi , t)

∂x2i
+ (ρA)i

∂2Wi (xi , t)

∂t2
= 0 (7)

After double integration of (6) the longitudinal displacements in i -th element are as follows:

Ui (xi , t) −Ui (0, t) = − Si (t)xi
(EA)i

− 1

2

xi∫

0

[
∂Wi (xi , t)

∂xi

]2
dxi . (8)

The investigated slender system can be described by the following set of geometrical and natural boundary
conditions:

W1(0, t) = W2(0, t) = W4(0, t) = 0 (9a–c)
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The investigations presented in this paper have been done in the non-dimensional form, where

• coordinates and dimensions:

ξi = xi
li

, di = li
l1

, (10a–b)
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• transversal and longitudinal displacements:

wi (ξi , τ ) = Wi (xi , t)

li
, ui (ξi , τ ) = Ui (xi , t)

li
, (10c-d)

• forces:
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, (10e-f)

• vibration frequency:
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4
i
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• rotational spring stiffness and rigidity ratio:
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, μ = (EJ)2
(EJ)1

. (10i-j)

Due to nonlinearities [integrand expression inEq. (8)] the small parametermethodhas beenused [28,29,31].
In this paper only the rectilinear form of static equilibrium is investigated. Additionally the first component
of natural vibration frequency is presented which is independent to amplitude of vibration. With so certain
assumptions the differential equation ofmotion in transversal direction after implementation of small parameter
method and separation of time and space variables has a form (comp. [28,29,31]):

w I V
i (ξi ) + ki0w

I I
i (ξi ) − ω2

i wi (ξi ) = 0 (11)

In (11) ki0 is a non-dimensional longitudinal forcewhich is present in the rods under consideration of rectilinear
form of static equilibrium. Distribution of external force onto rods of column is done on the basis of boundary
conditions (9r-w) and has a form:

S2 = P
(EA)2

2 (EA)1 + (EA)2
, S1 = P − S2

2
, S4 = S1 (12)

Non-dimensional parameter ωi0 is as follows:
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0
(ρA)i l

4
i
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Both ki0 and Ω0 are independent to amplitude of vibration.
The general solution of (11) can be presented in the form (i = 1, 2, 3, 4):

wi (ξi ) = Ai sin(g1iξi ) + Bi cos(g1iξi ) + Ci sinh(g2iξi ) + Di cosh(g2iξi ), (14)
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2
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Substitution of (14) into boundary conditions allows one to create the system of sixteen homogenous
equationswith sixteen unknowns (integration constants) Ai , Bi ,Ci , Di (i = 1, 2, 3, 4;m, n = 1, 2, 3, . . ., 16):

[Mmn] col {Ai , Bi ,Ci , Di } = 0, (16)

Equating the matrix coefficient of zero one obtains the transcendental equation on the basis of which the basic
component of vibration frequency at the rectilinear form of static equilibrium is found:

det [Mmn] = 0, (17)

The numerical solution of the determinant (17) leads to results which are describing instability phenomenon
as well as the relationship between free vibration frequency and external load.
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3 Results of numerical simulations

The third chapter of this paper has been divided into five sub-chapters. In each sub-chapter the results of
numerical simulations of one system E j ( j = 1, 2, 3, 4, 5) have been presented. The results include:

– the non-dimensional vibration frequency parameter:

ω =
√√√√Ω2

0

∑4
i=1 (ρA)i l

4
1∑4

i=1 (EJ)i
(18)

– external load relationship for different bending rigidity factor magnitude p:
– shape mode and bifurcation load–crack size analysis.

In this paper only the results for central crack location d2 = 0.5 and (E J )1 = (E J )4; (E J )2 = (E J )4 are
being presented because of great number of results for the considered systems in different configurations.

3.1 Column E1

In Figs. 3, 4 and 5 the results of investigations on first vibration frequency have been presented for central crack
location and different bending rigidity factorμ taking into account different crack size. The characteristic curves
have been plotted in the non-dimensional form.On the axis of external load p themagnitude of bifurcation force
can be found. The bifurcation takes place when the vibration frequency comes to zero. While the very small
(c = 100) crack is taken into account, the highest loading capacity has been observed. The propagation of the
crack up to greater size (curves for c = 1, 0.5, 0.1, 0.0001) causes the reduction in natural vibration frequency
of the column as well as loading capacity. The smallest differences in the investigated parameters (bifurcation
load and natural vibration frequency) can be found while the crack size changes from c = 100 down to c = 1.
Regardless of bending rigidity factor μ magnitude an influence of the crack stays the same—reduction in the
loading capacity and vibration frequency. As presented for every μ the investigated parameters are highly
dependent on crack size.

In Fig. 6 an influence of the crack size on bifurcation load for three different magnitudes of bending rigidity
factor (μ = 0.1, 0.5, 1) has been presented. It can be concluded that there is no change in the bifurcation load
magnitude for very small crack size. In this case the spring stiffness is above 50, and it can simulate a

Fig. 3 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.1
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Fig. 4 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.5

Fig. 5 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 1

system without crack. As presented in Fig. 6 all the curves regardless of bending rigidity factor magnitude
are stabilizing. While the crack size is very big (c close to zero), the rapid decrease in bifurcation load can be
observed. For fully cracked member the loading capacity is the lowest.

In Table 1 the first shape modes have been plotted for different crack size. The continuous line corresponds
to the external rods (1 and 4), while the dotted one stands for cracked internal member. The change in bent
rods axes shape, especially rods 2 and 3, determines the difference in loading capacity. With an increase in the
crack size (reduction in c magnitude), an increase in area between the curves can be observed as well as the
good visibility of the crack location (sharp connection between rods).
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Fig. 6 Curves on the plane external load–crack size for different bending rigidity factor, other data: d2 = 0.5

Table 1 Shape modes, d2 = 0.5, μ = 0.1

Cracked member Uncracked member 

c = 0.0001 c = 0.1

c = 1 c = 1000
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Fig. 7 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.1

Fig. 8 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.5

3.2 Column E2

In Figs. 7, 8 and 9 the results of investigations on first vibration frequency have been presented for central
crack location and different bending rigidity factor μ taking into account different crack size for column in E2
configuration. The characteristic curves have been plotted in the non-dimensional form. While the very small
(c = 100) crack is taken into account, the highest loading capacity has been observed. In the non-dimensional
form its magnitude is π2/4. This magnitude corresponds to critical loading of the linear cantilever system.
An increase in the crack size (c = 1, 0.5, 0.1, 0.0001) causes the reduction in natural vibration frequency of
the column as well as loading capacity. The smallest differences in the investigated parameters (bifurcation
load and natural vibration frequency) can be found while bending rigidity factor is μ = 0.1. An increase in
μ translates to greater differences in the position of characteristic curves. For μ = 1 the lowest vibration
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Fig. 9 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 1

Fig. 10 Curves on the plane external load–crack size for different bending rigidity factor, other data: d2 = 0.5

frequency and loading capacity have been observed. In each configuration the crack causes the reduction in
bifurcation load and natural vibration frequency.

In Fig. 10 an influence of the crack size on bifurcation load for three considered magnitudes of bending
rigidity factor has been (μ = 0.1, 0.5, 1) presented. It can be concluded that there is no change in the bifurcation
load magnitude for small crack size or this change is insignificant at the beginning. In this case when the spring
stiffness is above 50, the systemwithout crack can be simulated. As presented in Fig. 10 all the curves regardless
of bending rigidity factor magnitude are stabilizing. While the crack size is very big (c close to zero), the rapid
decrease in bifurcation load can be observed. For μ = 0.1 the reduction in spring stiffness causes the most
rapid decrease in loading capacity. Fully cracked internal member reflects in the lowest loading capacity.
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Table 2 Shape modes, d2 = 0.5, μ = 0.1

Cracked member Uncracked member 

c = 0.0001 c = 0.1

c = 1 c = 1000

In Table 2 the results of numerical investigations on first shape modes with consideration of different crack
size have been shown. The markings of lines are exactly the same as in Table 1 (continuous line—rods 1 and
4; dotted line—rods 2 and 3). The initiation and propagation of crack have an influence on bent rods axes.
An increase in the crack size causes an increase in the area between the axes of rods, which reflects in the
reduction in loading capacity and vibration frequency. The greater the crack size, the sharper the connection
of rods 2 and 3.

3.3 Column E3

In Figs. 11, 12 and 13 the results of investigations on first vibration frequency have been presented for central
crack location and different bending rigidity factor μ taking into account different crack size for column in
E3 configuration. The characteristic curves have been plotted in the non-dimensional form. While the very
small (c = 100) crack is taken into account, the highest loading capacity has been observed of each considered
bending rigidity factor. The change in μ from μ = 0.1 up to μ = 1 results in increase in the bifurcation
loading and natural vibration frequency regardless of the crack size. For each considered magnitude of μ an
increase in the crack causes a reduction in the investigated parameters.

In Fig. 14 an influence of the crack size on bifurcation load for three considered magnitudes of bending
rigidity factor has been (μ = 0.1, 0.5, 1) presented. As presented in the Fig. 14 all the curves regardless of
bending rigidity factor magnitude are stabilizing. In the E3 configuration the high stiffness of the rotational
spring is required in order to achieve the final stabilization of bifurcation load magnitude. While the crack size
is very big (c close to zero), the rapid decrease in bifurcation load can be observed. The greatest differences
in the magnitude of loading capacity can be observed for μ = 1. Fully cracked internal member reflects in
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Fig. 11 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.1

Fig. 12 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.5

the lowest loading capacity. It can be concluded that there is no change in the bifurcation load magnitude for
small crack size.

The first shape modes for different crack size have been plotted in Table 3. The continuous line corresponds
to rods 1 and 4 (external elements), while the dotted one stands for rods 2 and 3 (cracked internal member).
The vibration frequency and loading capacity highly depend on vibration modes. The greater the difference in
the bent rods axes (area between curves), the lower the magnitude of the investigated parameters. T must be
stated that location of a crack can be easily observed on the shape modes.
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Fig. 13 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 1

Fig. 14 Curves on the plane external load–crack size for different bending rigidity factor, other data: d2 = 0.5

3.4 Column E4

In Figs. 15, 16 and 17 the results of investigations on first vibration frequency have been presented for central
crack location and different bending rigidity factor μ taking into account different crack size for column
in E4 configuration. The characteristic curves have been plotted in the non-dimensional form. For the very
small (c = 100) crack the highest loading capacity has been observed regardless of bending rigidity factor
magnitude. The change in μ from μ = 0.1 up to μ = 1 results in change in natural vibration frequency and
bifurcation load. It must be stated that at μ = 1 (Fig. 17) there exists such a rotational spring stiffness which
simulates crack above which the magnitude of bifurcation load and natural vibration frequency are constant.
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Table 3 Shape modes, d2 = 0.5, μ = 0.1

Cracked member Uncracked member 

c = 0.0001 c = 0.1

c = 1 c = 1000

Fig. 15 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.1
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Fig. 16 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.5

Fig. 17 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 1

An influence of an increase in the crack results in reduction ofmagnitudes of investigated parameters regardless
of the considered μ, but the size of this reduction depends on μ.

In Fig. 18 an influence of the crack size on bifurcation load for three considered magnitudes of bending
rigidity factor ( μ = 0.1, 0.5, 1) has been presented. As shown in Fig. 18, all the curves corresponding to
μ = 0.1, 0.5 are stabilizing with the reduction in the crack size. The lower the magnitude of μ, the faster the
stabilization of bifurcation load. For example when μ = 0.1 the c = 50 reflects a uncracked system, while
μ = 0.5 the c > 50 is needed to achieve the same situation. In the case when μ = 1 is taken into account,
the reduction in the crack size causes an increase in the bifurcation load, and at the point marked with black
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Fig. 18 Curves on the plane external load–crack size for different bending rigidity factor, other data: d2 = 0.5

dot (spring stiffness c∼2.4) the immediate stabilization of the bifurcation load and vibration frequency takes
place—see also the characteristic curves in Fig. 17. Furthermore this situation can be also observed on the
shape modes. In this case the change in the crack size has no influence of investigated parameters. Once again
the fully cracked internal member reflects in the lowest loading capacity.

In Table 4 the first shape modes have been plotted for different crack size. The continuous line corresponds
to the external rods (1 and 4), while the dotted one stands for cracked internal member. For the crack size
c = 0.0001, 0.1 and 1 the internal (cracked) member vibrates, while the external one stays still. An increase
in stiffness of the rotational spring causes an external member to vibrate, while an internal one stays still. It
can be stated that the vibration modes are now insensitive to spring stiffness.

3.5 Column E5

In Figs. 19, 20 and 21 the results of investigations on first vibration frequency have been presented for central
crack location and different bending rigidity factor μ taking into account different crack size for column in E5
configuration. The characteristic curves have been plotted in the non-dimensional form. In Fig. 19 the curves
at bending rigidity factor μ = 0.01 are plotted. An increase in the crack size up to c = 0.5 causes small
decrease in bifurcation load and vibration frequency. For greater crack size the decrease in the magnitude of
the investigated parameters is greater. When μ = 0.1 is taken into account, the bifurcation load and vibration
frequency are insensitive to initial grow of crack (c = 100, 1, 0.5). For greater crack size (c < 0.5) the decrease
in bifurcation load and vibration frequency can be observed. It is worth noting that these characteristic curves
at the beginning are showing high increase in external load with small decrease in the vibration frequency and
small increase in external load with high decrease in the vibration frequency at the end. For μ = 1 the crack
size has no influence on vibration frequency and bifurcation load.

In Fig. 22 an influence of the crack size on bifurcation load for four considered magnitudes of bending
rigidity factor (μ = 0.01, 0.1, 0.6, 1) has been presented. The logarithmic scale of the abscissa axis has been
used in order to show the most interesting area. As shown in Fig. 22 the curves corresponding to μ = 0.6, 1
are independent from crack size. At the lower magnitude of μ = 0.1, 0.01 the great crack size causes rapid
decrease in maximum loading capacity. Furthermore the area of independence of loading capacity from crack
size can be found for presented μ = 0.1, 0.01. The described tendency can be also observed in Figs. 19, 20
and 21 after an analysis of the shape of characteristic curves. Additionally an analysis of the shape modes has
been done.
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Table 4 Shape modes, d2 = 0.5, μ = 1

Cracked member Uncracked member 

c = 0.0001 c = 0.1

c = 1 c = 1000

Fig. 19 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ =
0.01
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Fig. 20 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 0.1

Fig. 21 Characteristic curves on the plane external load–vibration frequency for different crack size, other data: d2 = 0.5, μ = 1

In Tables 5 and 6 the first shape modes have been plotted for different crack size and bending rigidity
factor (μ = 0.01 and 1) with reference to Figs. 19, 20 and 21. The continuous line corresponds to the external
rods (1 and 4), while the dotted one stands for cracked internal member. When the results presented in Table 5
are investigated, it can be noticed that the change in crack size highly affects the shape modes as well as
characteristic curves. The greatest area between the axes of rods was found at c = 0.0001. For higher spring
stiffness, the area is reduced up to constant value at c > 1. The results gathered in Table 6 refer to the
characteristic curves plotted in Fig. 21. As shown a change in the crack size has negligibly small influence on
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Fig. 22 Characteristic curves on the plane external load–crack size for different bending rigidity factor, other data: d2 = 0.5

Table 5 Shape modes, d2 = 0.5, μ = 0.01

Cracked member Uncracked member 

c = 0.0001 c = 0.1

c = 1 c = 1000
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Table 6 Shape modes, d2 = 0.5, μ = 1

Cracked member Uncracked member 

c = 0.0001 c = 0.1

c = 1 c = 1000

the shape modes. It can be concluded that such a magnitude of bending rigidity factor can be found at which
the shape of characteristic curves (and shape modes) are independent from crack size.

4 Conclusion

In this paper an influence of the crack size on instability and natural vibrations of multi-member columns has
been presented. The obtained results of numerical simulations can be used to monitor the dynamic behavior
of the nonlinear slender systems. In the manuscript five different configurations of the multi-member columns
are shown. On the basis of smart mathematical model the simulation of columns with different boundary
conditions can be easily achieved. On the basis of the above investigations the following conclusion can be
done:

• if the stiffness of the rotational spring which simulates the crack tends to infinity, the magnitude of the
bifurcation load and vibration frequency can be treated as ones computed for corresponding linear system
of uncracked multi-member one.

• the crack size has a great influence on the bifurcation load magnitude and vibration frequency. An increase
in the crack size affects the characteristic curves causing the reduction in the investigated parameters. The
size of the this reduction depends on chosen initial configuration of the column as well as bending rigidity
factor.

• there can be found such a bending rigidity factor magnitude at which an influence of the crack size is
negligible.
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• for each configuration of the investigated slender system the proper combination of bending rigidities of
rods allows one to achieve required dynamic characteristic. Which is being disrupted by presence of the
crack.

• in the casewhen the crack affects the characteristic curves, the lowestmagnitudes of investigated parameters
have been found.

• the crack size has an influence on the shape modes. At low spring stiffness the transversal displacement of
the cracked member is the greatest. Also it can be observed that the change in the crack size changes the
shape modes (vibrating / still member).

• on the basis of the presented sample of the results of numerical simulations the monitoring of the dynamic
behavior can be done in order to find the crack initiation.

• at some magnitudes of the bending rigidity factor this monitoring can be problematic due to small or
negligible influence of the crack on the characteristic curves/shape modes. That is why the additional
monitoring systems must be used.

In this paper the linear component of vibration frequency around the rectilinear form of static equilibrium
is presented. The further investigation can consider the nonlinear component of natural vibrations which
depends on amplitude of vibration and shape modes. The next interesting step in the analysis of the cracked
multi-member slender systems may concern on curvilinear form of static equilibrium. The rationale of such
investigation is that the bifurcation load magnitude at which the change in equilibrium form takes place highly
depends on crack size and location (see Figs. 6,10, 14, 18, 22). Therefore in some cases the system can be
characterized by the presence of a curvilinear form of static equilibrium in higher range of external load
magnitudes than at rectilinear one.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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