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Abstract In this paper, an analytical procedure is presented to study the vibrational behavior of rectangular
plates subjected to different types of non-uniformly distributed in-plane loads. The prebuckling equations,
which contain two coupled partial differential equations, are solved analytically by considering the in-plane
constrains. The potential and kinetic energies of the plate are calculated based on the first-order shear defor-
mation theory, and the Ritz method is used to obtain the corresponding eigenvalue problem from Hamilton’s
principle. By parametric study, the effects of plate aspect ratio, thickness ratio and intensity of four types of
in-plane load profiles, i.e., constant, parabolic, cosine and triangular on vibrational frequency and buckling
load of the plate, are investigated. Comparison of the obtained results with the finite element solution shows
the accuracy of the presented method for solving similar problems.

Keywords Vibration · Frequency · First-order shear deformation theory · In-plane loads · Analytical solution

1 Introduction

Buckling and vibration of plates are two popular research fields that have been studied by many researchers.
Some of these studies have focused on the buckling or vibration of plates considering the in-plane load effects.
The in-plane loads affect the plate stiffness and change its vibrational behavior and in a limiting case, cause
the plate to buckle. Bassily and Dickinson [1] investigated the buckling and vibration of rectangular plates
subjected to arbitrary in-plane stresses using the Ritz method based on the classical plate theory (CPT). Dawe
and Roufaeil [2] studied the flexural vibration of square plates based on Mindlin plate theory. Lam et al. [3]
used a numerical method based on the polynomial functions for vibration analysis of isotropic and orthotropic
plates with cutout. Vibration and buckling of elastically supported rectangular plates under uniform in-plane
load were studied by Gorman [4]. He used the superposition of three forced vibration problems to calculate the
frequencies and buckling loads. Karami and Malekzadeh [5] studied the stability of skewed and trapezoidal
plates with different boundary conditions. They mapped the irregular physical domain into a square domain
and solved the transformed governing equations by using the differential quadrature (DQ) method. Srivastava
et al. [6] used the finite element (FE) method to study the buckling and vibration of stiffened plates subjected
to partial in-plane edge loads. Leissa and Kang [7,8] studied the vibration and buckling of rectangular plates
loaded by linearly varying in-plane stresses on two opposite simply supported edges. The formulation was
based on CPT, and the solution was performed by the method of Frobenius series. Zhou et al. [9] used the Ritz
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method for vibrational analysis of homogeneous circular, annular and rectangular plates. Devarakonda and
Bert [10,11] adopted the Airy’s stress function method to study the flexural vibration and buckling of plates
under sinusoidal distributed in-plane loads. Nayak [12] and Nayak et al. [13] used the FE method based on
a refined higher-order shear deformation theory to investigate the buckling and vibration of initially stressed
composite sandwich plates. Civalek [14] studied the buckling, bending and vibration of columns and plates
with different shapes. He presented some numerical results based on DQ and harmonic differential quadrature
(HDQ) methods. The method of discrete singular convolution (DSC) based on regularized Shannon’s delta
(RSD) kernel was used by Civalek [15] to investigate the vibration of isotropic and orthotropic plates with
varying thickness. He also used this method to study the vibration and buckling of thick rectangular plates [16].
Civalek et al. [17] considered buckling of Kirchhoff plates under linearly varying in-plane loads with different
boundary conditions by DSC method. Wang et al. [18] used DQ method to study the buckling and vibration
of rectangular plates and compared the accuracy and convergence of their solution with Leissa and Kang [7].
Buckling of plates subjected to cosine-distributed in-plane loads was investigated with DQ method by Wang et
al. [19]. Dong [20] used the Ritz method for three-dimensional vibration analysis of functionally graded (FG)
annular plates in which the displacement field was estimated by a set of Chebyshev polynomial series multiplied
by the functions that satisfy the boundary conditions. Jana and Bhaskar [21,22] presented a solution based on
the superposition of Airy’s stress functions for stress distribution of an isotropic plate with non-uniform in-plane
loading. They calculated the buckling load of the plate by Galerkin’s method. Akhavan et al. [23] studied the
buckling and vibration of moderately thick rectangular plates subjected to uniformly and linearly distributed
in-plane loads and resting on the Winkler–Pasternak elastic foundation. They presented a closed-form solution
based on the Mindlin plate theory. Malekzadeh et al. [24] used a formulation based on three-dimensional
(3D) theory of elasticity and DQ method to study the vibration of FG plates subjected to initial thermal
stresses. Panda and Ramachandra [25] studied the buckling of rectangular composite plates with non-uniform
loading based on the higher-order shear deformation theory. They obtained the prebuckling stress distribution
by minimizing the membrane strain energy and used the Galerkin’s approximation method to calculate the
buckling loads. Hashemi et al. [26] used the third-order shear deformation theory to study the in-plane and
out-of-plane free vibration of thick laminated plates. They derived four uncoupled equations and presented
Levy-type solutions to obtain the natural frequencies of the plate. Katsikadelis and Babouskos [27] worked
on thickness optimization of thin plates with different geometries to maximize the stiffness or buckling load
of the plate. They used the boundary element method to obtain the eigenvalue problem for optimization. Tang
and Wang [28] used stress functions based on Chebyshev polynomials to study the buckling of laminates under
parabolic edge compression. Ramachandra and Panda [29] investigated the dynamic instability of composite
plates subjected to linear and parabolic in-plane loads based on the energy method. Hasheminejad et al. [30]
studied the in-plane vibration of elliptical plates with an arbitrarily located elliptical cutout by using Navier’s
displacement equation of motion for the state of plane stress. They used the Helmholtz’s decomposition method
to obtain an analytical solution. Bambill and Rossit [31] used the Ritz method to investigate the vibration of a
plate subjected to linearly varying loads. Thai and Choi [32] investigated the bending, buckling and vibration
of rectangular plates under uniform uniaxial and biaxial in-plane loads by a two-variable refined plate theory
that accounts for parabolic variation of transverse shear stress through the plate thickness without using shear
correction factor.

In this study, the effect of different profiles of non-uniformly distributed in-plane loads is investigated on the
vibration behavior of rectangular plates with constraint on in-plane displacements. To calculate the vibration
frequencies and buckling loads, the equations of plane elasticity are solved. The solution can be obtained based
on the stress or displacement formulation. Many researchers use the stress formulation with considering the
Airy’s stress function, but applying the in-plane displacement constraint is difficult in this approach. As a result,
the equations of plane elasticity are written in terms of displacement components. For these equations, which
are a system of coupled partial differential equations, an analytical solution is developed and the resultant forces
are calculated. Then, the Ritz method is employed to extract an eigenvalue problem based on the first-order
shear deformation theory (FSDT). Finally, by solving the obtained eigenvalue problem, the buckling loads and
vibration frequencies of the plate are calculated. Also, a sensitivity analysis is performed on the problem.

2 Problem formulation

Consider an isotropic and homogeneous plate with length a, width b and thickness h. A coordinate system
with its origin located at the plate center and the x, y and z axes along the plate length, width and thickness,
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respectively, is used to describe the displacements. The displacement field of a deformed plate according to
FSDT is expressed as [33]:

u = u0 (x, y, t) + zu1 (x, y, t) , v = v0 (x, y, t) + zv1 (x, y, t) , w = w (x, y, t) (1)

where u0, v0, w represent the displacement components of a point on the mid-plane at z = 0, and u1, v1
represent the rotation of a line initially perpendicular to the mid-plane relative to y and x axes, respectively.
The governing equations of the plate using the principle of virtual work are expressed as [33]:

∂Nxx

∂x
+ ∂Nxy

∂y
= ρh

∂2u0

∂t2 ,
∂Nyy

∂y
+ ∂Nxy

∂x
= ρh

∂2v0

∂t2 (2)

where ρ is plate density. The in-plane force resultants are defined as:

{
Nxx , Nyy, Nxy

} =
∫ h/2

−h/2

{
σxx , σyy, τxy

}
dz. (3)

When the strains and rotations are small, the in-plane displacements u0, v0 are uncoupled from out-of-plane
displacements, i.e., u1, v1 and w [33]. This means that the in-plane displacement field does not change during
lateral deflection and the values of ∂2u0/∂t2 and ∂2v0/∂t2 are zero. As a result, Eq. (2) reduce to

∂Nxx

∂x
+ ∂Nxy

∂y
= 0,

∂Nyy

∂y
+ ∂Nxy

∂x
= 0. (4)

Equation (4) can be solved easily for some simple cases, such as a plate with free boundary conditions and
subjected to uniform or linearly varying in-plane loads at the edges. In these cases, the in-plane loading function
satisfies Eq. (4) directly. But for a plate with in-plane constraints or a plate which is subjected to nonlinear in-
plane loading profiles, Eq. (4) cannot be solved directly and the stress-strain relations and material constitutive
equations must be invoked to rewrite Eq. (4) in terms of displacement components. The strain components are
expressed as:

εx = ∂u0

∂x
+ z

∂u1

∂x
, εy = ∂v0

∂y
+ z

∂v1

∂y
, γxy = ∂u0

∂y
+ ∂v0

∂x
+ z

(
∂u1

∂y
+ ∂v1

∂x

)
. (5)

According to the Hooke’s law for an elastic material, the constitutive equations are [34]:

σi j = λεkkδi j + 2Gεi j , i, j = 1, 2, 3. (6)

where δi j is the Kronecker delta and G, λ are Lamé’s constants which are expressed as:

λ = Eν

(1 + ν) (1 − 2ν)
,G = E

2 (1 + ν)
. (7)

where E and ν are elastic modulus and Poisson’s ratio, respectively. Using Eqs. (5) and (6), the in-plane force
resultants are expressed as:

⎧
⎨

⎩

Nxx

Nyy

Nxy

⎫
⎬

⎭
=

h/2∫

−h/2

⎧
⎨

⎩

σxx

σyy

τxy

⎫
⎬

⎭
dz = h

⎡

⎣
A λ 0

λ A 0

0 0 G

⎤

⎦

⎧
⎪⎪⎨

⎪⎪⎩

∂u0(x,y)
∂x

∂v0(x,y)
∂y

∂u0(x,y)
∂y + ∂v0(x,y)

∂x

⎫
⎪⎪⎬

⎪⎪⎭
; A = λ + 2G (8)

By substituting the force resultants from Eqs. (8) into (4), we have:

A
∂2u0

∂x2 + (G + λ)
∂2v0

∂x∂y
+ G

∂2u0

∂y2 = 0, A
∂2v0

∂y2 + (G + λ)
∂2u0

∂x∂y
+ G

∂2v0

∂x2 = 0. (9)

The equations represented in (9) are a system of coupled partial differential equations and they are solved
analytically here. The solution of Eq. (9) is considered as the following:

u0(x, y) = (A0 + A1x + A2y)e
αx+βy, v0(x, y) = (B0 + B1x + B2y)e

αx+βy (10)
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where the constants Ai , Bi , i = 0, 1, 2 are determined later. By substituting Eqs. (10) into (9), two algebraic
equations are derived as follows:

(
A1
(
(2ν − 2) α2 + (2ν − 1) β2)− B1αβ

)
x + (

A2
(
(2ν − 2) α2 + (2ν − 1) β2)− B2αβ

)
y

+ (
A0
(
(2ν − 2) α2 + (2ν − 1) β2)− B0αβ + A1 (4ν − 4) α − B1β + A2 (4ν − 2) β − B2α

) = 0.

(11)
(
B1
(
(2ν − 2) β2 + (2ν − 1) α2)− A1αβ

)
x + (

B2
(
(2ν − 2) β2 + (2ν − 1) α2)− A2αβ

)
y

+ (
B0
(
(2ν − 2) β2 + (2ν − 1) α2 − A0αβ

)+ B2 (4ν − 4) β − A1β + B1 (4ν − 2) α − A2α
) = 0.

(12)

To satisfy these two algebraic equations, the coefficients of x, y and also the remaining terms in Eqs. (11)
and (12) must vanish. This leads to a system of algebraic equations in the form [H ]{V } = {0} where [H ] is
the matrix of coefficients and {V } is the following vector:

V = {A0, A1, A2, B0, B1, B2}T . (13)

The obtained homogeneous system of equations has a nontrivial solution only if the determinant of [H ]
equates to zero. By solving this equation, we have:

|H| = 0 → α = ±iβ. (14)

To calculate the vector of constants V, the value of α = iβ is substituted into H and the obtained system
of equations is solved. The solution gives three linearly independent vectors as follows:

V 1 = {i, 0, 0, 1, 0, 0}T , V 2 =
{

4ν − 3

β
, i, 0, 0, 1, 0

}T
, V 3 =

{
−4ν − 3

β
i, 0, i, 0, 0, 1

}T
. (15)

The vectors corresponding to α = −iβ are complex conjugate of the vectors in Eq. (15). Now the solution
of Eq. (9) can be written as:

{
u0(x, y)

v0(x, y)

}
=

3∑

j=1

(
C1 j BV je

iβx+βy + C2 j BV̄ je
−iβx+βy

)
(16)

where C1 j and C2 j are constants, V̄ j is complex conjugate of V j , and the matrix B is defined as follows:

B =
[

1 x y 0 0 0

0 0 0 1 x y

]
. (17)

By substituting V j , j = 1, 2, 3 from Eqs. (15) into (16), the solution of Eq. (9) is expressed as:

u0(x, y) = (C1 + C4x + C6y) (cosh(βy) cos(βx) + sinh(βy) cos(βx))

+ (C2 − C3x − C5y) (cosh(βy) sin(βx) + sinh(βy) sin(βx)) , (18)

v0(x, y) =
(

−C2 + C3x + 4ν − 3

β
C4 + C5

(
4ν − 3

β
+ y

))
(cosh(βy) cos(βx) + sinh(βy) cos(βx))

+
(
C1 + 4ν − 3

β
C3 + C4x + C6

(
4ν − 3

β
+ y

))
(cosh(βy) sin(βx) + sinh(βy) sin(βx)) .

(19)

In Eqs. (18) and (19), the constants are calculated by applying the boundary conditions.
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Fig. 1 Boundary conditions of a rectangular plate subjected to symmetric non-uniform loading

2.1 Boundary conditions

Consider a rectangular plate with symmetric in-plane loading applied along x direction. The plate is constrained
against in-plane deformation along y direction (Fig. 1). Due to symmetry, some terms in Eqs. (18) and (19)
are removed and the final solution for this case is expressed as:

u0(x, y) = C4x cosh(βy) cos(βx) + C2 cosh(βy) sin(βx) − C5y sinh(βy) sin(βx), (20)

v0(x, y) = C5y cosh(βy) cos(βx) +
(

−C2 + 4ν − 3

β
C4 + 4ν − 3

β
C5

)
sinh(βy) cos(βx)

+C4x sinh(βy) sin(βx). (21)

In Eqs. (20) and (21), the constants C2,C4,C5 and the value of β are determined from the boundary
conditions. According to Fig.1, the in-plane boundary conditions can be written as:

v0

(
x, y = ±b

2

)
= 0; Nxy

(
x, y = ±b

2

)
= 0; Nxy

(
x = ±a

2
, y
)

= 0; Nxx

(
x = ±a

2
, y
)

= −F(y).

(22)

The first three boundary conditions in Eq. (22) are satisfied in the following two cases:

1. C2 = 0, C5 = − 4ν − 3

2(2ν − 1)
C4, β = 0. (23)

2. C5 = 0, C2 = sin(βa/2)(4ν − 4) − aβ cos(βa/2)

2β sin(βa/2)
C4, β = 2nπ i

b
(n = 1, 2, 3, . . .). (24)

Two sets of solutions corresponding to the above states are expressed as

1. u0(x, y) = C40x; v0(x, y) = 0 (25)

2.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0(x, y) =
∞∑
n=1

C4n (An cosh(βn y) sin(βnx) + x cosh(βn y) cos(βnx))

v0(x, y) =
∞∑
n=1

C4n

(
−An cosh(βn y) sin(βnx)+ 4ν−3

βn
sinh(βn y) cos(βnx)+x sinh(βn y) sin(βnx)

)

where An = sin(βna/2)(4ν − 4) − aβn cos(βna/2)

2βn sin(βna/2)
. (26)

Here the values of C4n, n = 0, 1, 2, . . . must be calculated such that the final solution satisfies the in-plane
loading at the plate edges [the fourth boundary condition of Eq. (22)]. To do this, the value of Nxx is calculated
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at the plate edges (x = ±a/2) from the obtained solution in Eqs. (20) and (21) and it is equated to the cosine
expansion of the loading function F(y), as follows:

Nxx (x = ±a/2, y) = F(y) → b0 +
∞∑

n=1

bn cos
(nπ

b
y
)

= C0
Eh (ν − 1)

(1 + ν) (2ν − 1)

+
∞∑

n=1

Cn

Eh
(

2 cos
(

βna
2

)
sin
(

βna
2

)
+ βna

)
cosh (βn y)

2 (1 + ν) sin
(

βna
2

) . (27)

Now the values ofCn, n = 0, 1, 2, . . . are calculated by multiplying the two sides of Eq. (27) by cos(mπy/b)
and integrating with respect to y from −b/2 to b/2 for m = 0, 1, 2, . . .. As a result, a system of algebraic
equations is obtained and by solving this system, the values of constants Cn are determined. Finally, the in-
plane force resultants are calculated based on Eq. (8). After obtaining the in-plane displacement field and force
resultants, the Ritz method in conjunction with Hamilton’s principle is used to calculate the buckling load and
natural frequencies of the plate.

3 Energy of plate based on FSDT

The total potential energy of the plate during lateral deflection is � = U1 +U2, whereU1 is the strain energy of
bending deformations, and U2 is the potential energy due to in-plane forces during lateral deflection [35,36]:

U1 = 1

2

∫∫

S

(
{
Mxx , Myy, Mxy

}
{

∂u1

∂x
,
∂v1

∂y
,
∂u1

∂y
+ ∂v1

∂x

}T
+ {

Qx , Qy
}
{
u1 + ∂w

∂x
, v1 + ∂w

∂y

}T)

dxdy,

U2 = 1

2

∫∫

S

(

Nxx

(
∂w

∂x

)2

+ Nyy

(
∂w

∂y

)2

+ 2Nxy
∂w

∂x

∂w

∂y

)

dxdy (28)

where S is the mid-plane area, and the moment resultants and transverse shear forces are defined as:

{
Mxx , Myy, Mxy

} =
h/2∫

−h/2

{
σxx , σyy, τxy

}
zdz,

{
Qx , Qy

} = ks

h/2∫

−h/2

{
τxz, τyz

}
dz. (29)

Here ks is the shear correction factor, and its value is equal to 5/6 for isotropic plate [35]. By substituting
Eqs. (5) and (6) into (29), the moment resultants and transverse shear forces are related to displacements as:

⎧
⎪⎨

⎪⎩

Mxx

Myy

Mxy

⎫
⎪⎬

⎪⎭
= h3

12

⎡

⎢
⎣

A λ 0

λ A 0

0 0 G

⎤

⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

∂u1
∂x
∂v1
∂y

∂u1
∂y + ∂v1

∂x

⎫
⎪⎪⎬

⎪⎪⎭
,

{
Qx

Qy

}
= ksGh

[
1 0

0 1

]{u1 + ∂w
∂x

v1 + ∂w
∂y

}

. (30)

The kinetic energy of the plate is expressed as

T = 1

2
ρ

∫∫∫

V

((
∂u

∂t

)2

+
(

∂v

∂t

)2

+
(

∂w

∂t

)2
)

dxdydz. (31)

By substituting the displacement field from Eqs. (1) into (31) and equating the values of ∂2u0/∂t2 and
∂2v0/∂t2 to zero, as was explained in the previous section, Eq. (31) is simplified as:

T = ρh3

24

∫∫

S

((
∂u1

∂t

)2

+
(

∂v1

∂t

)2
)

dS + ρh

2

∫∫

S

((
∂w

∂t

)2
)

dxdy. (32)
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For a vibrating plate, the solution can be expressed as a function of time and spatial variables as follows:

u1(x, y, t) = X (x, y)eiωt , v1(x, y, t) = Y (x, y)eiωt , w(x, y, t) = W (x, y)eiωt (33)

where ω is the natural frequency of the plate. For a plate with simply supported boundary conditions, the
spatial part of displacements is expressed as:

X (x, y) =
∞∑

m=1

∞∑

n=1

Xmn cos

(
mπ (x − a/2)

a

)
sin

(
nπ (y − b/2)

b

)
,

Y (x, y) =
∞∑

m=1

∞∑

n=1

Ymn sin

(
mπ (x − a/2)

a

)
cos

(
nπ (y − b/2)

b

)
,

W (x, y) =
∞∑

m=1

∞∑

n=1

Wmn sin

(
mπ (x − a/2)

a

)
sin

(
nπ (y − b/2)

b

)
(34)

where Xmn, Ymn,Wmn are constants that will be determined. Hamilton’s principle is expressed as [35]:

δ

t2∫

t1

(� − T )dt = 0. (35)

By substituting the displacement field from Eqs. (33) and (34) into (28) and (32), the integrand of Eq. (35)
is obtained as a function of constants Xmn,Ymn,Wmn . By applying the Ritz minimization method, we have:

∂(� − T )

∂Xmn
= 0,

∂(� − T )

∂Ymn
= 0,

∂(� − T )

∂Wmn
= 0. (36)

Equation (36) is written in the matrix form as follows:

(Kb − ηKG − ω2M)d = 0 (37)

where M is the mass matrix, Kb and KG are the bending and geometric stiffness matrices, which are related
to the bending strain energy (U1) and potential energy (U2), respectively, d is the vector of constants, and η
is the loading factor. Equation (37) has a nontrivial solution only if the following determinant is zero:

∣
∣Kb − ηKG − ω2M

∣
∣ = 0. (38)

According to Eq. (38), three problems can be considered:

a. Free vibration in the absence of in-plane loads: In this case, η = 0 and Eq. (38) reduces to
∣
∣Kb − Mω2

∣
∣ = 0.

By solving this equation, the natural frequencies of the plate are calculated.
b. Vibration of a plate subjected to in-plane loading: In this case, the value of η is known and by solving

Eq. (38), the natural frequencies of the plate are calculated.
c. Buckling of the plate: In this case, ω = 0, and Eq. (38) reduces to|Kb − ηKG | = 0. The solution of this

equation results the buckling load.

4 FE analysis

Besides the analytical solution, a numerical solution based on FE analysis has been performed by using
the ABAQUS commercial package. S4R element has been used for meshing. This element is a four-node,
quadrilateral, stress/displacement shell element with reduced integration and a large-strain formulation, which
is suitable for analyzing thick or thin plates and shells [37]. The size of each element is approximately 2×2 mm,
which is selected by a mesh sensitivity analysis. The in-plane load is applied at x = ±a/2. Also the in-plane
and out-of-plane boundary conditions are applied at the corresponding plate edges.
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5 Results and discussion

In this paper, the effect of four types of in-plane loading profiles, i.e., constant, parabolic, cosine and triangular
loading (Fig. 2) on the buckling and vibration of an isotropic plate, is studied. The calculations are performed
in Maple mathematical environment. The characteristics of the plate are listed in Table 1. In order for the
results to be comparable, the equivalent static load, which is the value of

∫ b/2
−b/2F(y)dy, is constant and equal

to N0b for all load profiles. The governing equations of in-plane displacement field for a plate subjected to
non-uniform loading (Eq. 9) have been solved analytically for each loading profile. After that, the resultant
forces Nxx , Nyy and Nxy are calculated. In Fig. 3, the contour plots of the resultant forces are shown for
different loading profiles. The resultant forces are normalized by the loading amplitude N0.

At first, the buckling load of a square plate with h = 2.5 mm has been evaluated for different values
of “n” in Eq. (27). The results of this study are shown in Table 2, and the calculations are compared with
FE results. In the last column, the difference between analytical and FE values is reported as: diff(%) =
|(analytical value − FE value)/FE value| ∗ 100. The results show good convergence of the obtained solution.
According to Table 2, the value of n = 5 is selected for calculations.

In Table 3, the non-dimensional buckling load N̄cr = Ncrb2/π2D of an unrestrained plate is calculated by
the present method and is compared with the existing results from different methods, such as DQ, DSC and
Airy’s stress function method. Here D = Eh3/12(1 − ν2) is the flexural rigidity of the plate, and Ncr is the
critical load at which the plate buckles.

In Table 4, the natural frequencies of a square plate with different in-plane loading profiles are presented and
compared with the FE results. In this table, the effect of N0/Ncr on the plate frequencies has been investigated.
It is seen that by increasing this ratio, the frequency decreases in all modes, and for N0/Ncr = 1, the frequency
of the first mode becomes zero, which is an indication of the buckling instability. Also it is interesting to
note that the vibrational frequency of the first mode is the same for all loading profiles and only depends on
N0/Ncr. Comparison of the results with FE solution shows a good agreement, which indicates that the obtained
analytical solution can predict the frequencies and buckling loads with appropriate accuracy.

Fig. 2 Different types of in-plane loading. a Constant, b Parabolic, c Cosine, d Triangular

Table 1 Plate characteristics

a (mm) b (mm) E (GPa) ρ (kg/m3) ν

Value 100 100 200 7800 0.3
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Fig. 3 Contour of normalized resultant forces, a–c cosine loading, d–f parabolic loading, g–i triangular loading

Table 2 Solution convergence for buckling load (N/mm) of a square plate in terms of different values of “n”

Loading n FE solution diff (%)

1 2 3 4 5 6 7

Constant 865.45 865.45 865.45 865.45 865.45 865.45 865.45 866.58 0.13
Parabolic 865.45 1160.62 1339.17 1240.67 1248.81 1262.58 1252.83 1208.01 3.71
Cosine 865.45 759.53 731.53 745.20 743.98 741.98 743.39 747.02 0.49
Triangular 865.99 707.43 707.43 715.12 715.12 718.22 718.22 725.43 1.00

Table 5 represents the non-dimensional buckling load N̄cr of rectangular plates with different aspect ratios
(a/b) and thickness ratios (b/h) for four types of loading profiles.

The effect of in-plane compressive loading on vibration behavior of plates with different aspect ratios and
thickness ratios is shown in Figs. 4, 5, 6. In these figures, variation of the fundamental frequency of a rectangular
plate subjected to different in-plane loading profiles is plotted. The horizontal axis is non-dimensional loading
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Table 3 Comparison of buckling load N̄cr with existing results for different loading profiles

a/b Cosine Constant Parabolic Triangular

Present DQ
[19]

Stress
function [11]

Stress
function [21]

FEM
[19]

Present DSC
[16]

Present Stress
function [25]

Present Stress
function [21]

0.5 7.387 7.45 7.841 – 7.41 6.037 5.990 – – – –
1 5.402 5.42 5.146 5.419 5.42 3.944 3.928 5.241 5.241 3.338 3.339
3 5.857 5.85 5.748 – 5.82 – – 5.649 5.547 – –

Table 4 Natural frequencies (Hz) of a square plate subjected to in-plane loading with different intensities

Load profile Mode Analytical solution FE solution

N0/Ncr N0/Ncr

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Constant 1 1201.67 1040.68 849.71 600.84 0 1201.20 1041.20 851.85 605.66 0
2 2914.95 2748.42 2571.13 2380.66 2173.57 2996.00 2793.00 2574.20 2334.60 2067.30
3 2914.95 2821.63 2725.11 2625.04 2521.00 2996.00 2894.20 2788.70 2679.00 2564.70
4 4425.81 4297.80 4165.85 4029.59 3888.55 4777.20 4627.90 4473.80 4313.90 4147.90

Parabolic 1 1201.67 1040.68 849.71 600.84 0 1201.20 1043.00 855.18 610.79 0
2 2914.95 2803.77 2687.99 2567.00 2440.01 2996.00 2812.60 2614.50 2398.10 2157.70
3 2914.95 2854.30 2792.32 2728.94 2664.05 2996.00 2856.40 2709.40 2553.80 2387.90
4 4425.81 4300.25 4170.90 4037.41 3899.36 4777.20 4575.90 4365.00 4143.10 3908.30

Cosine 1 1201.67 1040.68 849.71 600.84 0 1201.20 1041.40 851.85 605.37 0
2 2914.95 2729.93 2531.41 2315.95 2078.26 2996.00 2787.10 2560.90 2312.10 2032.60
3 2914.95 2810.21 2701.41 2588.04 2469.48 2996.00 2907.60 2816.40 2722.10 2624.40
4 4425.81 4296.33 4162.81 4024.87 3882.04 4777.20 4646.70 4512.40 4373.80 4230.70

Triangular 1 1200.77 1039.90 849.07 600.39 0 1201.20 1041.40 851.90 605.36 0
2 2990.84 2776.56 2544.31 2288.60 2000.46 2996.00 2786.00 2558.30 2307.60 2025.40
3 2990.84 2901.61 2809.55 2714.37 2615.72 2996.00 2911.00 2823.50 2733.10 2639.60
4 4766.15 4635.62 4501.30 4362.85 4219.86 4777.20 4652.60 4524.60 4392.70 4256.60

Table 5 Buckling load N̄cr of a plate under different loading profiles

Load profile b/h a/b

0.5 1 2 3

Constant 40 5.762 3.067 2.834 2.995
20 5.615 3.035 2.816 2.978
10 5.095 2.914 2.744 2.901

Parabolic 40 12.808 4.426 3.158 3.071
20 12.482 4.380 3.137 3.053
10 11.326 4.205 3.057 2.984

Cosine 40 4.450 2.637 2.690 2.960
20 4.336 2.609 2.673 2.918
10 3.935 2.505 2.605 2.832

Triangular 40 4.263 2.534 2.665 2.918
20 4.154 2.508 2.648 2.610
10 3.769 2.408 2.580 2.533

amplitude expressed as N0 = N0b2/π2D, and the vertical axis is non-dimensional natural frequency expressed
as ω̄ = ωb2√ρh/D.

When a plate is subjected to in-plane compressive loading, its stiffness decreases and as a result, the
natural frequencies of the lateral vibration decrease too. As the value of in-plane load approaches the buckling
load, the fundamental frequency approaches to zero and finally the plate buckles. This behavior has been
shown in Figs. 4, 5, 6. These figures show that the buckling load and vibrational frequency of a plate with
parabolic loading are always higher than other loading profiles. Also plates with constant loading have higher
buckling loads and frequencies in comparison with the triangular and cosine loading profiles. The plates with
triangular and cosine loading have similar behavior. By increasing the aspect ratio, the effect of loading profile
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Fig. 4 Fundamental frequency of plates with different aspect ratios and subjected to in-plane loading for b/h = 40

on vibrational frequency reduces and the graphs become similar for higher aspect ratios. Also, by increasing
the plate aspect ratio, the vibrational frequency decreases.

In Fig. 7, the effect of plate thickness on fundamental frequency of a square plate subjected to in-plane
parabolic loading has been shown. A similar trend happens for other loading profiles. According to Fig. 7,
the fundamental frequency of a plate without in-plane loads (N0 = 0) has linear variation with thickness
in the studied range. The vibrational frequency of a plate under compressive loading is always lower than
a plate without in-plane or under tensile loads. For plates under compressive loading, as the plate thickness
decreases, the vibrational frequency decreases rapidly and finally becomes zero at buckling instability. For a
plate subjected to tensile in-plane loads, the graph has a minimum value. In this case, when the plate thickness
increases, the frequency decreases up to a minimum point and then, the frequency increases. In fact, increasing
the thickness increases the mass which can reduce the frequency. Also the tensile load increases the stiffness
and as a result, increases the frequency, and the effect of tensile load is dominant beyond this point. It is
also seen that when the plate thickness increases, the vibrational behavior of the plate for these three cases
(compressive, tensile and no load) becomes similar and the effect of in-plane load value on frequency vanishes.

6 Conclusions

In this paper, the buckling and vibration of rectangular plates subjected to different non-uniform in-plane
loading profiles were studied. An analytical solution was presented for calculating the prebuckling distribution
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Fig. 5 Fundamental frequency of plates with different aspect ratios and subjected to in-plane loading for b/h = 20

of in-plane resultant forces by solving the equations of in-plane displacement field. The Ritz method was used
for calculating the buckling load and vibrational frequencies of the plate.

In numerical methods such as DSC and DQ, the domain of solution must be discretized and an appropriate
grid system must be used. Also in FE method, the domain must be meshed, while in the presented solution, no
meshing or grid points are required. The numerical methods suffer from instabilities, such as shear locking in
FE or divergency due to grid size. In DSC and DQ, there are different methods and kernels for calculating the
weighting coefficients, and selecting the best method for each problem is not an easy procedure. Also, applying
the boundary conditions is not straightforward in DSC and DQ methods. The presented analytical procedure
is free from mentioned difficulties, and it seems that, the introduced analytical method is more appropriate
with respect to the numerical methods. Also by preparing a simple code on a mathematical environment (e.g.,
Maple), it is possible to perform sensitivity analysis easily and it is not necessary to discretize or mesh the
problem domain for each case.

Using the presented method, the effect of four types of in-plane loading profiles, intensity of the in-plane
loading, aspect ratio and thickness ratio of the plate on the vibrational frequencies and buckling load was
investigated. A good agreement with FE and some existing results proves the correctness and accuracy of the
proposed procedure. The results are summarized as the following:

• For the same equivalent static loading, the plates which are subjected to parabolic loading have higher
buckling loads and frequencies with respect to the other considered load distributions.
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Fig. 6 Fundamental frequency of plates with different aspect ratios and subjected to in-plane loading for b/h = 10
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• The buckling load and frequencies of plates with uniform loading are higher than the plates subjected to
triangular and cosine loading profiles, while there is no significant difference between behavior of plates
with cosine and triangular loading.

• When the plate thickness increases, the non-dimensional buckling load and frequencies decrease.
• The frequency of the plate decreases as its aspect ratio increases. Also by increasing the aspect ratio, the

effect of loading profile on vibrational frequency decreases.
• The effect of the plate thickness on frequency depends strongly on the mode of in-plane loading (i.e., tensile,

compressive or free load). In a plate without in-plane loading, the vibrational frequency varies linearly with
thickness in the studied range, while for the compressive loading, the frequency decreases rapidly near the
buckling load and finally the plate buckles. Also in the case of tensile loading, for small thicknesses, by
increasing the plate thickness, the vibrational frequency decreases and for a certain thickness, the frequency
has its lowest value. After this point, the frequency increases by increasing the plate thickness.
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