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Abstract The problem of functionally graded orthotropic half-plane with climb and glide edge dislocations
is solved. Dislocations are used as the building blocks of defects to model cracks of modes I and II. Following
a dislocation-based approach, the problem is reduced to a system of singular integral equations for dislocation
density functions on the surfaces of smooth cracks. These integral equations enforce the crack-face boundary
conditions and are solved numerically for the dislocation density. The numerical results include the stress
intensity factors for several different cases of crack configurations and arrangements.

Keywords In-plane · Stress intensity factors · Functionally graded orthotropic materials · Multiple cracks ·
Singular integral equations

1 Introduction

Functionally graded materials for high-temperature applications are special components usually made from
ceramics andmetals. The ceramic in a FGMoffers thermal barrier effects and protects the metal from corrosion
and oxidation, and the FGM is toughened and strengthened by metallic composition. The stress analysis
of functionally graded orthotropic materials with multiple cracks under in-plane loading is of considerable
importance in the design of safe structures. This is due to the ever increasing usage of nonhomogeneous
orthotropic materials in modern technology. Because of the nature of the techniques used in processing, the
graded materials are seldom isotropic. For example, FGMs processed by using a plasma spray technique have
generally lamella structure. Such materials would not be isotropic, but orthotropic, with material directions
that can be considered perpendicular to one another in an initial approximated. Thus, orthotropic properties
should be considered in studying the mechanics of FGMs.

Erdogan [1] investigated fracture behavior of a nonhomogeneous elastic plane with crack. In this paper, the
stress fields had singularity in the form of r−1/2, r being the distance from the crack tip. Karihaloo [2] solved
the problem of a solid under plane strain shear conditions and he extended the dislocation technique to the
investigation of stress relaxation round inhomogeneities that are not coplanar. The fracture analysis of doubly
periodic arrays of slit-like cracks with stress relaxation process from the crack tips is solved by Karihaloo [3].
In another article [4], he also studied the problem of an infinite elastic medium containing a sequence of cracks
with constant distance of vertical separation. Delale and Erdogan [5] obtained themodes I stress intensity factor
for a nonhomogeneousmediumcontaining a crack. The integral equations for the problemwere obtained. These
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equations were solved numerically to determine the stress intensity factor for a crack. The results shown that
the effect of Poisson’s ratio and consequently that of the thickness constraint on the stress intensity factors
are rather negligible and the results are highly affected by the FG parameter. The mixed-mode problem for an
interface crack in a nonhomogeneous elastic mediumwas solved by Delale and Erdogan [6]. Further results for
a crack in a nonhomogeneous material were the subject of study by Erdogan et al. [7]. They solved the plane
elasticity problem for two bonded half-planes with a crack perpendicular to the interface. In another paper, the
axisymmetric crack problem in a nonhomogeneous medium was studied by Ozturk and Erdogan [8]. The main
results were the stress intensity factors as a function of the nonhomogeneous parameter for various loading
conditions. The mixed-mode stress intensity factor in a nonhomogeneous medium containing an arbitrarily
orientated crack was obtained by Konda and Erdogan [9]. Mauge and Kachanov [10] studied the interaction of
arbitrarily oriented cracks in an anisotropic elastic solid. Erdogan [11] examined the influence of the material
nonhomogeneity on the asymptotic stress state near the crack tips. Chen and Erdogan [12] investigated the
problem of the interface crack in a nonhomogeneous coating bonded to a homogeneous substrate. Jin and Batra
[13] considered general fracture mechanics problem for functionally graded materials. They showed that the
crack-tip fields in FGMs are identical to those in homogeneous materials. Gu and Asaro [14] have analyzed a
semi-infinite crack in a functionally graded materials subjected to in-plane loading. They studied the effects
of material gradients on the modes I and II stress intensity factors. Crack in an inhomogeneous orthotropic
medium was analyzed by Ozturk and Erdogan [15]. Ozturk and Erdogan [16] provided the stress intensity
factors for mixed-mode crack problem in an inhomogeneous orthotropic medium. Anlas et al. [17] investigated
the crack in plates made of functionally graded materials. They studied cracked FGM plate by using the several
different numerical techniques. Huang and Kardomateas [18] studied the modes I and II stress intensity factors
in an anisotropic strip with a crack. Dolbow and Gosz [19] proposed the use of interaction energy method
for extracting the mixed-mode stress intensity factors for arbitrarily oriented crack in a functionally graded
material. Wang et al. [20] studied functionally graded strip weakened by a crack perpendicular to the boundary
by dividing a strip into some layer with homogeneous properties along the thickness direction. Guo et al. [21]
considered the mode I crack problem for a functionally graded strip. It has been shown that material constants
and the geometry parameters have significant effects on the stress intensity factors. Long and Delale [22]
studied the plane elasticity problem of an arbitrarily orientated crack in a FGM layer bonded to homogeneous
half-plane. It was found that crack length, orientation and the nonhomogeneity parameter of the layer have
a significant effect on the fracture of the FGM layer. The study of dynamic behavior of a finite crack in the
functionally graded materials under in-plane loading conditions reported by Ma et al. [23]. Menouillard et
al. [24] solved the mixed-mode crack problems for the functionally graded materials. A numerical procedure
based on the concept of the J-integral, for computation of the mixed-mode stress intensity factors for curved
cracks, was obtained by Chang anWu [25]. Dag et al. [26] studied the mixed-mode problem for an orthotropic
functionally graded material under mechanical and thermal loading conditions. Using a dislocation-based
approach, the modes I and II stress intensity factors for cracks and hoop stress for cavities in an orthotropic
plane were obtained by Fotuhi and Fariborz [27]. Faal and Fariborz [28] employed distributed dislocation
technique to analyze an orthotropic plane having multiple cracks. The results were used to evaluate modes I
and II stress intensity factors. Fotuhi et al. [29] also provided the in-plane analysis of a cracked orthotropic half-
plane. The problem of cracks in continuously nonhomogeneous medium studied by Sladek et al. [30]. They
computed stress intensity factors at points far away from the crack tip. Hongmin et al. [31] adopted Wiener–
Hopf technique to analyze the problem of semi-infinite cracks in an infinite functionally graded orthotropic
material. Steady-state interaction between multiple cracks in an infinite plane under in-plane time-harmonic
loads was studied by Ayatollahi and Fariborz [32]. Viscous damping can also be taken into account for analysis
of defects studied by Mousavi and Fariborz [33]. Baghestani et al. [34] solved the mixed-mode problem of an
orthotropic layer with multiple cracks.

The main advantage of method for the computation of stress intensity factors through the distributed
dislocation technique is the applicability of the method to analysis of multiple cracks with arbitrary patterns in
a functionally graded orthotropic half-plane. The stress fields in a functionally graded orthotropic half-plane
caused by a climb and/or glide Volterra-type dislocation are obtained. The stress fields due to dislocations are
then used to derive singular integral equations for a functionally graded orthotropic half-plane with multiple
cracks under in-plane traction. For one straight crack in an infinite medium, the results match with those
reported by Konda and Erdogan [9]. The effects of both crack interactions and the material parameters on the
stress intensity factors kI and kII examined. The obtain results can be reduced to the solutions of crack problem
of isotropic or orthotropic half-plane.
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2 Formulation of the problem

Consider the plane problem of functionally graded orthotropic half-plane containing the Volterra edge dislo-
cations. The constitutive relations of the functionally graded orthotropic materials may be written as

σxx (x, y) = C11(y)εxx + C12(y)εyy,

σyy(x, y) = C12(y)εxx + C22(y)εyy, (1)

σxy(x, y) = C66(y)γxy .

where C11(y),C12(y),C22(y) and C66(y) stand for the elastic stiffness constants of the FGMs and are based
on a reasonable and generally accepted assumption that the material properties vary according to the following
functions

C11(y) = C110e
βy, C22(y) = C220e

βy, C12(y) = C120e
βy, C66(y) = C660e

βy (2)

where β,C110,C120,C220 and C660 are constants. The stress components in terms of the stress function are
given by

σxx (x, y) = ∂2 f

∂ y2
, σyy(x, y) = ∂2 f

∂ x2
, σxy(x, y) = − ∂2 f

∂ x∂y (3)

The stress function f must satisfy the following differential equation

∂4 f

∂y4
+ α1

∂4 f

∂x4
+ α2

∂4 f

∂x2∂y2
− 2β

∂3 f

∂y3
+ β2 ∂2 f

∂y2
− α3β

2 ∂2 f

∂x2
− α2β

∂3 f

∂x2∂y
= 0. (4)

where

α1 = C110

C220
, α2 = C110C220 − C2

120

C220C660
− 2C120

C220
and α3 = C120

C220
. (5)

We consider the functionally graded orthotropic half-plane weakened by a glide and climb dislocations with
Burgers vector bx and by , respectively. A glide dislocation is an edge dislocation that can glide in x-direction,
and its Burgers vector is in the x-direction. On the other hand, a climb dislocation canmove only by climb in the
x-direction and its Burgers vector is in the y-direction. Therefore, the conditions representing the dislocation
are

u(x, 0+) − u(x, 0−) = bx H(x)

v(x, 0+) − v(x, 0−) = byH(x) (6)

where H(x) is the Heaviside step function. Moreover, for both types of dislocations, the following continuity
of stress components along the x-axis should be satisfied. Consequently,

σyy(x, 0
+) = σyy(x, 0

−),

σxy(x, 0
+) = σxy(x, 0

−) |x | < ∞. (7)

The traction-free conditions on the boundary of half-plane yield

σyy(x, h) = 0,

σxy(x, h) = 0. (8)

The solution of Eq. (4) is accomplished by means of the complex Fourier transform defined as

F(s, y) =
∫ ∞

−∞
f (x, y)eisxdx, −∞ < x < ∞. (9)

The application of Eqs. (9) to (4) with the aid of regularity condition lim|x |→∞ f (x, y) = 0, leads to a

fourth-order ordinary differential equation for F(s, y). We obtain

d4F

dy4
− 2β

d3F

dy3
+ (β2 − α2s

2)
d2F

dy2
+ α2βs

2 dF

dy
+ s2(α1s

2 + α3β
2)F = 0 (10)
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If we now also assume that F = eλy , we arrive at

λ4 − 2βλ3 + (β2 − α2s
2)λ2 + α2βs

2λ + s2(α1s
2 + α3β

2) = 0 (11)

It is seen that the characteristic Eq. (11) may be written as

(
λ2 − βλ − s2α2

2

)2

+ s2
[(

α1 − α2
2

4

)
s2 + α3β

2

]
= 0 (12)

The roots of the characteristic equation obtain from (12) as

λ1 = 1

2

[
β −

√
β2 + 2α2s2 − 2

√
s4
(
α2
2 − 4α1

)− 4s2β2α3

]
, Re[λ1] < 0,

λ2 = 1

2

[
β −

√
β2 + 2α2s2 + 2

√
s4
(
α2
2 − 4α1

)− 4s2β2α3

]
, Re[λ2] < 0,

λ3 = 1

2

[
β +

√
β2 + 2α2s2 − 2

√
s4
(
α2
2 − 4α1

)− 4s2β2α3

]
, Re[λ3] > 0,

λ4 = 1

2

[
β +

√
β2 + 2α2s2 + 2

√
s4
(
α2
2 − 4α1

)− 4s2β2α3

]
, Re[λ4] > 0. (13)

Since f (x, y) mush vanish for r → −∞, the solution of Eq. (10) in the Fourier transform domain become

F1(s, y) = A1(s)e
λ1y + A2(s)e

λ2 y + A3(s)e
λ3y + A4(s)e

λ4y, 0 < y < h,

F2(s, y) = A5(s)e
λ3y + A6(s)e

λ4y, y < 0. (14)

The unknown coefficients in Eq. (14) are determined by utilizing the Fourier transforms of Eqs. (6)–(8). The
expressions for these coefficients in a plane containing both dislocations are now determined as follows:

A1(s) = sC660(α2 + 2α3) (πδ(s) + i/s)

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)

[
sby + iλ3bx

]

A2(s) = − sC660(α2 + 2α3) (πδ(s) + i/s)

(λ1 − λ2)(λ2 − λ3)(λ2 − λ4)

[
sby + iλ4bx

]

A3(s) = sC660(α2 + 2α3) (πδ(s) + i/s)

(λ1 − λ2)(λ1 − λ3)(λ2 − λ3)(λ3 − λ4)

×
[
(λ1 − λ3)(sby + iλ4bx )e

(λ2−λ3)h − (λ2 − λ3)(sby + iλ3bx )e
(λ1−λ3)h

]

A4(s) = sC660(α2 + 2α3) (πδ(s) + i/s)

(λ1 − λ2)(λ4 − λ3)(λ2 − λ4)(λ1 − λ4)

×
[
(λ1 − λ4)(sby + iλ4bx )e

(λ2−λ4)h − (λ2 − λ4)(sby + iλ3bx )e
(λ1−λ4)h

]

A5(s) = − sC660(α2 + 2α3) (πδ(s) + i/s)

(λ1 − λ2)(λ3 − λ4)(λ2 − λ3)(λ1 − λ3)

×
[
(λ1 − λ3)(sby + iλ4bx )(1 − e(λ2−λ3)h) + (λ2 − λ3)(sby + iλ3bx )(−1 + e(λ1−λ3)h)

]

A6(s) = − sC660(α2 + 2α3) (πδ(s) + i/s)

(λ1 − λ2)(λ4 − λ3)(λ2 − λ4)(λ1 − λ4)

×
[
(λ1 − λ4)(sby + iλ4bx )(1 − e(λ2−λ4)h) + (λ2 − λ4)(sby + iλ3bx )(−1 + e(λ1−λ4)h)

]
(15)

where δ(s) is the Dirac delta function. Substituting (15) into (14) and applying the inverse of Fourier transform
and splitting into odd and even parts, furthermore, by taking s = βω, we arrive at
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f1(x, y) = C660(α2 + 2α3)

πβ

∞∫

0

1

(r1 − r2)

{[
r4er2yβ

(r2 − r3)(r2 − r4)
− r3er1yβ

(r1 − r3)(r1 − r4)

+ r3(r2 − r3)e(r1−r3)βh+r3yβ − r4(r1 − r3)e(r2−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)

+ r3(r2 − r4)e(r1−r4)βh+r4yβ − r4(r1 − r4)e(r2−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
cos(βωx)bx

+ ω

[
er1yβ

(r1 − r3)(r1 − r4)
− er2yβ

(r2 − r3)(r2 − r4)

+ (r1 − r3)e(r2−r3)βh+r3yβ − (r2 − r3)e(r1−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)

+ (r1 − r4)e(r2−r4)βh+r4yβ − (r2 − r4)e(r1−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
sin(βωx)by

}
dω, 0 < y < h,

f2(x, y) = C660(α2 + 2α3)

πβ

∞∫

0

1

(r1 − r2)(r4 − r3)

×
{[

r3(r2 − r3)(1 − e(r1−r3)βh) − r4(r1 − r3)(1 − e(r2−r3)βh)

(r2 − r3)(r1 − r3)
er3yβ

+ r4(r1 − r4)(1 − e(r2−r4)βh) − r3(r2 − r4)(1 − e(r1−r4)βh)

(r2 − r4)(r1 − r4)
er4yβ

]
cos(βωx)bx

+ ω

[
(r1 − r3)(1 − e(r2−r3)βh) − (r2 − r3)(1 − e(r1−r3)βh)

(r2 − r3)(r1 − r3)
er3yβ

+ (r2 − r4)(1 − e(r1−r4)βh) − (r1 − r4)(1 − e(r2−r4)βh)

(r2 − r4)(r1 − r4)
er4yβ

]
sin(βωx)by

}
ds, y < 0.

(16)

where the expressions for ri , i = 1, 2, 3, 4 are given by

r1 = 1

2

[
1 − sgn(β)

√
1 + 2α2ω2 − 2ω

√
ω2

(
α2
2 − 4α1

)− 4α3

]
,

r2 = 1

2

[
1 − sgn(β)

√
1 + 2α2ω2 + 2ω

√
ω2

(
α2
2 − 4α1

)− 4α3

]
,

r3 = 1

2

[
1 + sgn(β)

√
1 + 2α2ω2 − 2ω

√
ω2

(
α2
2 − 4α1

)− 4α3

]
,

r4 = 1

2

[
1 + sgn(β)

√
1 + 2α2ω2 + 2ω

√
ω2

(
α2
2 − 4α1

)− 4α3

]
. (17)

From (16) and (3), the stress components can be obtained as

σi j1(x, y) =
∞∫

0

Hi j1(x, y, ω)dω, 0 < y < h,

σi j2(x, y) =
∞∫

0

Hi j2(x, y, ω)dω, y < 0. (18)
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The expressions for Hi j1, Hi j2, i, j = x, y are given in “Appendix A.” In order to investigate and to separate
a singular part of the stress components, the asymptotic behavior of the inner integral in Eq. (18) must be
examined. Since the integrands are continuous functions of ω and also finite ω = 0, we observe that the
singularity must occur as ω goes to infinity. We determine the leading terms of Eq. (18) as ω → ∞. We may
write Eq. (18) as follows:

σi jk(x, y) =
∞∫

0

[Hi jk(x, y, ω) − Hi jk∞(x, y, ω)]dω

+
∞∫

0

Hi jk∞(x, y, ω)dω, i, j = x, y, k = 1, 2. (19)

where Hi jk∞ i, j ∈ {x, y} is the asymptotic value of Hi jk for large value of ω. (“Appendix B”). The first
integral in (19) is a bounded function in its domain of definition. After separating the singular parts of the
kernels, we obtain

{
σxx1(x, y)
σyy1(x, y)
σxy1(x, y)

}
= C660(α2 + 2α3)e

βy
2

2π
(
r211y

2 + x2
) (
r222y

2 + x2
)
(r11 + r22)

⎧⎪⎨
⎪⎩

⎧⎪⎨
⎪⎩

y
[
(α2 + √

α1)x2 + α1y2
]

y
[√

α1y2 − x2
]

x
[√

α1y2 − x2
]

⎫⎪⎬
⎪⎭ bx

−

⎧⎪⎨
⎪⎩
x
[
x2 − √

α1y2
]

x√
α1

[
(x2 + (α2 + √

α1)y2
]

y
[
x2 − √

α1y2
]

⎫⎪⎬
⎪⎭ by

⎫⎪⎬
⎪⎭+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
0

[Hxx1(x, y, ω) − Hxx1∞(x, y, ω)]dω
∞∫
0

[Hyy1(x, y, ω) − Hyy1∞(x, y, ω)]dω
∞∫
0

[Hxy1(x, y, ω) − Hxy1∞(x, y, ω)]dω

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, 0 < y < h,

{
σxx2(x, y)
σyy2(x, y)
σxy2(x, y)

}
= C660(α2 + 2α3)e

βy
2

2π
(
r211y

2 + x2
) (
r222y

2 + x2
)
(r11 + r22)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y
[
(α2 + √

α1)x2 + α1y2
]

y
[√

α1y2 − x2
]

x
[√

α1y2 − x2
]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
bx

−

⎧⎪⎪⎨
⎪⎪⎩

x
[
x2 − √

α1y2
]

x√
α1

[
(x2 + (α2 + √

α1)y2
]

y
[
x2 − √

α1y2
]

⎫⎪⎪⎬
⎪⎪⎭
by

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∫
0

[Hxx2(x, y, ω) − Hxx2∞(x, y, ω)]dω
∞∫
0

[Hyy2(x, y, ω) − Hyy2∞(x, y, ω)]dω
∞∫
0

[Hxy2(x, y, ω) − Hxy2∞(x, y, ω)]dω

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, y < 0.

(20)

where

r11 = sgn(β)

√
α2

2
−
√(α2

2

)2 − α1, r22 = sgn(β)

√
α2

2
+
√(α2

2

)2 − α1. (21)

From Eq. (20), we may observe that stress components exhibit the familiar Cauchy-type singularity at dislo-
cation location.

3 Formulation of multiple cracks

Distributed dislocation technique is a method to analyze a medium containing multiple cracks. Classical
stress fields of the dislocations contain singularity which results in singular integral equations in distributed
dislocation technique. The stress components caused by the climb and glide edge dislocations located at a
point with coordinates (x0, y0), read

σi j (x, y) =
⎧⎨
⎩
k11i j (x − x0, y − y0) bx + k12i j (x − x0, y − y0) by, 0 < y < h,

k21i j (x − x0, y − y0) bx + k22i j (x − x0, y − y0) by, y < 0, i, j = x, y.
(22)
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in which klmi j , i, j = x, y, l,m = 1, 2 are the coefficients of bxand by and may be deduced from Eq. (20). Let
N be the number of cracks in a functionally graded orthotropic half-plane. A curved crack in a functionally
graded orthotropic half-plane may be described in parametric form as

xi = αi (s),

yi = βi (s), −1 ≤ s ≤ 1, i ∈ {1, 2, 3, . . . , N }. (23)

The moveable orthogonal coordinate system (n, s) is chosen such that the origin may move on the crack, while
s-axis remains tangent to the crack surface. Suppose climb and glide edge dislocations with unknown densities

Bsk(t)and Bnk(t), respectively, are distributed on the segment
√[

α′
i (t)

]2 + [
β ′
i (t)

]2
dt at the surface of i th

crack, where −1 ≤ t ≤ 1 and the prime denotes differentiation with respect to the argument. Employing the
principal of superposition, the components of traction vector at a point with coordinates (αi (s), βi (s)), where
parameter −1 ≤ s ≤ 1, on the surface of all cracks yield

σn(αk(s), βk(s)) =
N∑

k=1

∫ 1

−1
[K11ik(s, t)Bsk(t) + K12ik(s, t)Bnk(t)]

√[
α′
k(t)

]2 + [
β ′
k(t)

]2dt,

σs(αk(s), βk(s)) =
N∑

k=1

∫ 1

−1
[K21ik(s, t)Bsk(t) + K22ik(s, t)Bnk(t)]

√[
α′
k(t)

]2 + [
β ′
k(t)

]2dt, −1 ≤ s ≤ 1.

(24)

where the kernels in Eq. (24) are

K11ik(s, t) =
{
1

2
kl1xx (xi − xk, yi − yk) cos(θi ) (1 − cos(2θk))

+ 1

2
kl2xx (xi − xk, yi − yk) sin(θi ) (1 − cos(2θk))

+ 1

2
kl1yy(xi − xk, yi − yk) cos(θi ) (1 + cos(2θk))

+ 1

2
kl2yy(xi − xk, yi − yk) sin(θi ) (1 + cos(2θk))

− kl1xy(xi − xk, yi − yk) cos(θi ) sin(2θk) − kl2xy(xi − xk, yi − yk) sin(θi ) sin(2θk)

}

K12ik(s, t) =
{
−1

2
kl1xx (xi − xk, yi − yk) sin(θi ) (1 − cos(2θk))

+ 1

2
kl2xx (xi − xk, yi − yk) cos(θi ) (1 − cos(2θk))

− 1

2
kl1yy(xi − xk, yi − yk) sin(θi ) (1 + cos(2θk))

+ 1

2
kl2yy(xi − xk, yi − yk) cos(θi ) (1 + cos(2θk))

+ kl1xy(xi − xk, yi − yk) sin(θi ) sin(2θk) − kl2xy(xi − xk, yi − yk) cos(θi ) sin(2θk)

}
,

K21ik(s, t) =
{
−1

2
kl1xx (xi − xk, yi − yk) cos(θi ) sin(2θk) − 1

2
kl2xx (xi − xk, yi − yk) sin(θi ) sin(2θk)

+ 1

2
kl1yy(xi − xk, yi − yk) cos(θi ) sin(2θk) + 1

2
kl2yy(xi − xk, yi − yk) sin(θi ) sin(2θk)

+ kl1xy(xi − xk, yi − yk) cos(θi ) cos(2θk) − kl2xy(xi − xk, yi − yk) sin(θi ) cos(2θk)

}
,
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K22ik(s, t) =
{
1

2
kl1xx (xi − xk, yi − yk) sin(θi ) sin(2θk) − 1

2
kl2xx (xi − xk, yi − yk) cos(θi ) sin(2θk)

− 1

2
kl1yy(xi − xk, yi − yk) sin(θi ) sin(2θk) + 1

2
kl2yy(xi − xk, yi − yk) cos(θi ) sin(2θk)

− kl1xy(xi − xk, yi − yk) sin(θi ) cos(2θk) + kl2xy(xi − xk, yi − yk) cos(θi ) cos(2θk)

}
.

(25)

The analysis is straightforward and is not detailed here. The superscript l = 1 is for 0 < y < h and l = 2
for y < 0. The kernels in Eq. (24) exhibit Cauchy-type singularity for i = k as t → s. By the virtue of the
Buckner’s principle, the left side of Eq. (24), after changing the sign, is the traction caused by external loading
on the uncracked medium at the presumed surfaces of cracks. Employing the definition of dislocation density
function, the equations for the crack opening displacement across the i th crack yield

u+
si (s) − u−

si (s) =
∫ s

−1

√[
α′
i (t)

]2 + [
β ′
i (t)

]2[cos(θi (s) − θi (t))Bsi (t) + sin(θi (s) − θi (t))Bni (t)]dt,

u+
ni (s) − u−

ni (s) =
∫ s

−1

√[
α′
i (t)

]2 + [
β ′
i (t)

]2[cos(θi (s) − θi (t))Bni (t) − sin(θi (s) − θi (t))Bsi (t)]dt,
i ∈ {1, 2, . . . , N } (26)

The displacement field is single valued out of an embedded crack surface. Consequently, the dislocation
densities are subjected to the following closure requirements:

∫ 1

−1

√[
α′
i (t)

]2 + [
β ′
i (t)

]2[cos(θi (1) − θi (t))Bsi (t) + sin(θi (1) − θi (t))Bni (t)]dt = 0,

∫ 1

−1

√[
α′
i (t)

]2 + [
β ′
i (t)

]2[cos(θi (1) − θi (t))Bni (t) − sin(θi (1) − θi (t))Bsi (t)]dt = 0, i ∈ {1, 2, ..., N }.
(27)

It is worth mentioning that the devised procedure despite its simplicity is capable of handling complicated
crack arrangements. To evaluate the dislocation density, the Cauchy singular integral Eqs. (24) and (27) should
be solved simultaneously. The stress fields near the crack tips have the singularity for the embedded cracks
in a functionally graded orthotropic medium 1/

√
r where r is the distance from a crack tip. Therefore, the

dislocation densities are taken as

Bsi (t) = gsi (t)√
1 − t2

Bni (t) = gni (t)√
1 − t2

, −1 < t < 1, i ∈ {1, 2, . . . , N } (28)

Substituting Eq. (28) into Eqs. (27) and (24) and making use of the numerical solutions of integral equations
with Cauchy-type kernel developed by Erdogan et al. [35] result in gsi (t) and gni (t). The modes I and II stress
intensity factors for embedded cracks derived by Faal and Fariborz [28] are defined as,

{
KIL
KIIL

}
=

√
2(α2 + 2α3)

4(r11 + r22)
lim
rL→0

C66(y)√
rL

{ [un|θ=π − un|θ=−π ]/r11r22
us |θ=π − us |θ=−π

}

{
KIR
KIIR

}
=

√
2(α2 + 2α3)

4(r11 + r22)
lim
rR→0

C66(y)√
rR

{ [un|θ=π − un|θ=−π ]/r11r22
us |θ=π − us |θ=−π

}
(29)

where the subscripts L and R designate to the left and right tips of crack, respectively, (Fig. 1), the geometry
of crack implies
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Fig. 1 Curved crack in a functionally graded orthotropic half-plane under biaxial loading

rL = [
(αi (s) − αi (−1))2 + (βi (s) − βi (−1))2

] 1
2

rR = [
(αi (s) − αi (1))

2 + (βi (s) − βi (1))
2] 12 (30)

Substituting Eqs. (28) into (26), and results equations into (29) after using the Taylor series expansion of
functions αi (s) and βi (s) in the vicinity of the points s = ±1 leads to

{
KIL
KIIL

}
=

C660(α2 + 2α3)
([

α′
i (−1)

]2 + [
β ′
i (−1)

]2) 1
4

2(r11 + r22)

{
gni (−1)/r11r22
gsi (−1)

}

{
KIR
KIIR

}
= −

C660(α2 + 2α3)
([

α′
i (1)

]2 + [
β ′
i (1)

]2) 1
4

2(r11 + r22)

{
gni (1)/r11r22
gsi (1)

}
(31)

4 Numerical examples and discussion

In this section, numerical calculations are carried out. The validity of the approach is examined by solving
some well-known problems whose solution has been previously obtained by other researchers. The analysis,
developed in the preceding section, allows the consideration of a functionally graded orthotropic half-plane
with multiple cracks subjected to in-plane tractions. The validation of the formulation is accomplished by
comparing our results with Konda and Erdogan [9] by setting h → ∞. The mixed-mode crack problem of
functionally graded plane with a crack under constant normal traction has firstly been considered. Numerical
results are given in Table 1. As it may be observed, the agreement of the results in the above example is
reasonable. It is worth mentioning that, in the nonhomogeneous medium, in the stiffer portion of the materials,
the crack surface displacement is smaller than that of the less stiff portion of the medium. It was found that
the stress intensity factors increase with increasing the FG constant. Due to the lack of symmetry with respect
to y = 0 plane, the stress state around crack tips is one of the mixed modes. In the remaining of this section,
more examples are presented to demonstrate the applicability of the procedure.

Table 1 The effect of the nonhomogeneity constant on stress intensity factors for the case of plane strain

βa 0.1 0.25 0.5 1 2.5 5

KI/K0 Konda and Erdogan [9] 1.008 1.036 1.101 1.258 1.808 2.868
Present 1.0085 1.0366 1.1015 1.2606 1.8163 2.8608

KII/K0 Konda and Erdogan [9] 0.026 0.065 0.129 0.263 0.697 1.567
Present 0.025 0.0624 0.1255 0.2544 0.6743 1.4969
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Fig. 2 Mode I stress intensity factor for a rotating crack

Fig. 3 Mode II stress intensity factors for a rotating crack

In the sequel, unless otherwise stated, the material properties for plane strain case are C110 = 78.842GPa,
C120 = 3.003GPa, C220 = 6.488GPa, C660 = 2.070GPa Herakovich [36].

4.1 Straight crack with arbitrary orientation

The effect of nonhomogeneity constant on the stress intensity factors is shown in Figs. 2 and 3. The medium
is under constant traction σyy = σ0. The crack LR with length 2a = 2(cm) is an inclined crack with angle
θ and centered at (0, 0) for h/a = 2.0. The quantity for making the stress intensity factors dimensionless is
K0 = σ0

√
a where a is the half length of crack. The plots of the nondimensionalized modes I and II stress

intensity factors versus crack orientation are shown. As physically expected, at θ = π/2, the traction on the
crack surface vanishes. Therefore, the stress intensity factors are zero. In order to investigate the effect of
the nonhomogeneity constant on the modes I and II stress intensity factors, different values of β are studied.
According to Figs 2 and 3, the influence of β is significant. It is interesting to note that for the crack tip
which is located in a stiffer zone, the stress intensity factor is higher than the other tip. Also, the values of θ
corresponding to maximum mode II stress intensity factors seem to depend on βa.
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Fig. 4 Mode I stress intensity factors for two parallel off-center cracks

Fig. 5 Mode II stress intensity factors for two parallel off-center cracks

4.2 Two parallel off-center cracks

We consider two equal-length off-center cracks L1R1 and L2R2 as shown in Figs. 4 and 5. To ensure the
opening of crackswith any configuration, themedium is subject to uniformbiaxial tractionσxx = σ0, σyy = σ0.
The crack locations are fixed, whereas the crack lengths are changing with the same rates. The dimensionless
modes I and II stress intensity factors are shown in Figs. 4 and 5. The value of FG constant is taken βh = 2.0.
Obviously, the values of stress intensity factors are under the effect of FG constant, but the trend of variations
remains the same by changing the FG constant.

4.3 A straight and a circular arc crack

The next example deals with the interaction of a straight and a circular arc crack, as shown in Figs. 6 and 7.
The parametric representations of straight and circular arc cracks are, respectively,

α1(t) = 2a + lt,

β1(t) = 0,

α2(t) = a cos(ϕt),

β2(t) = a sin(ϕt), −1 ≤ t ≤ 1. (32)

The center of straight crack is fixed, but its length is changing. As it was expected, the modes I and II stress
intensity factors of the crack tips increase by increasing the length of the straight cracks. The magnitudes of
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Fig. 6 Mode I stress intensity factors of a straight and a circular arc crack

Fig. 7 Mode II stress intensity factors of a straight and a circular arc crack

SIFs at crack tip L1 are larger than those at the tip R1, because L1 has stronger interaction with the curved
crack. Also, we observed that the crack opening displacement at the crack tip with smaller material properties
is higher than the other tip located in higher material properties region. However, the overall effects result in
a higher stress intensity factors for crack tip R2 which is located in a stiffer zone. We may conclude that the
effect of material nonhomogeneity is more significant.

4.4 Two circular arc cracks

As the last example, we consider two circular arc cracks which are portions of the circumference of a circle.
The half-plane is under uniform biaxial traction σxx = σ0, σyy = σ0 (Figs. 8 and 9). The cracks may be
represented in the following parametric forms

αi (t) = ai cos(ϕt),

βi (t) = ai sin(ϕt), −1 ≤ t ≤ 1, i = 1, 2. (33)

Figures 8 and 9 show the variation of dimensionless modes I and II stress intensity factors versus angle ϕ. The
centers of cracks remain fixed, while the crack lengths are changing. As it may be observed, the maximum
stress intensity factor for a crack tips occurs when the crack length is increased. Due to interaction with the
boundary of the half-plane, the intensity factors at R are higher than those at L .
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Fig. 8 Mode I stress intensity factors of two curved cracks

Fig. 9 Mode II stress intensity factors of two curved cracks

5 Conclusions

In this paper, the multiple cracks problem in a functionally graded orthotropic half-plane under mixed-mode
condition is investigated. A solution for the stress field caused by the Volterra-type climb and glide edge
dislocations in a functionally graded orthotropic half-plane is first obtained. In the particular case of the
functionally graded plane, the solutions are in accordance with the well-known results in the literature. The
stress components are used as the Green’s function to derive integral equations for the analysis of multiple
cracks. Several examples are solved, and modes I and II stress intensity factors are determined for interacting
cracks.

Appendix A

The integrands of Eq. (18) are given as

Hxx1(x, y, ω) = βC660(α2 + 2α3)

π

1

(r1 − r2)

{
bx

[
r4r22 e

r2yβ

(r2 − r3)(r2 − r4)
− r3r22 e

r1yβ

(r1 − r3)(r1 − r4)

+ r33 (r2 − r3)e(r1−r3)βh+r3yβ − r4r23 (r1 − r3)e(r2−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)
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+ r3r24 (r2 − r4)e(r1−r4)βh+r4yβ − r34 (r1 − r4)e(r2−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
cos(βωx)

+ ωby

[
r21 e

r1yβ

(r1 − r3)(r1 − r4)
− r22 e

r2yβ

(r2 − r3)(r2 − r4)

+ r23 (r1 − r3)e(r2−r3)βh+r3yβ − r23 (r2 − r3)e(r1−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)

+ r24 (r1 − r4)e(r2−r4)βh+r4yβ − r24 (r2 − r4)e(r1−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
sin(βωx)

}
, (34)

Hyy1(x, y, ω) = −βC660(α2 + 2α3)

π

ω2

(r1 − r2)

{
bx

[
r4er2yβ

(r2 − r3)(r2 − r4)
− r3er1yβ

(r1 − r3)(r1 − r4)

+ r3(r2 − r3)e(r1−r3)βh+r3yβ − r4(r1 − r3)e(r2−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)

+ r3(r2 − r4)e(r1−r4)βh+r4yβ − r4(r1 − r4)e(r2−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
cos(βωx)

+ ωby

[
er1yβ

(r1 − r3)(r1 − r4)
− er2yβ

(r2 − r3)(r2 − r4)

+ (r1 − r3)e(r2−r3)βh+r3yβ − (r2 − r3)e(r1−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)

+ (r1 − r4)e(r2−r4)βh+r4yβ − (r2 − r4)e(r1−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
sin(βωx)

}
, (35)

Hxy1(x, y, ω) = βC660(α2 + 2α3)

π

ω

(r1 − r2)

{
bx

[
r2r4er2yβ

(r2 − r3)(r2 − r4)
− r1r3er1yβ

(r1 − r3)(r1 − r4)

+ r23 (r2 − r3)e(r1−r3)βh+r3yβ − r3r4(r1 − r3)e(r2−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)

+ r3r4(r2 − r4)e(r1−r4)βh+r4yβ − r24 (r1 − r4)e(r2−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
sin(βωx)

− ωby

[
r1er1yβ

(r1 − r3)(r1 − r4)
− r2er2yβ

(r2 − r3)(r2 − r4)

+ r3(r1 − r3)e(r2−r3)βh+r3yβ − r3(r2 − r3)e(r1−r3)βh+r3yβ

(r1 − r3)(r2 − r3)(r3 − r4)

+ r4(r1 − r4)e(r2−r4)βh+r4yβ − r4(r2 − r4)e(r1−r4)βh+r4yβ

(r4 − r3)(r2 − r4)(r1 − r4)

]
cos(βωx)

}
, (36)

Hxx2(x, y, ω) = βC660(α2 + 2α3)

π

1

(r1 − r2)(r4 − r3)

{
bx

[
r33 (r2 − r3)(1 − e(r1−r3)βh) − r4r23 (r1 − r3)(1 − e(r2−r3)βh)

(r2 − r3)(r1 − r3)
er3 yβ

+ r34 (r1 − r4)(1 − e(r2−r4)βh) − r3r24 (r2 − r4)(1 − e(r1−r4)βh)

(r2 − r4)(r1 − r4)
er4 yβ

]
cos(βωx)

+ ωby

[
r23 (r1 − r3)(1 − e(r2−r3)βh) − r23 (r2 − r3)(1 − e(r1−r3)βh)

(r2 − r3)(r1 − r3)
er3 yβ

+ r24 (r2 − r4)(1 − e(r1−r4)βh) − r24 (r1 − r4)(1 − e(r2−r4)βh)

(r2 − r4)(r1 − r4)
er4 yβ

]
sin(βωx)

}
, (37)
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Hyy2(x, y, ω) = −βC660(α2 + 2α3)

π

ω2

(r1 − r2)(r4 − r3)

{
bx

[
r3(r2 − r3)(1 − e(r1−r3)βh) − r4(r1 − r3)(1 − e(r2−r3)βh)

(r2 − r3)(r1 − r3)
er3 yβ

+ r4(r1 − r4)(1 − e(r2−r4)βh) − r3(r2 − r4)(1 − e(r1−r4)βh)

(r2 − r4)(r1 − r4)
er4 yβ

]
cos(βωx)

+ ωby

[
(r1 − r3)(1 − e(r2−r3)βh) − (r2 − r3)(1 − e(r1−r3)βh)

(r2 − r3)(r1 − r3)
er3 yβ

+ (r2 − r4)(1 − e(r1−r4)βh) − (r1 − r4)(1 − e(r2−r4)βh)

(r2 − r4)(r1 − r4)
er4 yβ

]
sin(βωx)

}
, (38)

Hxy2(x, y, ω) = βC660(α2 + 2α3)

π

ω

(r1 − r2)(r4 − r3)

{
bx

[
r23 (r2 − r3)(1 − e(r1−r3)βh) − r3r4(r1 − r3)(1 − e(r2−r3)βh)

(r2 − r3)(r1 − r3)
er3 yβ

+ r24 (r1 − r4)(1 − e(r2−r4)βh) − r3r4(r2 − r4)(1 − e(r1−r4)βh)

(r2 − r4)(r1 − r4)
er4 yβ

]
sin(βωx)

− ωby

[
r3(r1 − r3)(1 − e(r2−r3)βh) − r3(r2 − r3)(1 − e(r1−r3)βh)

(r2 − r3)(r1 − r3)
er3 yβ

+ r4(r2 − r4)(1 − e(r1−r4)βh) − r4(r1 − r4)(1 − e(r2−r4)βh)

(r2 − r4)(r1 − r4)
er4 yβ

]
cos(βωx)

}
. (39)

Appendix B

Hxx1∞(x, y, ω) = βC660(α2 + 2α3)e
yβ
2

2π(r11 − r22)(r11 + r22)

[(
r211e

−r11yβω − r222e
−r22yβω

)
cos(βxω)bx

− (
r11e

−r11yβω − r22e
−r22yβω

)
sin(βxω)by

]
, (40)

Hyy1∞(x, y, ω) = − βC660(α2 + 2α3)e
yβ
2

2π(r11 − r22)(r11 + r22)

[(
e−r11yβω − e−r22yβω

)
cos(βxω)bx

−
(
e−r11yβω

r11
− e−r22yβω

r22

)
sin(βxω)by

]
, (41)

Hxy1∞(x, y, ω) = − βC660(α2 + 2α3)e
yβ
2

2π(r11 − r22)(r11 + r22)

[(
r11e

−r11yβω − r22e
−r22yβω

)
sin(βxω)bx

+ (
e−r11yβω − e−r22yβω

)
cos(βxω)by

]
, (42)

Hxx2∞(x, y, ω) = − βC660(α2 + 2α3)e
yβ
2

2π(r11 − r22)(r11 + r22)

[(
r211e

r11yβω − r222e
r22yβω

)
cos(βxω)bx

+ (
r11e

r11yβω − r22e
r22yβω

)
sin(βxω)by

]
, (43)

Hyy2∞(x, y, ω) = βC660(α2 + 2α3)e
yβ
2

2π(r11 − r22)(r11 + r22)

[(
er11yβω − er22yβω

)
cos(βxω)bx

+
(
er11yβω

r11
− er22yβω

r22

)
sin(βxω)by

]
, (44)

Hxy2∞(x, y, ω) = − βC660(α2 + 2α3)e
yβ
2

2π(r11 − r22)(r11 + r22)

[(
r11e

r11yβω − r22e
r22yβω

)
sin(βxω)bx

− (
er11yβω − er22yβω

)
cos(βxω)by

]
. (45)
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