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Abstract Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials
by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical
calculations ofmaterial properties are of increasing interest in geophysical, manufacturing, bio-mechanical and
environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability,
thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape
and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary
to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require
optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective
permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or
explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation
domain. In response to these deficits of the well-established methods we propose an efficient and reliable
numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained
from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on
a parallel finite differences solver, allowing the calculation of large domains with relative low computing
requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials,
obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing
work includes the estimation of other effective properties of porous media.
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List of symbols

u Fluid velocity on porescale (m/s)
ds Sphere diameter (m)
ks Intrinsic permeability (m2)
p Pressure (Pa)
rt Radius of capillary tube (m)
Re RVE-scale Reynolds number (–)
L Characteristic size of the investigated RVE domain (–)
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um Volume-averaged velocity (m/s)
�p Pressure drop in the medium (Pa/m)
η Effective dynamic viscosity of the fluid (Pa s)
ρ Density of the fluid (kg/m3)
φ Porosity of the material (–)
Ω Domain of investigated material in R

3

1 Introduction

The experimental characterization of the hydraulical properties of porous materials could be expensive and
a time-consuming process. For high porous materials like metal foams, viscous drag forces are small, and
therefore, pressure drop is low. In experimental investigations this results in an experimental challenge as even
large fluid fluxes combined with low-pressure gradients are complex to measure with appropriate signal-to-
noise ratio. For low porous materials, the experimental challenge is opposite: pressure gradients can be even
high, but still fluid fluxes are small and complicated to measure accurately. Because of these demands but also
motivated by additional causes, numerical approaches for calculating effective permeability based on porescale
computational fluid dynamics (CFDs) are more and more applied in industry and science [1]. Numerically
calculating permeability presents several advantages: (a) only one (digitized) material sample is needed for the
calculation of numerous physical properties (elastic moduli, hydraulic properties, thermal properties, etc.), (b)
microtomographic imaging takes relatively short time and (c) environmental variables that in real experiments
are often difficult to maintain are controllable. In this investigation we focus on the numerical calculation
of intrinsic permeability as discussed, e.g. in [2]. For the sake of brevity, we shall use permeability to mean
intrinsic permeability.

Permeability is a critically relevant property affecting flow through porous media, and it is strongly depen-
dent on the morphology of the porous material. In order to sample the medium some authors use industrial
computer tomography (CT) scans [3]. In other cases the media geometry is generated artificially [4]. In the
present investigation we work with both kinds of geometrical models. Our artificial geometry is generated
as a voxel-based image setup on a Cartesian grid, therefore emulating the CT scan format. One of the main
difficulties in the field of calculating effective properties of porous media from microstructural information
is the simulation of domains which have to be large enough to be representative for the material. Several
authors have proposed to divide the domain and calculate the effective property as the average of the results
obtained in the subdomains. The averaging method arises problems because the obtained results depend on the
domain size, the chosen subdomains and the boundary conditions which have to be applied in general to such
non-periodic (sub)domains. In this contribution we propose a method that allows to calculate large domains,
avoiding variations in the estimated permeability because of the domain size.

In a recent contribution of Gerbaux et al. [5] experimental and X-ray microtomography-based numerical
permeability investigations have been performed for high porous open-cell metallic foams with porosities
larger than 90%. The numerical calculations are performed with a lattice Boltzmann and a finite-volume
solver. This work combines microtomography-based geometric modelling with numerical solution techniques
of transport equations to estimate volume-averaged foam permeability. The authors report that the numerically
estimated intrinsic permeability varies with the chosen size of the calculation domain. This implies that the
chosen domain seems to be not large enough to be representative for such high porous materials like open-cell
foams. Solving the Stokes equation for 2×106 elementary cubes took 66min.Wiegmann [6] proposes a solver
for Stokes flow called FFF-Stokes, where shorter simulation times are achieved by employing artificial forces.
The permeability is then calculated from the simulation results. The simulation of a domain of 2403 voxels
took about 17min.

Xu et al. [7] performed finite volume-based calculations for generic open-cell foams based on the
tetrakaidecahedron structure of the microstructure of the foam. Their approach allows to analyse the effect
of porosity on effective intrinsic permeability. Nevertheless, Xu et al. [7] have chosen very small periodic
unit cells for their domain of calculation which minimizes calculation times, especially for higher Reynolds
numbers. Boomsma et al. [8] discuss similar numerical investigations of fluid flow through periodic open-cell
foam samples. It has to be pointed out that the methods presented in [7] and [8] were only tested with periodic
open-cell foams with high porosity larger than 90%.

In the contribution of Manwart et al. [9] typical reservoir sandstones have been numerically analysed.
Again, X-ray microtomographs of a Fontainebleau sandstone with a porosity of around 13% are the basis of
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flow simulations in order to calculate the effective intrinsic permeability. The authors apply finite difference
and lattice Boltzmann methods to solve the Stokes equations in their investigations in domains up to 4003

elements. Comparing the two numerical methods, the authors conclude that the finite difference method has a
lower requirement ofmemory by a factor of 2.5. Furthermore, the permeability computed for the Fontainebleau
sandstone is comparedwith estimated permeabilities of two stochastically generated porous domainswith same
porosity and specific surface area as the digitized sample of the Fontainebleau sandstone. According to the
results of Manwart et al. [9], it is possible to conclude that for obtaining accurate results of permeability, it
is necessary to handle the digitized model with care as the quality of the calculated effective permeability
depends on the chosen size of the calculation domain, boundary conditions, numerical method and last but not
least on the quality of the workflow including microtomography scan and image segmentation.

The mentioned aspects are carefully studied in a recent digital rock physics benchmark [10,11]. Various
groups compared their workflow of digital rock physics, i.e. X-ray imaging, digitizing the pore space and the
solid matrix of the rock and numerically analysing effective material properties like permeability and elastic
moduli. Andrä et al. [11] calculate effective properties of typical porous rock samples, e.g. Fontainebleau
sandstone, Berea sandstone, carbonate and sphere packs, including effective intrinsic permeability. These
hydraulic properties are calculated from segmented 3D X-ray microtomographes, applying lattice Boltzmann
and explicit jump Stokes methods for simulation fluid flow through the pore space of the porous rock. It is
worth to mention that the authors comment again that the size of the calculation domain has to be chosen
carefully as the size causes variations in the calculation results.

Investigating X-ray microtomographes of reticulate porous ceramics, Petrasch et al. [12] determine
hydraulical properties such as porosity and effective permeability applying finite-volume calculations. The
proposed technique is applied to porous ceramics, but it can be applied in any porous structure that admits
tomographic samples. It has to be pointed out that their numerical methods are grid based, and thus, a tetra-
hedral mesh has to be generated from the imaging data. Summarizing the results of the literature, it has to
be pointed out that numerically calculated effective hydraulic properties like intrinsic permeability strongly
depend, besides the overall framework of imaging and segmentation, on the size of the calculation domain.
The requirement of a representative unit cell leads, especially for flow simulations in the pore space of porous
materials, to the demand of efficient numerical techniques. Furthermore, a common shortcoming is that the
numerical methods proposed by different authors are only tested in a narrow range of porosities. In response
to the presented problems this article implements a numerical scheme to calculate effective permeability for
sufficiently large and representative domains of diverse kind of materials with low and high porosity, i.e. from
sandstone to high porous open-cell foams.

The proposed workflow starts from a voxel-based geometry obtained directly from the image segmentation
of a CT scan. We calculate the effective permeability as follows: (a) setup of a boundary value problem, (b)
parallel computing of Stokes flow based on a finite difference (FD) approach and (c) calculation of coarse-
grained permeability from the velocity and pressure field calculated in the previous step. We prove our method
with pervious and semipervious materials, in a range of porosities from 0.146 to 0.935.

2 Methodology

The aim of the present contribution is to present a workflow for an efficient numerical calculation of intrinsic
permeabilities of low and high porous materials. Therefore, we choose representative examples of such porous
media, like Fontainebleau sandstone (φ = 0.146), regularly and irregularly packed spheres and high porous
man-made metal foam (φ = 0.935). Furthermore, we restrict ourselves on low Reynolds number flow, i.e.
stationary flow processes on the porescale with Re = (ρum L)/η leading to a creeping or Darcy-type flow
process on the coarse-grained macroscopical scale.

The starting point of our numerical workflow is a segmented binary 3D voxel-based data set obtained,
e.g., from X-ray synchrotron or desktop microtomography. A discussion about the important step from the
reconstructed tomographic raw data to the binarized data set is out of the focus of the paper, details can be
found in [10,13,14]. Based on the cartesian grid of the segmented and binarized voxel data, we perform a
finite difference analysis of the stationary Stokes equations. The volume-averaged velocity and pressure fields
numerically calculated are employed in Darcy’s law to estimate the permeability. The proposed workflow, cf.
Fig. 1, is given as follows:

In step (1), the geometry, i.e. the domain of calculation, is preprocessed removing disconnected pores. In
step (2) we setup the boundary value problem of the Stokes flow simulation. The related numerical problem
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Fig. 1 Workflow for intrinsic permeability calculation (different subdomains in geometry preprocessing and pressure field for
visualization purposes)

is solved in step (3) resulting in a computation of the velocity and pressure field. In the postprocessing step
(4) the calculation of effective permeability is performed. Steps (1)–(4) of the workflow are discussed now in
further detail.

2.1 Step (1): Preprocessing of the domain of calculation

In particular, in low porous materials, a certain number of domains present disconnected pores. Those pores do
not affect the flow pattern of the connected pores. However, they have an influence on the volume-averaging
process [step (4)] of the velocity field, cf. Sect. 2.4, and consume computing time. Therefore, they are first
eliminated from the calculation domain before computation of the Stokes problem starts. These disconnected
pores are indirectly identified by applying a seed region growth algorithm. Figure 2 shows such subdomain
occurring in the data set of the Fontainebleau sandstone. The network of the connected pores is displayed in
(light) pink colour, while the disconnected pores appear in blue colour. Around 6.6% of the pore space consist
of unconnected pores in the discussed example.

2.2 Step (2): Set-up of boundary value problem

We simulate Stokes flow of a stationary and incompressible fluid with Re � 1 through a porous media. This
is governed by the balance of momentum 1 and the continuity Eq. 2:

grad p = η div gradu (1)

divu = 0 (2)
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φcon = 0.137

φuncon = 0.009

Fig. 2 Geometry of the connected pore network (pink) and unconnected or isolated pores (blue) in a Fontainebleau sandstone.
(Color figure online)

Applying the divergence operator on both sides of Eq. 1 we obtain:

div grad p = 0 (3)

Supplemented by boundary conditions, Eq. 3 is the basis of our numerical scheme. To solve the velocity
and pressure fields the boundary value problem is posed onto a digitized sample of the porous material as
follows: the representative unit cell of the porous material is enclosed in a rectangular domain Ω ⊂ R

3 with
basis vector ex , ey and ez . The planes with coordinates x = 0, x = L , y = 0 and y = L are closed walls,
and no-slip boundary conditions are applied. Periodic boundary conditions are applied in the velocity field
(u(z = 0) = u(z = L)). The boundary conditions of the pressure field are defined by a constant function
in the planes z = 0 and z = L (p(z = 0) = p0, p(z = L) = p f ). The pressure boundary conditions
are related to a pressure gradient, similar to pressure boundary conditions applied in physical permeability
experiments. Figure 3 shows the setup of the boundary value problem for the mentioned porous materials
which are investigated in the present contribution. It is important to note that we need to mirror the domain
at the plane z = L/2 in order to apply periodic boundary conditions, cf. Fig. 3. This increases the degrees of
freedom by a factor of two but allows well-defined periodic BCs.

2.3 Step (3): Computation of u and p

The numerical solution scheme applied to Eqs. 1 and 3 is based on a regularly staggered grid technique,
cf. [15], using a second-order finite difference method. Figure 4 shows a 2D example of the discretization
for visualization purposes. Technical details of the (standard) discretization scheme are omitted here and
can be found in the related literature, e.g. [15]. A regular Cartesian grid, i.e. a voxel-based grid, allows
to use the geometry information directly from the tomographical data, avoiding (a) the loss of geometrical
information and (b) reducing computational effort in the generation of complex geometrical representations
such as triangulations or parametric surfaces. Furthermore, the resultant system of linear equations is solved
by the iterative successive over-relaxation method SOR, cf.[16]. The SOR method converges for a relaxation
factor of ω ∈ [0, 2], cf. details in [17]. In our simulations we elaborated that ω = 1.2 is an optimal parameter
to accelerate convergence.

Digitization of porous materials samples with the help of X-ray synchrotron or desktop scanning facilities
produces massive quantities of imaging data. As one aim of our present contribution is to discuss a flexible
framework for sufficiently large domains of calculation, we look to be able to compute extremely large domains
avoiding memory problems. Therefore, we implement our own Stokes solver in a parallel computation envi-
ronment. In the presented examples of the manuscript the solver run on a cluster of PCs (without demanding
specifications) connected in parallel, but if desired, it can also be used on larger computing environments.
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Fig. 3 Domain setup of porous media analysed. a Regularly packed spheres. b Fontainebleau stone. c Aluminium foam. d
Irregularly packed spheres

Given the problem-based advantage of using distributed memory, we parallelized the computation using
MPICH2 (Message Passing Interface based on Chameleon portability system, cf. [18]). Therefore, the calcu-
lation domain was divided between the processes in a straightforward way. We split the domain with a family
of equidistant planes, normal to the axis ez , according to the number of cores which have to be used. Figure 5
shows an example of the domain division proposed for the parallelization of the code.

In parallel computation the communication among parallel processes represents a resources-consuming
task. We minimize this communication expense by having each process to pass to the neighbouring one only
a slice of the domain, cf. the grey voxels in Fig. 5. The communication operations were organized in a ring
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Fig. 4 Example in 2d of discretization of pressure and velocity field

Fig. 5 Example of domain division for parallelization. Voxels P1, P2, …, are processed in parallel. Voxels common among
processes appear in grey colour

(a) (b)

Fig. 6 Parallelization. a Time per iteration as a linear function of domain size. b Time per iteration as function of the number of
processors used

network as described in Rauber and Rünger [19]), where we can find a communication link between the first
and last process. In Fig. 6a we show a O(N ) relation between the size of the domain, given in number of
elements, and the calculation time (seconds) needed for each iteration. For a domain consisting of 4003 voxels
Fig. 6 shows how the time per iteration decreases as the number of processors increases. It has to be mentioned
that the number of iterations needed for convergence is directly affected by the size of the domain and the
porosity of the investigated material. The upper bound of the implemented SOR method isO(N/p), where N
is the number of elements, and p is the number of processors used in the numerical simulation.
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2.4 Step (4): Postprocessing and calculation of effective permeability

From the velocity and pressure field calculated in the previous section, cf. 2.3, we calculate �p (imposed
boundary condition) and the volume-averaged velocity component in direction ez

um = 1

V f

∫
V f

|uz | dv. (4)

With the volume-averaged velocity, the intrinsic permeability of the porous material is calculated from
Darcy’s law [20]

ks = η um
�p

. (5)

3 Results and discussion

Table 1 shows a summary of the obtained results for different materials with a large variety of porosities. A
comparison between values from the literature and numerically obtained data calculated with the described
technique demonstrates the reliability and accuracy of themethod. Table 1 also shows the size of the calculation
domain and the large range of porosities in which the proposed method was proved.

The permeability of aluminium foam (Al foam) was calculated in two domains: (a) a domain consisting
of 4003 voxels with a porosity of φ = 0.935 and (b) a domain of 733 × 729 × 1400 voxels with a porosity of
φ = 0.929, resulting in 2.781 × 109 DOFs. This domain is significantly larger than the one presented in the
literature. Differences in the estimated effective intrinsic permeabilities are resulting from the slightly different
porosities (φ = 0.929 vs. φ = 0.935). Furthermore, it seems that the chosen domain (a) with 4003 voxels
is not representative, i.e. it is not a proper RVE for permeability calculations. The numerically calculated
effective permeability is high with respect to the other analysed materials with lower porosities and in the
range of the expected one, cf. Table 1. There is no literature or reference value of intrinsic permeability for this
material. Figure 7 shows the rather straight streamlines of fluid flow through aluminium foam; especially for
such high porous materials with high effective permeability physical permeability tests are complicated as very
low-pressure drops have to be measured accurately [23–25]. Numerical calculation could be an interesting
alternative tool for such investigations.

Flow through a capillary tube was analysed in order to discuss the discretization of the proposed method.
Stokes flow was simulated through a capillary tube with ratio length/radius = 4. The estimated permeability,
applying the proposed method, presents an error of 1.89% in comparison with the analytical solution, cf. Eq.
6 presented in Carman’s classical work [21]. Figure 8 shows the parabolic profile of the velocity in direction
of the ez axis for the simulated and analytical solution of a tube with radius rt = 0.2m. The numerical results
are shown in the Table 1.

ks = π

32
r2t . (6)

Furthermore, Table 1 shows the numerically calculated effective permeability for a regularly packed sphere
array (FCC lattice: ds = 1 mm) with porosity of φ = 0.414 versus the reference value of the permeability

Table 1 Comparison of simulated materials and data from literature

Case Ref.
value

Sample
size (Vox)

φ
∑

Voxels
∑

Vox
in pore
space

Reference
ks (m2)

Calculated
ks (m2)

Al metal foam No ref. 400 × 400 × 400 0.935 64 × 106 59.87 × 106 − 7.8124 × 10−7

Al metal foam No ref. 733 × 729 × 1400 0.929 748 × 106 695.5 × 106 − 5.7741 × 10−7

Capillary tube Ref. [21] 100 × 100 × 400 0.785 4 × 106 3.14 × 106 9.8175 × 10−6 9.6316 × 10−6

Regularly packed
spheres

Ref. [22] 200 × 200 × 400 0.414 16 × 106 6.62 × 106 1.3955 × 10−9 1.0867 × 10−9

Non-regularly
packed spheres

Ref. [11] 400 × 400 × 600 0.343 96 × 106 32.92 × 106 2.6668 × 10−10 2.1985 × 10−10

Fontainebleau
sandstone

Ref. [11] 290 × 290 × 600 0.146 50.46 × 106 7.36 × 106 1.8765 × 10−12 9.6982 × 10−12
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Fig. 7 Aluminium foam domain. Chosen computed streamlines

Fig. 8 Profile of flow velocity in capillary tube. Comparison of Poiseuille equation with simulation with different discretizations

calculated with the model proposed by Rumpf and Gupte in [22], cf. Eq. 7 for spheres of a diameter of 1 mm.
Figure 9 is showing the streamlines for the calculated velocity field.

ks = φ5.5

5.6
d2s . (7)

For irregularly packed spheres we analysed the permeability for a porosity of (φ = 0.343) which was
investigated in Andrä et al. [11]. The comparison of our results with the benchmark values given by Andrä
et al. shows a good accordance with the benchmark data. Figure 10 shows a subdomain of the non-regularly
packed spheres; the top shows the magnitude of the velocity field, and the bottom is depicting the geometry
of the domain. The calculated and reference values can be seen in Table 1.

To prove our method with a low porous material the permeability of the Fontainebleau sandstone,
with porosity φ = 0.146, is calculated and compared with the benchmark value in the Table 2 in [11].
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Fig. 9 Regularly packed spheres domain. Chosen streamlines

Fig. 10 Subdomain of irregularly packed spheres. Top magnitude of fluid velocity. Bottom geometry

Figure 11 shows a subdomain of the Fontainebleau sandstone, the magnitude of the calculated velocity field
can be observed on the top, and in the bottom of the figure, the geometry can be observed. Again, Table 1 shows
the calculated permeability and the reference values. We found in the calculated velocity field the existence
of divergence in the connection between a pore and a pore throat, when the throat diameter is much smaller
than the pore diameter, cf. Fig. 12. This kind of connection occurs mainly in materials with low porosities. In
the simulations of the materials discussed in this contribution the applied global boundary conditions ensure a
viscous regime in most areas of the calculation domain. In the described specific pore–pore throat connections
of the Fontainebleau sandstone we found that inertial effects are dominant. Even with this aspect we are able
to comment that the calculated value of effective permeability presents an acceptable error with respect to the
reference value (factor of 5, in the same order of magnitude). We consider this to be an acceptable error, given
that physical experiment results fluctuate in the same order of magnitude [26]. It seems to be that a stationary
Stokes solver could also be applied for such kind of applications. Nevertheless, if higher accuracy is necessary,
for low porous media we recommend to use a Navier–Stokes-based solver to improve the quality of the results
and include inertia effects in coarse-grained effective permeability results.
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Fig. 11 Magnitude of fluid velocity in a subdomain of Fontainebleau stone. Bottom geometry

Fig. 12 Divergence of velocity field in subdomain of Fontainebleau stone

4 Conclusions and future work

In the present contribution the effective intrinsic permeability of different types of porous materials was
characterized by means of 3D voxel-based numerical simulations. Applications of such investigations could
be found in the field ofDigital RockPhysics orDigitalMaterial Laboratory, cf. [13,14].Due to the characteristic
microscopic properties of the variety of materials investigated in the present contribution, we analyse materials
with porosities fromφ = 0.146 toφ = 0.935. The sharp changes in the pores sizes could cause local divergence
in the velocity field. This could be observed more common in materials with lower porosity and was analysed
in detail in the simulations of Fontainebleau sandstone. It should be noted that the local divergences are a
source of numerical error in the calculation of effective permeability. In materials with higher permeabilities
we have not observed such effects and obtained good agreement with values documented in the literature.
Our simulation technique demands low computational resources, which allow to calculate large domains, i.e.
large representative unit cells (RVEs) on inexpensive clusters of desktop computers connected in parallel.
Future work includes the numerical characterization of further effective properties of porous materials such
as tortuosity and the comparison of the proposed simulation method against other numerical approaches like
lattice Boltzmann or smoothed particle hydrodynamics.
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