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Abstract This paper presents a curvature-constructed triangular element for static, free vibration and explicit
dynamic analyses of shell structures by using a continuity re-relaxed technique. In the present method, the
formulation is based on the classical thin shell theory, and only the translational displacements are treated
as the filed variables that are assumed piecewisely linear. A set of three-node triangular background cells is
adopted to discretize the problem domain. The curvature field in an element is constructed using the continuity
re-relaxed technique, which can relax the continuity requirement of the trial function. The membrane strain
filed is formulated same as the practice of standard FEM. Based on the principle of virtual work, the discertized
system equations are finally formed. As the rotational displacements are not considered as the basic degrees
of freedom, the essential boundary conditions of this part are imposed in the process of forming the curvature
field. In order to validate the efficiency and accuracy of the present method, several numerical examples are
studied. The results demonstrate that the present formulation can achieve very stable and accurate solutions
with the less consuming of CPU time.

Keywords Curvature-constructed method (CCM) · Continuity re-relaxed technique · Thin shell · Static
analysis · Free vibration analysis · Explicit dynamic analysis

1 Introduction

With the widely application of thin shells in civil, mechanical and aerospace engineering, analyses of such
structures have always been the focal point of research. As the analytical solutions are limited to problems with
very simple geometries, various numerical approaches including the finite difference method (FDM), finite
element method (FEM), finite volume method (FVM), boundary element method (BEM), spline strip element
method and meshless method are always adopted to analyze and simulate the behaviors of shells. Among these
numerical approaches, the FEM is still so far the most reliable tool.

Based on the finite elementmethod (FEM),many efficient shell elements have been proposed by researchers
in the last century, such as the 4-node Belytschko–Tsay quadrilateral element [1], Hughes–Liu quadrilateral
element [2], mixed interpolation of tensorial components quadrilateral element (MITC4) [3], physical sta-
bilization of the 4-node shell element [4]. All these methods possess higher computational accuracy in the

X. Y. Cui (B) · G. Wang · G. Y. Li
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082,
People’s Republic of China
E-mail: pwcuixy@gmail.com
Tel.: 86-731-8821717
Fax: 86-731-8822051

G. Y. Li
E-mail: gyli@hnu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-015-1022-7&domain=pdf


1848 X. Y. Cui et al.

numerical simulations. However, meshing complex geometry such as aircraft structures with quadrilaterals
often brings great burdens in preprocess of analysis. Besides, quadrilateral element is inefficient in solving
problems with warped elements, which ineluctably occurs in complex geometry. Furthermore, for large defor-
mation analysis, foldingmayoccur along the diagonals of the quadrilateral element,which leads to deterioration
in accuracy, even invalidation of the computation.

Compared with quadrilateral elements, 3-node triangular elements are more attractive to engineers for their
simplicity, easy in automatic meshing and re-meshing in adapting analysis. However, the direct application of
Reissner–Mindlin theory to 3-nodeC0 shell problemswith linear interpolation, such as the LSDYNA triangular
element [5,6], often leads to an element with a “stiffer” stiffness, which surely affect the computational accu-
racy. In order to overcome this deficiency, Specht [7] proposed a three-node plate bending element based on
a polynomial displacement basis, which provided us a general convergence criterion for nonconforming shell
elements. Civalek [8,9] presented a discrete singular convolution (DSC)method and analyzed the free vibration
problems of shell structures. Zenkour [10] studied the static and dynamic responses of anisotropic spherical
shells using a mixed shear deformation modal. Another numerical difficulty for Reissner–Mindlin plate is the
shear-locking phenomenon caused by parasitic internal energy. Thus, various numerical approaches, including
reduced integration or selective integration [11], discrete Kirchhoff theory (DKT) [12,13], mixed shear pro-
jected [14], assumed natural strains (ANS) [15], discrete shear gap (DSG) method [16], improved absolute
nodal coordinate-based shear deformable element [17], have already been proposed by researches to reduce the
locking effect. Among the various schemes proposed to derive reliable C0 triangular shell elements, the imposi-
tion of discrete Kirchhoff constraints constitutes a mean to deal with problems inherent in formulations, which
accommodate the effect of transverse shear. Soon after, Wu et al. [18] successfully applied the DKT element to
dynamic large deformation analysis. However, the discrete Kirchhoff approach involves approximations for the
normal rotations within the element; thus, high computational cost is needed to derive the stiffness matrix. The
formulations directly derived from theKirchhoff hypotheses are free of locking phenomena, and only transverse
displacements are treated as the independent field variables. However, for Kirchhoff theory element, the C1
continuity requirement is needed when constructing the deflection field, and this is not an easy task. The other
works of shell structure analysis in recent years include those given byNaghdabadi et al. [19], Liu et al. [20,21],
Wang et al. [22].

In the effects to construct reliable Kirchhoff shell elements, many efficient works have been done by
researchers in the past decades. In 1971, Morley [23] first proposed a nonconforming displacement triangular
finite element for plate bending problems. The accuracy of this element is very low, but convergence rate
is assured with the refinement of mesh size. In 2001, Kolahi and Crisfield [24] carried out a large-strain
elasto-plastic shell formulation by using the “Morley triangle” element. Before long, Sabourin and Brunet
[25] presented a rotation-free triangular element for shell analysis. Onate et al. [26,27] formulated a simply
triangular thin plate element with only one degree of freedom (DOF) per node by using the finite volume-like
approach and gave detailed scheme for rotation-free triangular plate and shell elements. All these methods are
very interesting and laid the foundation for our research in this work.

Based on the fundamental works presented above, we further give a thin shell model based on the Kirchhoff
hypothesis by using linear shape functions in this paper. Three-node triangular elements that can be generated
automatically for any complicated geometries are adopted to discrete the problem domain. The translational
displacement fields are interpolated through linear shape functions same as the practice of standard FEM.
Based on the generalized gradient smoothing technique (GST) [28,29], the smoothed slopes at each edge for
an element are obtained by using the gradients of the cell and its neighboring cells sharing common edges.
As the curvature and membrane strain in each triangular cells are constants, the system stiffness matrices
can be computed via a simple summation operation. The principle of virtual work is then used to create the
discretized system equations. In order to examine the efficiency and accuracy of the proposed formulation,
a set of benchmark examples is studied and comparisons are made with results available in literatures. The
excellent results demonstrate that the presentmethod exhibits superior performance for both static and dynamic
problems.

2 Shell formulations

2.1 Basic equations for thin shell

Based on the Kirchhoff hypothesis for thin shell analysis, the relationship between the local deflection (ŵ) in
the normal direction and the rotations (θ̂x ,θ̂y) is given as follows



A continuity re-relaxed thin shell formulation for static and dynamic analyses of linear problems 1849

θ̂x = ∂ŵ

∂ x̂
, θ̂y = ∂ŵ

∂ ŷ
(1)

Dividing the problem domain into several triangular cells, the local translational displacement fields û, v̂
and ŵ in each element can be interpolated using the nodal displacements at the nodes of the element by the
linear shape functions, which gives ⎧

⎨

⎩

û
v̂
ŵ

⎫
⎬

⎭
=

3∑

i=1

ϕi
(
x̂
)

⎧
⎨

⎩

ûi
v̂i
ŵi

⎫
⎬

⎭
(2)

where ϕi
(
x̂
)
is the linear shape function value at node i and

{
ûi v̂i ŵi

}T is the local nodal displacement vector
of node i .

The membrane strain in an element can be defined by

ε̂m =

⎧
⎪⎨

⎪⎩

(
ε̂m

)

x̂ x̂(
ε̂m

)

ŷ ŷ(
ε̂m

)

x̂ ŷ
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(3)

The curvature in a triangular cell can be expressed as

κ̂ =
⎧
⎨

⎩

κ̂x̂ x̂
κ̂ŷ ŷ
κ̂x̂ ŷ

⎫
⎬

⎭
= −

⎧
⎪⎪⎨

⎪⎪⎩

∂2ŵ
∂ x̂2

∂2ŵ
∂ ŷ2

2 ∂2ŵ
∂ x̂∂ ŷ

⎫
⎪⎪⎬

⎪⎪⎭

= Lŵ (4)

where L is the differential operator defined as

L =
{

− ∂2

∂ x̂2
− ∂2

∂ ŷ2
−2 ∂2

∂ x̂∂ ŷ

}
(5)

2.2 Continuity re-relaxed and curvature-constructed

From Eq. (4), we can clearly find that the strict C1 continuity requirement for deflection field must be satisfied
to obtain the curvature field in each cell. In order to relax the continuity requirement for deflection field, the
area integral of the curvature in each cell can be converted into the boundary integral along the cell boundary
through the generalized gradient smoothing operation. As shown in Fig. 1, the curvature in the triangular cell
M can be constructed as follows

κ̂ = 1

Am

∫

�m

Lŵ
(
x̂
)
d� = 1

Am

∫

�m

n∇ŵ
(
x̂
)
d� = 1

Am

∫

�m

nθ̂
(
x̂
)
d� = 1

Am

3∑

k=1

lknmk θ̂k
(
x̂
)

(6)

where �m is the boundary of cell M , Am is the area of cell M , lk is the length of the kth edge, nmk is the outward
normal matrix containing the components of the outward normal vector on the edge k in the local coordinate
system given by

nmk =
⎡

⎢
⎣

−nmxk 0
0 −nmyk

−nmyk −nmxk

⎤

⎥
⎦ (7)

and θ̂k
(
x̂
)
is the local rotations on the kth edge of cell M defined as

θ̂k =
{

θ̂xk

θ̂yk

}

= Tmkθk (8)

in which

Tmk =
[−nmyk −nmxk

nmxk −nmyk

]

(9)
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Fig. 1 Local slopes and outer normal components for each edge of the triangular cell
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Fig. 2 Local coordinate systems for master and slave cells and the smoothed slopes at the edges of the master cell

and

θk =
{

θ sk
θnk

}

(10)

is the smoothed slope corresponding to edge k obtained using the gradients of the cell and its neighboring cell
sharing common edge k.

Figure 2 shows a representative triangular cell M with three neighboring cells (named S1, S2 and S3).
The local coordinate systems for each cell are also given in the figure. The smoothed slope θk at the edge k
can then be expressed as

{
θ sk

θnk

}

= 1

Am + Ask

(

Am

{
θmsk

θmnk

}

+ Ask

{
θ sks

θ skn

} )

(11)

where Am is the area of cell M , Ask is the area of kth neighboring cell Sk. θmnk , θ
m
sk , θ

sk
n and θ sks presented in

Eq. (11) will be computed using the local deflections presented next.
In the global coordinate system, the nodal displacement vector at each node can be expressed as

di =
⎧
⎨

⎩

ui
vi
wi

⎫
⎬

⎭
(12)
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As shown in Fig. 2, the local nodal deflections for cell M can be obtained through the global nodal
displacement vector d1, d2 and d3, which gives

⎧
⎪⎨

⎪⎩

wm
1

wm
2

wm
3
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⎪⎭
=
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⎭
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w

⎧
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⎩
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⎫
⎬

⎭

cẑ = {
cẑx cẑy cẑz

}
, 0 = {

0 0 0
}

(13)

where cẑx is the cosine of the angle between the ẑ and x axes, etc.
Similarly, the local nodal deflections for the neighboring cell S1, S2 and S3 can be obtained by

⎧
⎪⎨
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⎫
⎬

⎭
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}

(14)
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⎭
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}
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⎫
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d6
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⎫
⎬

⎭
, cz3 = {

cz3x cz3y cz3z
}

(16)

From Eq. (2), the local deflection in the cell M can be computed by

wm =
3∑

i=1

ϕi
(
x̂
)
wm
i (17)

Substituting Eq. (17) into Eq. (1) yields

{
θmx
θmy

}

=
3∑

i=1

⎧
⎨

⎩

∂ϕi(x̂)
∂ x̂

∂ϕi(x̂)
∂ ŷ

⎫
⎬

⎭
wm
i (18)

{
θms
θmn

}

=
[−nmyk nmxk

−nmxk −nmyk

]{
θmx
θmy

}

= [Tmk]
T
{

θmx
θmy

}

(19)

Similarly, θ skn and θ sks can be given by
{

θ skx

θ sky

}

=
3∑

i=1

⎧
⎨

⎩

∂ϕi
(
xk
)

∂xk

∂ϕi
(
xk
)

∂yk

⎫
⎬

⎭
wsk
i (20)

{
θ sks

θ skn

}

=
[

−nsky nskx
−nskx −nsky

]{
θ skx

θ sky

}

= [Tsk]
T

{
θ skx

θ sky

}

(21)

in which nskx and nsky are the components of the outward normal vector on the edge k in the local coordinate
system (xk, yk, zk).

Based on the above equations, the curvature in the triangular cell M can be obtained using the global
displacements, which gives

κ̂ = Bbdm, dm =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1
d2
d3
d4
d5
d6

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(22)

where Bb is the curvature displacement matrix presented in detail in Appendix A.
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2.3 Membrane strain displacement matrix

The local in-plane displacement field in the cell M is interpolated by the local nodal displacements using the
linear shape function same as in standard FEM

{
um

vm

}

=
[

ϕ1
(
x̂
)

0 ϕ2
(
x̂
)

0 ϕ3
(
x̂
)

0
0 ϕ1

(
x̂
)

0 ϕ2
(
x̂
)

0 ϕ3
(
x̂
)

]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

um1
vm1
um2
vm2
um3
vm3

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(23)

From Eq. (3), the membrane strain in the cell M is given by

ε̂m =

⎡

⎢
⎢
⎢
⎣

∂ϕ1(x̂)
∂ x̂ 0

∂ϕ2(x̂)
∂ x̂ 0

∂ϕ3(x̂)
∂ x̂ 0

0
∂ϕ1(x̂)

∂ ŷ 0
∂ϕ2(x̂)

∂ ŷ 0
∂ϕ3(x̂)

∂ ŷ
∂ϕ1(x̂)

∂ ŷ
∂ϕ1(x̂)

∂ x̂
∂ϕ2(x̂)

∂ ŷ
∂ϕ2(x̂)

∂ x̂
∂ϕ3(x̂)

∂ ŷ
∂ϕ3(x̂)

∂ x̂

⎤

⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

um1
vm1

um2
vm2

um3
vm3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

Using the global nodal displacement vector, the local nodal displacements umi and vmi can be computed by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

um1
vm1
um2
vm2
um3
vm3

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cx̂ 0 0 0 0 0
cŷ 0 0 0 0 0
0 cx̂ 0 0 0 0
0 cŷ 0 0 0 0
0 0 cx̂ 0 0 0
0 0 cŷ 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1
d2
d3
d4
d5
d6

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= Tm
u dm

cx̂ = {
cx̂x cx̂ y cx̂z

}
, cŷ = {

cŷx cŷy cŷz
}

(25)

Substituting Eq. (25) into (24), the membrane strain in the triangular cell M can be obtained using those
in global system

ε̂m = Bmdm (26)

in which Bm is the membrane strain displacement matrix given by

Bm =

⎡

⎢
⎢
⎢
⎣

∂ϕ1(x̂)
∂ x̂ 0

∂ϕ2(x̂)
∂ x̂ 0

∂ϕ3(x̂)
∂ x̂ 0

0
∂ϕ1(x̂)

∂ ŷ 0
∂ϕ2(x̂)

∂ ŷ 0
∂ϕ3(x̂)

∂ ŷ
∂ϕ1(x̂)

∂ ŷ
∂ϕ1(x̂)

∂ x̂
∂ϕ2(x̂)

∂ ŷ
∂ϕ2(x̂)

∂ x̂
∂ϕ3(x̂)

∂ ŷ
∂ϕ3(x̂)

∂ x̂

⎤

⎥
⎥
⎥
⎦
Tm
u (27)

3 Discretized system equations

Applying the principle of virtual work, the weak form of kinematic equation can now be written as

δW = δW int + δW kin − δW ext = 0 (28)

In Eq. (28), δW ext is the virtual external work since it results from the external loads. Due to the virtual
displacement δu, the virtual external work is given by

δW ext =
∫

�

δuT f̃d� +
∫

�

δuT t̃d� (29)

where f̃ is the external load applied over the problem domain �, and t̃ is the traction applied on the natural
boundary �.



A continuity re-relaxed thin shell formulation for static and dynamic analyses of linear problems 1853

δW int is the virtual internal work given by

δW int =
∫

�

δε̂m
TDm ε̂md� +

∫

�

δκ̂
T
Dbκ̂d� (30)

where the membrane stiffness constitutive coefficients (Dm) and the bending stiffness constitutive coefficients
(Db) are defined as

Dm =
∫ t

2

− t
2

D0dz = tD0 (31)

Db =
∫ t

2

− t
2

z2D0dz = t3

12
D0 (32)

and the matrix D0 is the constitutive coefficients given by

D0 = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 (1 − ν) /2

⎤

⎦ (33)

in which E is Young’s modulus and ν is Poisson ratio.
δW kin is the virtual kinetic work given by

δW kin =
∫

�

ρtδuTüd� (34)

where ρ is the density of the material, and ü the acceleration that can be expressed in terms of the nodal
acceleration d̈i and the shape functions ϕi (x).

ü (x) =
3∑

i=1

ϕi (x) d̈i (35)

3.1 Static analysis

For static analysis, the kinetic work item vanishes and Eq. (28) can be rewritten as

δW = δW int − δW ext = 0 (36)

Substituting Eqs. (2), (22) and (26) into Eq. (36), a set of discretized algebraic system equations can be
obtained in the following matrix form

Kd − Fext = 0 (37)

where d is the vector of global nodal displacement at all of the nodes, Fext is the force vector defined as

Fext =
∫

�

ϕT (x) f̃d� +
∫

�

ϕT (x) t̃d� (38)

in which ϕT (x) is the shape function vector.
In Eq. (37), K is the global stiffness matrix assembled in the form of

K =
Nele∑

M=1

K(M) (39)

where Nele is the total number of triangular cells for the whole problem domain �, and K(M) is the stiffness
matrix associated with cell M calculated using

K(M) = Km(M) + Kb(M) (40)

Km(M) = BT
mDmBm Am (41)

Kb(M) = BT
bDbBb Am (42)

in which Ak is the area of cell M .
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3.2 Free vibration analysis

For the free vibration analysis of Kirchhoff shell, the generalized weak form can be deduced by simply
eliminating the external work item presented in Eq. (28), which gives

δW = δW int + δW kin = 0 (43)

Substituting Eqs. (2), (30) and (34) into Eq. (40) yields

Kd + Md̈ = 0 (44)

in which the global stiffness matrix K has the same expression as presented in Eq. (39),M is the global mass
matrix defined by

M =
Nele∑

M=1

M(M) (45)

and M(M) is sub-matrices of the mass matrix related to cell M given by

M(M) =
∫

�(M)

ϕT (x)mϕ (x) d� (46)

where m is the matrix containing the mass density of the material ρ and thickness t as

m = diag
{
ρt ρt ρt

}
(47)

A general solution of such a homogeneous equation can be written as

d = λ exp(iωt) (48)

where λ indicates the eigenvector, t is time and ω is natural frequency. On it substitution into Eq. (44), the
natural frequency ω can then be obtained by solving the following eigenvalue equation

(−ω2M + K
)
λ = 0 (49)

3.3 Explicit dynamic analysis

The previous thin shell formulation is extended for explicit dynamic analysis in this subsection. An updated
Lagrangian formulation is established, and elastic constitutive is used. The discrete equations of motion can
be given by

Fext − Fint = Md̈ (50)
in which the mass matrix M has been given in Sect. 3.2. It should be noted that the lumped mass matrix will
be used in this subsection, and the mass matrix corresponding to cell M can then be rewritten as

M(M) = diag {m1,m2,m3} (51)

and mi is the lumped mass at the node i given by

mi = ρt Am
/
3 (52)

In Eq. (50), Fint is the internal force vector computed by

Fint =
Nele∑

M=1

f int(M) (53)

f int(M) = (
BT
mσm + BT

bm
)
Am (54)

where σm is the membrane stress andm is the bending moment given by

σn+1
m = σn

m + Dm�ε̂m (55)

mn+1 = mn + Db�κ̂ (56)

�ε̂m = Bm�dm (57)

�κ̂ = Bb�dm (58)



A continuity re-relaxed thin shell formulation for static and dynamic analyses of linear problems 1855

M

i

j

Sk
skθ

nkθ

boundary line

cell  does not existSk

Fig. 3 Triangular cell next to the boundary line

4 Impose essential boundary conditions

In the present work, the independent variables only contain the translational displacements, and the rotational
displacements are not considered as the basic degrees of freedom. The translational displacement boundary
conditions can be prescribed when solving the global system equations same as the practice of standard FEM.
However, the rotational displacement boundary conditions must be imposed when building the curvature
displacement matrix.

For cell M , if one of the edge (suppose edge k) located at the boundary line, the kth neighboring cell
vanishes as shown in Fig. 3, then we will not consider the contribution of the cell Sk for θk in Eq. (10) when
building the curvature displacement matrix. The side rotations on the boundary lines only contributed from
cell M . The prescription of the rotational boundary conditions is a simple process as the side rotations are
formulated in terms of the normal and tangential rotation values. The potential rotational conditions may be
classified as:

(a) θnk = 0, θsk = 0: The rotational boundary condition θnk = 0 is imposed by neglecting the terms
contributed by the second column of matrix Tmk in Eq. (8) when building the curvature displacement matrix.
Similarly, θsk = 0 is imposed by neglecting the terms contributed by the first column of matrix Tmk . It must
be point out that the condition θsk = 0 is automatically satisfied when prescribing the side displacements
di = d j = 0 (di and d j are the nodal displacements).

(b) θxk = 0, θyk = 0: The rotational boundary condition θxk = 0 is imposed by neglecting the terms
contributed by the first row of matrixTmk in Eq. (8) when building the displacement matrix. Similarly, θyk = 0
is imposed by neglecting the terms contributed by the second row of matrix Tmk .

5 Numerical examples

The present formulation has been coded using Matlab program. For comparison, several other elements such
as C0 [5], DKT [13] and S3R have also been implemented in our package. The CPU time is measured using
the hardware platform CPU: Intel(R) Core(TM) i5-3450 (3.1GHz); RAM 8.00GB.

For explicit dynamic analysis, the time step �t is determined by [30,31]

�t = α�tcrit (59)

with

�tcrit = min
e

le
ce

(60)

in which �tcrit denotes the critical time step; le is a characteristic length of element e and ce the wavespeed of
element e. α ∈ [0.8, 0.98] is the Courant number which is set to 0.90 in this study.
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Fig. 8 Model of the hood of an automobile

5.1 Scordelis–Lo roof problem

The Scordelis–Lo roof shown in Fig. 4 is a famous benchmark problem for shell analysis to test a numerical
method. The length of the shell is L = 50 ft, the radius is R = 25 ft, the thickness is t = 0.25 ft, and the
span angle is θ0 = 40◦. The material properties are as follows: Poisson’s ratio ν = 0.0 and Young’s modulus
E = 4.32 × 108N/ft2. The boundary conditions at each end are supported by a rigid diaphragm. The loading
is a uniform vertical gravity load of q0 = 90N/ft2. Owing to the symmetry, only a quarter of the roof is
modeled.

The reference solution for the vertical deflection at the midpoint of the free edge is 0.3024 ft [32,33].
The results obtained from present element and those of other methods are given in Fig. 5. It can be observed
that the results were two flexible in the coarse meshes for all element types. However, among these numerical
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Fig. 9 Displacements at the loading point for different DOFs: a x-direction; b y-direction

solutions, the proposed element exhibited good convergence. The vertical displacement along the central line
of the roof is plotted in Fig. 6, and the longitudinal displacement along the supported end is shown in Fig. 7.
From these figures, we can clearly find that the present results agree very well with the reference solutions.

5.2 Stiffness analysis of an automobile hood

In this subsection, an actual structure component of a car hood shown in Fig. 8 is studied using the present
element. The dent resistance of a car hood is one of the most important considerations in the process of car
design. The thickness of the shin shell is 1.0mm; Young’s modulus of the material is taken to be 2.1 ×
105 N/mm2 and Poisson’s ratio is 0.3. In order to test the dent resistance, clamped boundary condition is
considered during the analysis, and a concentrated load F = −150N is imposed along the y-direction as
illustrated in Fig. 8.

Several existing shell elements are used here to compare with the present method. Because the analytical
solution is unavailable, the numerical solution using quadrilateral shell element S4R in ABAQUS with large
number of (42306) nodes is provided as the reference. Figure 9 shows the convergence of the central displace-
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Fig. 10 Displacements along the line AB: a x-direction; b y-direction

Table 1 First 12 natural frequencies of the automobile hood

Modes C0 DKT S3R CCT References

1 4.3662 4.3270 4.3776 4.3230 4.3010
2 5.7528 5.6826 5.7761 5.6309 5.6201
3 6.8145 6.6734 7.0140 6.5504 6.3241
4 7.3126 7.1962 7.3268 7.0607 7.0713
5 8.0092 7.9523 8.0131 7.8309 7.8652
6 9.2860 9.1100 9.3727 8.8443 8.8962
7 9.5149 9.4389 9.5234 9.3146 9.1936
8 10.057 9.8465 10.484 9.6512 9.3149
9 10.499 10.385 10.567 10.151 10.211
10 11.678 11.430 11.704 10.961 11.104
11 12.116 11.948 12.150 11.606 11.709
12 12.868 12.748 12.849 12.364 12.508

ments obtained using unstructured meshes and different shell elements. It is noticed that the present element
can provide very accurate results compared with the other two methods. Figure 10 illustrates the displacement
distribution along the defined path AB. Here, the problem domain is discretized using 1457 irregular nodes
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Fig. 11 First twelve vibration modes of the automobile hood

with 2690 elements. Again, the present CCT element can provide a much closer result compared with the
reference one.

5.3 Modal analysis of an automobile hood

The automobile hood presented in Fig. 8 is now investigated for free vibration analysis. The geometric and
material parameters are same as those given in Sect. 5.2. The mass density is taken to be 7.8 × 10−6 kg/mm3.
Numerical results are obtained using 1457 irregular distributed nodes, and the reference solutions are obtained
using commercial software ABAQUS with 42306 nodes.

Modal analysis of the car hood is performed based on the same mesh discretization. The first 12 natural
frequencies deduced from the present method are given in Table 1. For comparison, the numerical solutions
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obtained from C0, DKT and S3R elements are also included in our package. It can be observed that the present
approach can provide very accurate eigenfrequencies than the other three methods. The first 12 eigenmodes
are plotted in Fig. 11. One can clearly find that there is no spurious nonzero energy modes. Thus, the present
CCT element could provide a stable solution for dynamic problems.

Now, we mention the computational efficiency of present method compared with C0 and DKT models.
Figure 12 illustrates the CPU time consumed by present CCT element together with the other two methods
in solving above eigenvalue problem. From the figure, we can observed that the present approach spends less
than half times compared with C0 and DKT elements but achieves higher computational accuracy.
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Fig. 14 Four mesh types for a quarter of the cap
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Fig. 15 Convergence of the dynamic solution with the CCT element
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Fig. 17 Comparison of computational efficiency between the CCT element and the 3-node C0 triangular element

5.4 Clamped spherical cap

Finally, a clamped spherical cap subjected to auniformpressure loadof 600psi as shown inFig. 13 is investigated
for explicit dynamic analysis. This example has been studied by a number of researchers using the finite
element methods. The geometric parameters are radius R = 22.27 in. and thickness t = 0.41 in. The material
properties are as follows: Young’s modulus E = 1.05 × 107psi, Poisson’s ratio ν = 0.33 and mass density
ρ = 2.45 × 10−4psi × s2/in2. Due to double symmetry of geometry and deformations, only one-quarter of
the cap is modeled in the following analysis. Four different meshes are used to solve this problem, as shown
in Fig. 14.

Figure 15 plots the convergence of the central deflection obtained using different structured meshes. It can
be seen that the present approach converges quickly. In Fig. 16, the dynamic response obtained with the CCT
element for mesh 3 is compared to those from several other types of element. It is observed that the results
from these elements agree reasonably well.
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In order to validate the efficiency of the present method for dynamic problems, Fig. 17 illustrates the CPU
time against the number of time steps obtained using CCT element and C0 triangular element. Similar to
Sect. 5.3, the present method spends only half times compared with the C0 element but achieves a reasonable
result. Thus, the present CCT element is a good competitor to other methods.

6 Conclusion

In this paper, a curvature-constructed triangular element is proposed for thin shell analysis. Three-node trian-
gular elements that can be generated automatically for any complicated geometries are adopted to discretize
the problem domain. The translational displacement field in each background cell is interpolated using the
nodal displacements by the linear shape functions. A continuity re-relaxed technique is utilized to formulate the
curvature filed. The membrane strain filed is constructed same as the practice of standard FEM. The principle
of virtual work is then adopted to discretize the governing partial difference equations. As only the translational
displacements are considered as the basic degrees of freedom (DOF), the rotational displacement boundary
conditions are imposed in the process of curvature displacement matrix formed. The numerical examples have
confirmed the significant features of the present method:

(1) The present method uses only three translational displacements as the basic DOFs, which significantly
reduces the computing scale for practical engineering problems.

(2) There is no need to perform the numerical integration as the curvature and membrane strain fields are
constants in each background element; thus, the proposedCCTelement possesses a superior computational
efficiency.

(3) Numerical comparisons illustrate that the present method could provide very accurate and effective solu-
tions for both static and dynamic problems.

Acknowledgments The support of National Science Foundation of China (11472101), Postdoctoral Science Foundation of
China (2013M531780), Key Project of National Science Foundation of China (61232014) and the National Laboratory for
Electric Vehicles Foundations are gratefully acknowledged.

Appendix A

The linear shape function is given as follows

ϕi (x) = 1

2Ae
(ai + bi x + ci y)

ai = x j yk − xk y j , bi = y j − yk, ci = xk − x j (61)

where Ae is the area of the triangular cell, the subscript i varies from 1 to 3, j and k are determined by the
cyclic permutation in the order of i , j , k. Then, Eq. (18) can be rewritten as

{
θmx
θmy

}

= 1

2Am

[
bm1 bm2 bm3
cm1 cm2 cm3

]
⎧
⎨

⎩

wm
1

wm
2

wm
3

⎫
⎬

⎭
= 1

2Am
∇ϕmTm

w

⎧
⎨

⎩

d1
d2
d3

⎫
⎬

⎭
(62)

{
θmnk
θmsk

}

= 1

2Am
[Tmk]

T ∇ϕmTm
w

⎧
⎨

⎩

d1
d2
d3

⎫
⎬

⎭
(63)

in which

bi = ŷ j − ŷk, ci = x̂k − x̂ j (64)
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Similarly,

{
θ s1x

θ s1y

}

= 1

2As1

[
bs11 bs12 bs13
cs11 cs12 cs13

]
⎧
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3
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∇ϕs1Ts1

w
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⎭
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From Eq. (11)
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where

B1 = 1
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B3 = Am
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The relation between the local rotations θ̂k and global displacement vector can be expressed as

θ̂k = TmkBkdm (77)

The curvature in the triangular cell M is given by

κ̂ =
(

1

Am

3∑

k=1

lknmk TmkBk

)

dm = Bbdm (78)

Bb = 1

Am

3∑

k=1

lknmk TmkBk (79)
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