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Abstract The authors have proposed a new integration method for structural dynamics by utilizing uniform
quintic B-spline polynomial interpolation. In this way, with two adjustable parameters, the proposed method is
successfully formulated for solving of the differential equation of motion governing a SDOF system and later
generalized for aMDOF system. In the proposedmethod, the straightforward recurrence formulaswere derived
based on quintic B-spline interpolation approximation and collocation method, and the calculation process
for MDOF systems was also provided. Stability analysis shows that the proposed method can attain both
conditional and unconditional stability. The validity of the proposed method is verified with three numerical
simulations. Comparedwith the latest Bathe andNoh–Bathemethods, the proposedmethod not only has higher
computation efficiency, but also possesses better numerical dissipation characteristics.

Keywords Dynamics · Stability · Numerical methods · Time integration method · B-spline

1 Introduction

During the last few years, a large amount of researches have been devoted to the investigation of effective
time integration methods for the linear and nonlinear analysis of structures [1–9]. In general, there are two
major categories of step-by-step time integrationmethods. One is explicit method [10], and the other is implicit
method [11]. Amethod is explicit if the equation of motion of the current time step is not employed to ascertain
the current displacement, while it is implicit if that is involved. Both explicit and implicit methods have their
own advantages and disadvantages. More details of time integration methods can be found in the work of Wen
et.al [12] and the references therein.

Recently, Bathe et.al [13] developed a simple implicit time integration method which can remain uncondi-
tional stable without the use of adjustable parameters. This implicit method shows very desirable calculation
accuracy and high-frequency dissipation characteristics. However, this method consists of two sub-steps within
each time step and thus consumesmuchmore computation time than other conventionalmethods. Subsequently,
Noh et.al [14] presented an explicit time integrationmethodwhich possesses second-order accuracy for systems
with and without damping. By use of two sub-steps within each time step, this scheme can achieve a desired
numerical damping to suppress undesirable spurious oscillations of high frequencies, but results in more time
consumption than other conventional methods. Then, the authors [12] proposed an explicit method by uti-
lizing a family of uniform septuple (seventh-degree) B-splines. The presented method possesses far higher
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calculation accuracy and more desirable numerical dissipation than other conventional methods. However, this
method consumes more computation time than other conventional methods due to its complex formulations,
especially for the dynamic system with very large DOFs.

As is well known, in finite element problems, the use of explicit time integration method may introduce
spurious oscillations of high-frequency modes which have to be effectively suppressed or smoothed. It is
well known that the high-frequency modes of discretized equations generally do not represent the genuine
behavior of the real problem. Hence, it is advantageous for time integration methods to possess controllable
numerical dissipation so as to filter high-order frequencies induced by the finite element spatial discretization.
One critical difficulty in designing such methods is that the addition of high-frequency dissipation should
neither incur a substantial loss of accuracy nor introduce excessive algorithmic damping in the important low-
frequencymodes. One effective approach is to introduce some damping into a time integrationmethod by use of
adjustable parameters. Actually, most of present-day time integration methods, such as the higher-order mixed
method with parameters β and θ [15], the two-step lambda method [16], and the Newmark-type integration
schemes [xx-xx], have parameters that can control the degree of numerical dissipation aswell as the stability and
accuracy, whilemore details of numerical dissipation about time integration schemes can be found in references
[17–19]. Apart from numerical dissipation, it is desirable for the algorithms to possess unconditional stability
so that time increment of any size can be adopted without introducing numerical instability.

With due consideration of the drawbacks of aforementioned methods, the objective of this study was to
propose a novel high-efficiency explicit method. This paper is organized as follows. In Sect. 2, the definition and
expression of quintic B-spline interpolation are given. Then, quintic B-spline interpolation is employed to solve
the equation of motion governing the SDOF and MDOF systems in Sects. 3 and 4, respectively. In Sect. 5,
stability and accuracy analyses are conducted by comparing different methods. In Sect. 6, three numerical
simulations are introduced to demonstrate the superiority of the proposed method in calculation accuracy,
time consumption and high-frequency dissipation over other latest methods. Finally, Sect. 7 is allocated for
concluding remarks.

2 The overview of B-splines

2.1 The definition of B-spline basis functions

There are many definitions for B-spline basis functions. Here we adopt a simple recurrence formula to define
B-spline basis functions [20,21]. Then, the i th B-spline basis of the dth degree Bi,d (t), briefly denoted by
Bi,d , is defined as follows:

Bi,0 (t) =
{
1, ti ≤ t ≤ ti+1

0, otherwise
(1)

Bi,d (t) =
(

t − ti
td+i − ti

)
Bi,d−1 (t) +

(
td+i+1 − t

td+i+1 − ti+1

)
Bi+1,d−1 (t) (2)

where knot span {t0, t1, . . . , ti , ti+1, . . .}must be a non-decreasing sequence of real numbers, i.e., ti ≤ ti+1.
Equation (2) can yield the quotient 0/0, we define this quotient to be zero. Without going into details, Bi,d (t)
is nonzeros over an interval ti ≤ t ≤ ti+d+1. As shown in Fig. 1, for quintic B-spline basis functions used in
this study, the usable parameter range of Bi,5 (t) is ti ≤ t ≤ ti+6.

2.2 Quintic B-spline interpolation scheme

In this study, we only consider the uniform quintic B-spline basis functions with a equidistantly distributed
set of time nodes a = t0 < t1 < · · · < tn = b over the time domain [a, b], and the time step length (or, time
increment) is denoted by h, where h = �t = ti+1− ti (i = 0, 1, . . . , n−1). To construct the quintic B-splines,
we need to extend the set of nodal points as

t−5 < · · · < t−1 < a = t0 < t1 < · · · < tn = b < · · · < tn+5

For any node t j ( j = −5, −4, · · · , tn+5), we have t j = ti + ( j − i) h, and thus, Bj,5 (t) is the shifted(or
translated) instance of Bi,5 (t), i.e., Bj,5 (t) = Bi,5 (t − ( j − i) h).
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Fig. 1 Quintic B-spline basis functions (usable interpolation range is from ti to ti+1)

Using Eq. (2), Bi,5 (t) (i = 0, 1, . . . , n − 1) can be defined by

Bi,5 (t) = 1

5!h5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t − ti )5 ti ≤ t ≤ ti+1

(t − ti )5 − 6 (t − ti+1)
5 ti+1 ≤ t ≤ ti+2

(t − ti )5 − 6 (t − ti+1)
5 + 15 (t − ti+2)

5 ti+2 ≤ t ≤ ti+3

(ti+6 − t)5 − 6 (ti+5 − t)5 + 15 (ti+4 − t)5 ti+3 ≤ t ≤ ti+4

(ti+6 − t)5 − 6 (ti+5 − t)5 ti+4 ≤ t ≤ ti+5

(ti+6 − t)5 ti+5 ≤ t ≤ ti+6

(3)

Actually, for any time subinterval Ii ≡ [
ti , ti+1

]
, the usable piecewise quintic B-splines, as illustrated in

Fig. 2, are Bi−5,5, Bi−4,5, . . . , Bi,5. Let τi = (t − ti )/�t (i.e., t = ti + τi�t), these B-splines coupled with
their lth derivatives with respect to variable t can be given as

B(l)
−5,5 (τi ) = (−�t)−l

(5 − l)! (1 − τi )
5−l (4)

B(l)
-4,5 (τi ) = (−�t)−l

(5 − l)!
(
(2 − τi )

5−l − 6 (1 − τi )
5−l

)
(5)

B(l)
−3,5 (τi ) = (−�t)−l

(5 − l)!
(
(3 − τi )

5−l − 6 (2 − τi )
5−l + 15 (1 − τi )

5−l
)

(6)

B(l)
−2,5 (τi ) = (�t)−l

(5 − l)!
(
(τi + 2)5−l − 6 (τi + 1)5−l + 15 (τi )

5−l
)

(7)

B(l)
−1,5 (τi ) = (�t)−l

(5 − l)!
(
(τi + 1)5−l − 6 (τi )

5−l
)

(8)

B(l)
0,5 (τi ) = (�t)−l

(5 − l)! (τi )
5−l (9)

For any usable interpolate range Ii as shown in Figs. 1 and 2, a quintic B-spline interpolation function can
be given by

Si (t) =
0∑

k=−5

Ci+k Bi+k,5 (t) (10)

where Ci+k (control points) are unknown real coefficients. Si (t) is four times differentiable and compatible.
With Eqs. (4)–(10) can be extended to a matrix form as

S(l)
i (t) = B(l) (τi )Ci , t ∈ [

ti , ti+1
]
τi ∈ [0, 1] (11)
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Fig. 2 Usable piecewise B-splines within any time subinterval Ii

Table 1 Values of Bi,5, B
(1)
i,5 , B

(2)
i,5

B(l)
i,5 t = ti (τi = 0) t = ti+1(τi = 1)

l = 0 l = 1 l = 2 l = 0 l = 1 l = 2

B(l)
−5,5 1/120 −1/ (24�t) 1/

(
6�t2

)
0 0 0

B(l)
−4,5 13/60 −5/ (12�t) 1/

(
3�t2

)
1/120 −1/ (24�t) 1/

(
6�t2

)
B(l)

−3,5 11/20 0 −1/
(
�t2

)
13/60 −5/ (12�t) 1/

(
3�t2

)
B(l)

−2,5 13/60 5/ (12�t) 1/
(
3�t2

)
11/20 0 −1/

(
�t2

)
B(l)

−1,5 1/120 1/ (24�t) 1/
(
6�t2

)
13/60 5/ (12�t) 1/

(
3�t2

)
B(l)
0,5 0 0 0 1/120 1/ (24�t) 1/

(
6�t2

)

where

B(l) (τi ) =
[
B(l)

−5,5 (τi ) B(l)
−4,5 (τi ) · · · B(l)

0,5 (τi )

]
(12)

Ci = [
Ci−5 Ci−1 · · · Ci

]T (13)

In order to solve the second-order initial value problem in Sects. 3 and 4, B(l)
i,5(i = −5,−4, . . . , 0; l =

0, 1, 2), evaluated at the discrete time instant t = ti (i.e., τi = 0) and ti+1 (i.e., τi = 1), are used for subsequent
deduction. These values are listed in Table 1.

3 The implementation of quintic B-spline on SDOF systems

The equation of motion for a linear system with single degree of freedom can be written as

x (2) (t) + 2ξωx (1) (t) + ω2x (t) = f (t) (14)

where ξ is the damping ratio,ω is the undamped circular natural frequency of the system and f (t) is the modal
forcing excitation. x (t), x (1) (t), and x (2) (t) are the displacement, velocity, and acceleration, respectively. The
initial value problem is to solve Eq. (14) to meet the given initial conditions of x (t0) = u0 and x (1) (t0) = v0.

Employing Eq. (11), the approximate solution of Eq. (14) ,within any time subinterval Ii , can be expressed
as

x (l) (t) = B(l) (τi )Ci , t ∈ [
ti , ti+1

]
τi ∈ [0, 1] (15)
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Actually, since the proposed B-spline time element is fourth-order compatible as illustrated in Sect. 2.2,
all discrete unknown physical variables x (l) (ti ) can be degraded into the solving of Ci .

Generally, to determine Eq. (15), unknown coefficients vector Ci needs to be solved. Nevertheless, to
circumvent the direct solving of Ci , we use the numerical displacement, velocity, and acceleration at the start
and end points of the time interval

[
ti , ti+1

]
to represent Ci . Specifically, for l = 0, 1, 2, when substituting

t = ti (i.e., τi = 0) and t = ti+1 (i.e., τi = 1) into Eq. (15), we have,

xi = PCi or Ci = P
−1

xi (16)

where

P = 1

120

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 26 66 26 1 0

−5 −50 0 50 5 0

20 40 −120 40 20 0

0 1 26 66 26 1

0 −5 −50 0 50 5

0 20 40 −120 40 20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

xi =
[̃
xTi x̃Ti+1

]T
(18a)

x̃i =
[
x (ti ) �t · x (1) (ti ) (�t)2 · x (2)(ti )

]T
(18b)

x̃i+1 =
[
x (ti+1) �t · x (1) (ti+1) (�t)2 · x (2)(ti+1)

]T
(18c)

Substituting Eq. (16) into Eq. (15) yields:

x (l) (t) = B(l) (τi )P
−1

xi , l = 0, 1, 2. (19)

Inserting Eq. (20) into Eq. (14), the equation of motion evaluated at time ti can be expressed as(
(�t)2 B(2) (τi ) + 2ξω · (�t)2 B(1) (τi ) + ω2 · (�t)2 B(0)(τi )

)
P

−1
xi = (�t)2 · f (ti + τi�t) ;

t ∈ [
ti , ti+1

]
τi ∈ [0, 1] (20)

Further, we let

E (τi ) =
(
(�t)2B(2) (τi ) + 2ξω · (�t)2 B(1) (τi ) + ω2 · (�t)2 B(0)(τi )

)
P

−1

= [
E1(τi ) E2(τi ) · · · E6(τi )

]
(21)

Substituting Eq. (21) into Eq. (20) and using Eq. (18), render the following residual equation:

R (τi ) = [E1(τi ) E2(τi ) E3(τi )] x̃i
+ [E4(τi ) E5(τi ) E6(τi )] x̃i+1 − (�t)2 f (ti + τi�t); t ∈ [

ti , ti+1
]
τi ∈ [0, 1] (22)

In this study, the proposed method is built upon the collocation method. Prescribing that Eq. (22) satisfies
R (τi ) = 0 at τi = 1(i.e., t = ti+1), τi = r1 (i.e., t = ti + r1�t), and τi = r2 (i.e., t = ti + r2�t), then we
have

[E1(1) E2(1) E3(1)] x̃i + [E4(1) E5(1) E6(1)] x̃i+1 = (�t)2 f (ti + �t) (23)

[E1(r1) E2(r1) E3(r1)] x̃i + [E4(r1) E5(r1) E6(r1)] x̃i+1 = (�t)2 f (ti + r1�t) (24)

[E1(r2) E2(r2) E3(r2)] x̃i + [E4(r2) E5(r2) E6(r2)] x̃i+1 = (�t)2 f (ti + r2�t) (25)

Equations (23)–(25) can be written in a matrix form as
⎡
⎣
E1(1) E2(1) E3(1)

E1(r1) E2(r1) E3(r1)

E1(r2) E2(r2) E3(r2)

⎤
⎦ x̃i +

⎡
⎣
E4(1) E5(1) E6(1)

E4(r1) E5(r1) E6(r1)

E4(r2) E5(r2) E6(r2)

⎤
⎦ x̃i+1 =

⎡
⎢⎣

(�t)2 f (ti + �t)

(�t)2 f (ti + r1�t)

(�t)2 f (ti + r2�t)

⎤
⎥⎦ (26)
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where r1 and r2 are parameters that govern the stability and accuracy of the proposed method. To meet the
requirements of matrix inversion, r1 and r2 should satisfy conditions, 0 < r1, r2 < 1 and r1 �= r2.

With matrix calculation, Eq. (26) can be further transformed into a simplified expression as

x̃i+1 = Ãxi + f i (27)

where

A = −
⎡
⎣
E4(1) E5(1) E6(1)

E4(r1) E5(r1) E6(r1)

E4(r2) E5(r2) E6(r2)

⎤
⎦

−1⎡
⎣
E1(1) E2(1) E3(1)

E1(r1) E2(r1) E3(r1)

E1(r2) E2(r2) E3(r2)

⎤
⎦ (28)

f i =
⎡
⎣
E4(1) E5(1) E6(1)

E4(r1) E5(r1) E6(r1)

E4(r2) E5(r2) E6(r2)

⎤
⎦

−1⎡
⎢⎣

(�t)2 · f (ti + �t)

(�t)2 · f (ti + r1�t)

(�t)2 · f (ti + r2�t)

⎤
⎥⎦ (29)

4 The implementation of quintic B-spline on MDOF systems

The equation of motion for a linear system with multiple degree of freedom can be written as

MX(2)(t) + DX(1)(t) + KX(t) = F(t) (30)

where M,D, and K are the mass, damping, and stiffness matrices, respectively. F is the vector of externally
applied loads. The initial conditions at t = 0 are X (t0) = X0,X(1) (t0) = Ẋ0. X(t), X(1) (t), and X(2) (t) are
the unknown displacement, velocity, and acceleration function vector. Then we have

X(l)(t) =
[
x (l)
1 (t) x (l)

2 (t) · · · x (l)
k′ (t) · · · x (l)

N (t)
]T

, l = 0, 1, 2 (31)

As discussed in Sect. 3 for the SDOFsystem,Eq. (15) continues to be employed to represent the approximate
solution of Eq. (30). Hence, we have

x (l)
k′ (t) = B(l) (τi )Ck′,i (32)

X(l) (t) = B̃
(l)

(τi )Ci (33)

where

Ci =
[
CT
1,i CT

2,i CT
k′,i ... CT

N ,i

]T
(34)

B̃(l)
(τi ) =

⎛
⎜⎝
B(l)(τi )

. . .

B(l)(τi )

⎞
⎟⎠

N×N

(35)

In which Ck′,i (k′ = 1, 2, . . . , N ) is the unknown coefficients vector of size 6 × 1, and B̃(l)
(τi ) are block

diagonal matrices with element B(l) (τi )
Like for the SDOF system in Sect. 3, by setting t = ti (i.e., τi = 0) and t = ti+1 (i.e., τi = 1) in Eq. (33),

we obtain

Xi = P̃Ci or Ci = P̃
−1

Xi (36)

where

Xi =
[
X̃
T
i X̃

T
i+1

]T
(37a)

X̃i =
[
X(ti ) �tX(1)(ti ) (�t)2X(2)(ti )

]T
(37b)

X̃i+1 =
[
X(ti+1) �tX(1)(ti+1) (�t)2 X(2)(ti+1)

]T
(37c)
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P̃ =
(
G1

G2

)
; G1 =

⎡
⎢⎣
B̃ (0)

(�t) B̃
(1)

(0)

(�t)2 B̃
(2)

(0)

⎤
⎥⎦
3N×6N

; G2 =
⎡
⎢⎣
B̃ (1)

(�t) B̃
(1)

(1)

(�t)2 B̃
(2)

(1)

⎤
⎥⎦
3N×6N

(38)

Actually, P̃ is a sparse and block matrix. By use of P in Eq. (17), the calculation of P̃
−1

can be simplified
as

P
−1 =

⎡
⎢⎢⎢⎢⎣

q11 q12 · · · q16
q21 q22 · · · q26
...

...
. . .

...

q61 q62 · · · q66

⎤
⎥⎥⎥⎥⎦, P̃

−1 =

⎡
⎢⎢⎢⎣
q11[I] q12[I] · · · q16[I]
q21[I] q22[I] · · · q26[I]

...
...

. . .
...

q61[I] q62[I] · · · q66[I]

⎤
⎥⎥⎥⎦ (39)

where [I] is the unit matrix of size N × N .
Inserting Eq. (36) into Eq. (33) renders:

X(l) (t) = B̃(l)
(τi ) P̃

−1
Xi (40)

Substituting Eq. (40) into Eq. (30) gives the following residual equation:

R (τi ) =
(
MB̃(2)

(τi ) + DB̃(1)
(τi ) + KB̃

(
τi )

)
P̃

−1
Xi − (�t)2 · F (t) (41)

By setting

(
MB̃(2)

(τi ) + DB̃(1)
(τi ) + KB̃(τi )

)
P̃

−1 = [
Ẽ1 (τi ) Ẽ2 (τi ) · · · Ẽ6(τi )

]
(42)

Equation (41) can be written as

R (τi ) = [
Ẽ1(τi ) Ẽ2(τi ) Ẽ3(τi )

]
X̃i + [

Ẽ4(τi ) Ẽ5(τi ) Ẽ6(τi )
]
X̃i+1 − (�t)2 · F (t) (43)

As illustrated in Sect. 3, after conducting the collocation method with Eq. (41), we derive the recurrence
formula for calculation as

X̃i+1 = A−1
1 A2X̃i + A−1

1 f̃ i = AX̃i + F̃i (44)

where

A1 =
⎡
⎢⎣
Ẽ4(1) Ẽ5(1) Ẽ6(1)

Ẽ4(r1) Ẽ5(r1) Ẽ6(r1)

Ẽ4(r2) Ẽ5(r2) Ẽ6(r2)

⎤
⎥⎦ , A2 =

⎡
⎢⎣
Ẽ1(1) Ẽ2(1) Ẽ3(1)

Ẽ1(r1) Ẽ2(r1) Ẽ3(r1)

Ẽ1(r2) Ẽ2(r2) Ẽ3(r2)

⎤
⎥⎦ (45)

f̃ i =
⎡
⎢⎣

(�t)2 · F (ti + �t)

(�t)2 · F (ti + r1�t)

(�t)2 · F (ti + r2�t)

⎤
⎥⎦ (46)

For small element number N , A−1
1 can be efficiently solved with direct matrix inversion by use of some

general mathematical softwares. However, the direct inversion of A1 is not desirable for large element number
N . Thus, a new technique is proposed here to avoid the direct inversion of matrix A1. First, we introduce the
following well-known theorem and corollary [8,22].
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Theorem 1 Let a non-singular square matrix R̃ can be partitioned into 2 × 2 blocks as

R̃ =
[
G1 G2

G3 G4

]
(47)

Assume G4 is non-singular; then, the matrix R̃ is invertible if and only if the Schur complement G1 −
G2G

−1
4 G3 is invertible; meanwhile, we have

R̃
−1 =

[
G−1
5 −G−1

5 G2G
−1
4

−G−1
4 G3G

−1
5 G−1

4 + G−1
4 G3G

−1
5 G2G

−1
4

]
(48)

G5 = G1 − G2G
−1
4 G3 (49)

Corollary 1 Assume G4 is non-singular; then G5 is invertible if the matrix R̃ is invertible.
With above theorem and corollary, the invertible matrix A1 can be expressed as

A1 =
[
S1 S2
S3 S4

]
; S4 =

[
(Ẽ5(r1) (Ẽ6(r1)

Ẽ5(r2) Ẽ6(r2)

]
(50)

Equation (50) implies

S1 = Ẽ1 (1) ; S2 = [
Ẽ2 (1) Ẽ6 (1)

] ; S3 =
[
Ẽ4(r1)

Ẽ4(r2)

]
(51)

Then, we have

A−1
1 =

[
S−1
5 −S−1

5 S2S
−1
4

−S−1
4 S3S

−1
5 S−1

4 + S−1
4 S3S

−1
5 S2S

−1
4

]
(52)

S5 = S1 − S2S
−1
4 S3 (53)

where S−1
4 can be directly solved by use of Eq. (48).

FromEq. (42), we can see that Ẽk (τi ) (k = 1, 2, . . . , 6) are all symmetric matrices of size N×N . Thus, the
solving of A−1

1 can be degraded into the inversion of several N ×N matrices, which, to some extent, illustrates
the proposed matrix inverse scheme is more efficient than conventional Gauss algorithm where more time is
needed for asymmetric matrices. Meanwhile, after the time increment �t is selected, parallel computation can
be adopted for symmetric matrices inversion.

To write a computer code, the complete calculation procedure for the MDOF system is outlined in Table 2.

5 Stability and accuracy analyses

5.1 Stability analysis

In general, any global equation of motion can be degraded into a set of uncoupled SDOF systems by use of the
modal decomposition. Meanwhile, the integration of the uncoupled equations is equivalent to the integration
of the original system. Therefore, to study the stability properties of the proposed method, it suffices to only
consider the SDOF system [8].

As elucidated in Sect. 3, the recurrence formula of the proposed method for any SDOF system can be
written in an explicit form as

⎧⎪⎨
⎪⎩

x(ti+1)

�t · x (1)(ti+1)

(�t)2 · x (2)(ti+1)

⎫⎪⎬
⎪⎭ = A

⎧⎪⎨
⎪⎩

x(ti )

�t · x (1)(ti )

(�t)2 · x (2)(ti )

⎫⎪⎬
⎪⎭ + f i (54)
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Table 2 The calculation procedure for the response of MDOF systems using the proposed method

A Initial calculation

(1) Form stiffness matrix K, mass matrixM, and damping matrix D of the MDOF system. Then, calculate P
−1

, P̃
−1

using
Eqs. (17) and (39).

(2) Solve the initial value Ẍ0 (i.e., X(2)(t0)) by use of X0 (i.e., X(t0)), Ẍ0 (i.e., X(1)(t0)), and Eq. (30).
(3) Select the time interval [a, b], desirable parameters, r1 and r2, and the time increment�t . Then, determine X̃0 using

Eq. (37a).
(4) Deduce and compute constant matrices A employing Eq. (44) and the corresponding matrix calculation technique.
B For each time step(i=1,2,…,n):
(1) Specify the vector of applied forces F̃i to the system in each time subinterval Ii = [

ti , ti+1
]
using Eq. (46).

(2) Calculate X̃i+1 using Eq. (44) , then determine X(ti+1),X(1)(ti+1) and X(2)(ti+1) using Eq. (37b).

The selection of parameters, r1, and r2, has been investigated in Sect. 5

where A is the amplification matrix which transfers the state at the time instant ti to the state at the time instant
ti+1. Because A contains too many terms, the complete expression of A is not presented here. Actually, we can
easily derive the expression of A by virtue of some general mathematical softwares.

We conduct the stability analysis by solving the eigenproblem of the amplification matrix A, and the
eigenvalues of A are calculated by using |A − λI| = 0. Here we denote λ j ( j = 1, 2, 3) are the eigen-
values of A. To acquire a stable numerical solution, namely a convergent algorithm, we should have
ρ (A) = max(||λ1||, ||λ2||, ||λ3||) ≤ 1, where ρ(A) is the spectral radius.

For a step-by-step explicit time integration, it suffices to investigate ρ(A) only at ξ = 0. At this moment,
ρ (A) is a function in terms of parameters, r1 and r2, and ω�t . The natural frequency ω satisfies ω = 2π/T ,
where T is the period of system. To ascertain the stability of the proposed method, the effects of parameters
r1 and r2 on the spectral radius ρ (A) need to be investigated.

Here the stability analysis is conducted through numerical experimentation, and some representative para-
meters combinations are deliberately discussed.

The variation in spectral radius ρ (A) versus �t/T is illustrated in Fig. 3; especially, various combinations
of parameters r1 and r2 for conditional and unconditional stability are illustrated in Figs. 3a, b, respectively.

In Fig. 3a, for 0 < �t ≤ 0.1T , the spectral radius curves remain 1 for different parameter combinations.
Figure 3 demonstrates that the increase in r1 and r2 can greatly change stability of the proposed method by
augmenting the stable regions for conditionally stable cases in Fig. 3a and decreasing the value of spectral
radius ρ (A) in the limit �t/T → ∞ for unconditionally stable cases in Fig. 3b. Thus, the unconditionally
stable cases with larger parameters are certainly more dissipative in the high-frequency modes. Notably, the
minimum points of these curves move downward and rightward as two algorithmic parameters increase, and
the abrupt turning points in the figure indicate that the eigenvalues of amplification matrix A alter between
real values and complex conjugate values. However, these small turnings have no substantial influence on
algorithmic stability and high-frequency dissipation characteristics.

As shown in Fig. 3, a valid parameter condition for unconditional stability can be suggested as 0.8 ≤ r1 < 1,
0.9 ≤ r2 < 1, and r1 �= r2. For simplicity, only four parameters combinations are considered. They are given
as

Quintic B-spline I : r1 = 0.6, r2 =0.8; �t ≤ 2.22T
Quintic B-spline II: r1 = 0.7, r2 =0.8; �t ≤ 2.91T
Quintic B-spline III: r1 = 0.8, r2 =0.9 (unconditionally stable)
Quintic B-spline IV: r1 = 0.94, r2 =0.96 (unconditionally stable)

For comparison, the spectral radii of various methods versus �t/T are plotted in Fig. 4. Figure 4a shows
that the quintic B-splines I and II have far wider stable regions than the Noh–Bathe method [14]. Figure 4b
illustrates that the spectral radii from the quintic B-splines III and IV remain 1 for a larger frequency bandwidth
than other methods; thus, theoretically, the proposed method has less dissipation in the low-frequency modes.
For middle-frequency band, the spectral radii from the proposed method decrease more rapidly than other
presented methods such as the Bathe method and the generalized-α method [23]. As for high-frequency
band, the spectral radii curve rebound from their lowest points and then gradually approaches a constant as
�t/T → ∞. As revealed in Fig. 3, this constant decreases as the increase in algorithmic parameters. This
property makes the proposed method very flexible in filtering high-frequency modes.
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Fig. 3 The spectral radius ρ (A) versus �t/T for different parameters combinations. a Conditionally stable. b Unconditionally
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Fig. 4 The spectral radius comparison between the proposed method and other given methods. a Conditionally stable b Uncon-
ditionally stable

5.2 Accuracy analysis

To ascertain the calculation accuracy of the proposed method, numerical damping ratio(i.e., amplitude decay)
and period elongation are employed for error estimation [8].

Numerical experiment demonstrates that the proposedmethodhas noperiod elongation. Figure 5 showshow
the numerical damping ratio varies with the ratio �t/T for different parameter combinations. Conditionally
stable cases in Fig. 5a give smaller numerical damping ratios than the unconditionally stable cases in Fig. 5b.
The damping ratio curves in Fig. 5 are extremely small for 0 < �t/T < 0.1. Figure 5 also shows that the
proposed method allows the degree of dissipation to be continuously controlled by the algorithmic parameters.
Figure 5 shows that the smaller the parameters r1 and r2, the smaller the numerical damping ratio. All damping
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Fig. 5 Numerical damping ratio vs �t/T for the proposed method a Unconditionally stable. b Conditionally stable

ratios in Fig. 5 are almost two order of magnitude less than the Bathe and Noh–Bathe methods [13,14]; thus,
for clarity, damping ratios of these two methods are not delineated here.

6 Numerical simulations

To demonstrate the validity of the proposed method for dynamic analysis, three numerical simulations are
given in this section, and four parameter cases previously given in Sect. 5.1 are used for computation. For
comparison, the generalized-α (α f = 1

3 , αm = 0, β = 1
2 , γ = 5

6 ) method [23], the Bathe method [13], and
the Noh–Bathe method [14] are employed for numerical simulations. For the Noh–Bathe method, we adopt
the suggested parameter value p = 0.54 for computation.

6.1 A SDOF system

A SDOF system used for numerical simulation is described by the following equation:

u(2) (t) + 4u(1) (t) + 5u (t) = sin2t, u (0) = 57/65, u(1) (0) = 2/65 (55)

For which the exact solution is u (t) = e−2t (cost + 2sint) − (8cos2t − sin2t)/65.
To illustrate the calculation accuracy of the proposed method, the relative errors of different methods are

compared in Fig. 6 where we select time increment�t = 0.1s for simulation and the relative errors are defined
by

ηi =
∣∣∣u(i)

num − u(i)
exact

∣∣∣∣∣∣u(i)
exact

∣∣∣ 100% (i = 0, 1, 2.) (56)

in which u(i)
num and u(i)

exact are the numerical result and the exact solution at some given time, respectively.
As elucidated in Sect. 5.2, the accuracy of the proposed method improves with the decrease in parameters

r1 and r2; thus, it suffices to only employ the quintic B-splines I and IV for error analysis. Figure 6 shows that
the proposed method yields far less relative errors than the Bathe and Noh–Bathe methods.
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Fig. 6 The relative error comparison between the proposed method and other given methods a Displacement b Velocity
c Acceleration

In Table 3,�t = 0.05s and various time step ng are selected for time consumption analysis of example 6.1.
Notably, the proposed method spend less computation time than the Noh–Bathe method and more time than
the Bathe method. However, the proposed method is more efficient than the Noh–Bathe and Bathe methods in
terms of its high calculation accuracy as shown in Fig. 6.

6.2 A 2D Howe truss under impact loads

To demonstrate the feasibility of the proposedmethod for dynamic response of theMDOF system,AHowe truss
under four concentrated impact loads is shown in Fig. 7 [24]. Material properties for all elements are denoted
in the figure. For comparison, the generalized-α method and the Bathe method are used for computation. The
least period of this system (Tmin) is equal to 0.0082s. Thus, we select�t = 1×10−2s(�t ≤ 2.22Tmin) for the
conditionally stable quintic B-spline I and �t = 2× 10−2s for the unconditionally stable quintic B-spline IV
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Table 3 Time consumption(s) analysis for example 6.1

Time step ng Generalized-α Bathe Noh–Bathe Quintic B-spline I Quintic B-splineVI

500
5000
20,000

65 KN

For all elements:
A=3 10-3m2

E=4GPa
=8 kg/m3

 20 m    

5 
m

65 KN

55 KN 55 KN

Fig. 7 A Howe truss under impact loads
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Fig. 8 Vertical displacement of node 5

and the Bathe method. In Figs. 8 and 9, we select rm�t = 4 × 10−4s for the generalized-α method to obtain
the referred exact curves.

The time history of vertical displacement in a time interval between 0 and 2 s for node 5 is illustrated in
Fig. 8, and the horizontal displacement of node 13 is plotted in Fig. 9. Obviously, the displacement curves from
the quintic B-splines I and IVmatch very well with the curves from the generalized-α method, while the curves
from the Bathe method are clearly less accurate than the proposed method. As a sample, the results of time
consumption analysis for example 6.2 have been tabulated in Table 4 where all methods use �t = 4× 10−4s
for computation. Figures 8, 9, and Table 4 indicate that the proposed method has very desirable computation
efficiency.

6.3 Free vibration of a simply supported uniform continuous beam

To verify the validity of the proposed method for finite element method (FEM) calculation, a simply supported
uniform continuous beam under a distributed load is shown in Fig. 10. The dimensions and parameters for
simulation are the length L = 8 m, the radius of circular section R = 2 × 10−2 m, the cross-sectional area
A = πR2, the sectional inertia moment I = πR4/2, Young’s modulus E=100 GPa, Poisson’s ratio μ = 0.3,
the material density of the beam ρ = 4 × 104/

(
kg/m3

)
, the damping ratio ξ = 0, and the distributed load
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Table 4 Time consumption(s) analysis for example 6.2

Time step ng Generalized-α Bathe Noh–Bathe Cubic B-spline I Cubic B-spline V

5000
10,000
20,000

q(t)

x

w

EI, ,A
L

Fig. 10 The scheme of bending vibration beam with two simple supports

q (t) = F0δ(t − 0−). Here we select F0 = 1KN and ω0 = 4 rad/s. The analytical solution of the beam’s
bending deflection can be represented by

w (x, t) = 4F0L4

E Iπ5

∞∑
r=1,3,5,...

1

r5
sin

rπx

L
· cosωr t (57)

where the natural frequency ωr is calculated by ωr = r2π2

L2

√
E I
ρA (r = 1, 2, . . .).

The equilibrium equation of this problem is formulated by use of the cubic Hermite finite element with
its element number Ns = 10. The boundary conditions are satisfied by directly setting w = 0 at x = 0 and
x = L . The time history of displacement and velocity between 0 and 12 s for the middle point is illustrated in
Fig. 11 where we select �t = 2 × 10−1 s for different methods. Figure 11 shows that the proposed method
gives far more accurate displacements and velocities than the generalized-α method and the Bathe method.

To investigate the numerical dissipation characteristics of the proposed method, we select a relatively
large element number Ns = 20 to make first several natural frequencies more accurate and only consider
the acceleration response for analysis. However, in FEM, a larger element number definitely engenders more
unneeded or spurious high-frequency responses, and these frequencies need to be smoothed out effectively.

As is well known, for most numerical methods, an effective high-frequency dissipation entails a relatively
large �t which in return decreases the computational accuracy greatly. Thus, to manifest the superior capa-
bility of the proposed method in numerical dissipation and computational accuracy, the quintic B-spline IV is
especially compared with the latest high-accuracy Bathe method which has far better high-frequency dissipa-
tion characteristics than the Newmark’s method [9]. In Fig. 4b, we assume LU be the critical length of �t/T
for ρ (A) = 1; then, we can easily obtain LU = 0.08 and LU = 0.0305 for the quintic B-spline IV and the
Bathe method, respectively. Meanwhile, the corresponding critical time increment �ti for first four natural
frequencies ωi has been listed in Table 5 where �ti is calculated by �ti = 2πLU/ωi .
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Fig. 11 Numerical displacements and velocities of different methods at the beam’s middle point a Displacement b Velocity

Table 5 The critical time increments of ρ (A) = 1 for first four natural frequencies

Method �t1 �t2 �t3 �t4

Bathe 0.0556 0.0139 0.0062 0.0035
Quintic B-spline IV 0.1458 0.0364 0.0162 0.0058

First, we assume that only the first term of Eq. (86) is the substantial part of exact response(briefly denoted
by Exact I ). Then, to retain the first natural frequency and filter out other natural frequencies, the adopted �t
should satisfy �t2 < �t ≤ �t1. Therefore, in Fig. 12, we select �t = 0.12 s and �t = 0.05 s for the quintic
B-spline IV and the Bathe method, respectively. In Fig. 12, there is an ‘overshoot’ for the quintic B-spline IV at
the first time step; however, the proposed method shows higher calculation and more efficient high-frequency
dissipation than the Bathe method.

Further,we assume the first two terms of Eq.(86) are the substantial part of exact response(briefly denoted by
Exact II). Then, to retain the third natural frequency andfilter out other larger natural frequencies, the adopted�t
should satisfy�t4 < �t ≤ �t3. Therefore, in Fig. 13, we select�t = 0.015 s and�t = 0.005 s for the quintic
B-spline IV and the Bathe method, respectively. As shown in Fig. 13a, at the first stage of dynamic response,
both the proposed method and the Bathe method give undesirable accelerations. But Fig. 13b illustrates that
the proposed method can filter out unneeded high-frequency modes more effectively and rapidly than the
Bathe method. Conclusively, the proposed methods possess higher calculation accuracy and more desirable
high-frequency dissipation than the Bathe method.

7 Conclusions

In this study, a new explicit time integration was proposed for structural dynamics using quintic B-spline
functions. In this way, the recurrence formulas for the linear dynamic analysis of the SDOF and MDOF
systems were formulated through employing quintic B-spline interpolation to solve differential equations of
motion.
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Fig. 13 Numerical acceleration comparison for Exact II a Acceleration between 0 and 4s b Acceleration between 14s and 18s

With adjustable algorithmic parameters, the proposedmethod can obtain both conditional and unconditional
stability; meanwhile, algorithmic parameters conditions for stability were also given.

The clear advantages of the proposedmethod over othermethods are that the proposedmethod giveminimal
numerical damping ratio and have no period elongation.

Numerical examples illustrate that the proposed method has far higher computation efficiency and more
desirable high-frequency dissipation than the Bathe and Noh–Bathe methods.
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