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Abstract Determination of forces applied on structures and machines is very important in engineering. A
dynamic force estimation method based on regularized total least squares method in time domain is proposed
in this paper. This method can deal with errors in both system models and measured vibration responses, the
latter of which are contaminated by white noise. A numerical test is made to illustrate the effectiveness of this
force estimation method, and the numerical results obtained by the proposed method are shown to be more
accurate than those from the conventional regularized least squares method.

Keywords Force estimation · Regularization technique · Total least squares · Ill-posed problem ·
Inverse problem

1 Introduction

Accurate determination of dynamic input forces experienced during operation of machines and service life
of structures is vitally important in structural reliability analysis and design, structural health monitoring, and
fatigue life prediction and so on. In general, the characteristics of a dynamic force are directly captured by a force
transducer positioned in the load transfer path. In many circumstances, however, it is difficult or impossible to
implement such a technique. For instance, the desirable locations for sensorsmay be inaccessible, or the sensors
may intrude on the load path or alter structural properties. Thus, an analystmay resort to indirectmethods,which
have been widely used in force reconstruction based on an inverse analysis. This inverse analysis deduces the
dynamic input force from measured vibration responses. It can overcome the difficulties encountered in direct
measurement techniques, although it may face other difficulties associated with ill-posedness in solutions.

There are a number of published works on using measured vibration responses to estimate dynamic input
forces. Reviews of different dynamic force estimation methods can be found in [1–6]. The techniques are
generally either in frequency domain or in time domain. Frequency domain techniques have been developed
since 1970s. Barlett and Flannelly [7] reconstructed the dynamic force acting on helicopter spindles using
measured acceleration responses in frequency domain. Hillary and Ewins [8] studied the problem of sinusoidal
load estimation of a cantilever beam and the identification of impact force on aircraft engine turbine blades with
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a least squares estimation method frommeasured strain data. Starkey andMerrill [9] showed that the frequency
response functions in frequency domain technique were severely ill-conditioned near resonant frequencies of
structures, and regularization techniques were used in solutions. The frequency domain approach also has
some limitations. It is difficult to obtain sufficient sampling data of vibration responses in the reconstruction of
impact forces and prohibits real-time or nearly real-time force estimation. The estimation results of frequency
domain method are generally magnitude and phase of dynamic input forces and cannot visually display the
time history of estimated forces. Thus, time domain techniques have been developed in recent years.

Many time domain force reconstruction algorithms have been developed by researchers. Martin and Doyle
[10,11],Wu et al. [12,13], Araujo et al. [14], Antunes et al. [15], Chang et al. [16–18],Meo et al. [19], Gunawan
et al. [20] and Hu et al. [21,22] studied the impact force identification problem, including reconstruction of
the time history of impact, determining locations of impact and real-time impact identification. An inverse
structural filter (ISF) method [23,24] was derived by inverting the discrete time equation of motion, resulting
in a dynamic system that took structure’s responses as input and returned the estimation of the forces acting on
the structure as output. The limitation of this method is that the ISF derived from the forward system models is
unstable, yielding highly erroneous estimates of forces acting on a structure. In order to enhance the stability
of ISF, Allen and Carne [25] proposed a delayed multi-step ISF (DMISF) to yield a stable inverse system to
estimate dynamic forces acting on structures in real time. Ma et al. [26] put forward a force estimation method
composed of extended ISF and a recursive least squares estimator to identify the input force of nonlinear
structural systems. The sum of weighted acceleration technique (SWAT) [27] is another useful time domain
force reconstruction method applied to a variety of real-world impact and collision problems. The limitation of
this technique lies in the fact that it can only reconstruct the sum of the external forces acting on a body’s center
of mass but not the individual applied forces. Genaro and Rade [28] put forth a method based on a variation
of SWAT. Their method used an integration of the acceleration to generate velocities and displacements and
utilized the inversion ofmodalmatrices to solve the equations ofmotion to yield the input forces. The limitation
of their method is that the number of sensors must be equal to or greater than the number of participating
modes.

In recent years, force identification methods based on singular value decomposition and regularization
techniques have been studied bymany researchers [29–33]. Jacquelin et al. [29] reconstructed the input force by
analyzing a deconvolution problem and used regularization techniques based on singular value decomposition
to enhance the stability of estimation results. Zhu and Law [30] treated the moving force estimation problem
and discussed the influence, on moving force identification, of practical aspects such as measurement noise,
sampling frequency, the number of measured response modes, the number of measured points, road surface
roughness and nonuniform velocity or braking of vehicle. They also used a regularization technique to stabilize
the identification procedure. Mao et al. [31] built an efficient and precise force identification model that could
eliminate computational errors within the scope of general computer precision, but the white noise in measured
responses still made the force estimation problem ill-posed. In order to overcome the ill-posedness of force
estimation problem, a singular value decomposition technique and a regularization technique were utilized
to improve the stability of the identification results. Huang [32] used the conjugate gradient method also
known as iterative regularization method to estimate the external force in a damped system with displacement-
dependent spring constant and damping coefficients. Gunawan [33] proposed a Levenberg–Marquardt iterative
regularization technique to reconstruct pulse-type impact force. Two numerical examples were used to evaluate
his method, and the results showed that it is useful and requires less computer memory, unlike the SVD-based
regularization techniques.

Although many force estimation algorithms have been developed so far, they have not been widely
used in engineering applications. The force estimation approaches developed thus far have various lim-
itations when they are applied in practical engineering. The primary one is the fact that most of them
mainly focus on the influence on the accuracy of force identification of noise in measured vibration
responses, but neglect the discrepancies between the numerical models and the real structures. For rela-
tively simple structural systems, the system identification methods [34,35] and model updating methods
developed by researchers [36–41] could be utilized to construct sufficiently accurate numerical models.
In real engineering, however, there are always considerable modeling errors between the numerical mod-
els and physical structures, especially complex operating systems such as rockets during launch and flight,
due to the coupling effects among different components within systems, and strongly nonlinear behavior
of structures in certain operating states. Thus, the force estimation results are also simultaneously affected
by modeling errors, in addition to noise in measured vibration responses, the limitation of the location
and number of measurement points. This is why most force estimation algorithms cannot obtain accurate
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enough identification results in practical engineering. To overcome the difficulties reviewed above, a force
reconstruction method should account for the presence of both noise in measured responses and model-
ing errors. Liu and Shepard [42] and Zhang et al. [43] proposed a force identification method, respec-
tively, which dealt with both the noise in measured responses and modeling errors in frequency response
functions.

This paper presents a time domain force estimationmethod that dealswith bothmodeling errors in structural
systems and noise in measured vibration responses, where the modeling errors are introduced in structural
system matrix in state space. A theoretical development is first presented, and numerical simulations are then
carried out to demonstrate the validity of the proposed method. Like other force estimation problems, this force
estimation problem is still ill-posed due to the noise and modeling errors. A regularization technique based on
total least squares method is incorporated to stabilize the force estimation results.

2 Dynamic force estimation models for errors-in-variables modeling

In state space, the governing equation of motion of a general time-invariant linear system is as follows

ẋ = Ax + Bf (1)

in which x represents the state vector, A is the system matrix, B is the input matrix, f is the force vector. In the
case of a modal representation of a vibrating structure given by

q̈ + 2ζωq̇ + ω2q = χT
a p (2)

A,B and f are

A =
[
0 I
−ω2 −2ζω

]
B =

[
0
χT
a

]
f = p (3)

In the above, ω is diagonal matrix of the modal frequencies, ζ is diagonal matrix of the modal damping
coefficients (proportional viscous damping is assumed in this paper), and χa is the modal matrix, respectively.
p is the force vector, and q is the modal coordinate vector. x now is the modal responses in state space
[q q̇ ]T. In general, the modal parameters ω, ζ and χa are obtained from modal tests or numerical models.
There are always discrepancies between the numerical models and real engineering structures, although modal
analysis techniques and model updating methods have been used to improve theoretical models for many
years. The deviations of modal frequencies, modal damping and modal shapes are defined as �ω, �ζ and
�χa, respectively.Consideringmodeling errors, themodal parameters areω → ω̃ = ω+�ω, ζ → ζ̃ = ζ+�ζ

and χa → χ̃a = χa + �χa, respectively. �(•) represents the uncertainty of a quantity. Matrices A and B in
Eq. (1) are also changed into Ã → A+ �A, B̃ → B+ �B, respectively. �A and �B are deviations caused
by uncertainty of modal parameters �ω, �ζ, and �χa. In state space, Eq. (1) becomes

˙̃x = Ãx̃ + B̃f̃ (4)

Using Pade approximations [44], Eq. (4) can be solved in discrete time domain as

x̃(k + 1) = Tx̃(k) + (T − I)Ã−1B̃f(k), (k = 0, 1, 2 · · · Nt ) (5)

ỹ(k + 1) = CTx̃(k) + C(T − I)Ã−1B̃f(k) (6)

In the above, T = exp(Ã�t) is an exponential matrix computed by precise time-integration method [31]. I is
an identity matrix,�t is the time step in discrete time domain, and Nt is the number of sampling points in time
domain. ỹ are the measured responses, and Eq. (6) is the corresponding observation system. C is the output
matrix corresponding to components of the measured responses. In fact, the outputs and inputs are linked by
a convolution integral. Eq. (6) can be further written in matrix form after time domain discretization of the
convolution integral [31],

Ỹ = H̃F (7)
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Ỹ =

⎧⎪⎪⎨
⎪⎪⎩

ỹ(1)
...
ỹ(Nt − 1)
ỹ(Nt )

⎫⎪⎪⎬
⎪⎪⎭

−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CT
...

CTNt−1

CTNt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
x̃(0),

H̃ =

⎡
⎢⎢⎢⎢⎣

CT0(T − I)Ã−1B̃ · · · 0 0

CT1(T − I)Ã−1B̃ CT0(T − I)Ã−1B̃
...

...
...

... CT0(T − I)Ã−1B̃
...

CTNt−1(T − I)Ã−1B̃ CTNt−2(T − I)Ã−1B̃ · · · CT0(T − I)Ã−1B̃

⎤
⎥⎥⎥⎥⎦

In the above, Ỹ are the measured quantities related to initial condition and generally contain white noise in
measurement, F = [ f̃(0), f̃(1), · · · , f̃(Nt − 1) ]T is the input force vector, and Nt is the number of sampling

points in time domain. H̃ is a lower triangular Toeplitz matrix with parameters C, T, Ã and B̃. Eq. (7) is
the dynamic force estimation model considering the noise in measured vibration responses and modeling
parameters, where matrix H̃ contains system matrix Ã and input matrix B̃ including deviations caused by
modal errors �ω, �ζ and �χa.

3 Regularized solutions based on total least squares method

The force identification model as presented in Eq. (7) is ill-posed due to the lack of continuous dependence of
the solution on the measured data. Thus, not only the measured data Ỹ are contaminated by white noise, but
also matrix H̃ contains deviations which can be defined as �H̃. These deviations are due to system errors �A
and �B caused by uncertainties �ω, �ζ and �χa in modal parameters ω, ζ and χa. For the convenience of
analysis, the deviation caused by the errors in measured responses is denoted by�Ỹ. An appropriate treatment
of this force estimation problem is the total least squares formulation [45,46]. In contrast, if only measured
data Ỹ contain noise, then the corresponding force estimation model can be treated by a least squares method
[29–31]. The focus in the present paper is on the errors in both system matrix H̃ and measured response data
Ỹ. A regularization technique based on the total least squares method will be applied to treat the present force
estimation problem. For the original total least squares approaches, the readers can consult [45–50]. For the
sake of completeness, the total least squares method applied to force estimation is summarized below.

Like the original least squares method [29–31], a Tikhonov-like regularized total least squares (R-TLS)
method is applied to treat the force estimation problem Eq. (7). The formulation of the total least squares
problem is thus,

min
∥∥∥(

H̃, Ỹ
)

− (H,Y)

∥∥∥
F
subject to Ỹ = H̃F (8)

where ‖•‖F defines the Frobenius norm, (H̃, Ỹ) is the matrix composed of contaminated system matrix and
measured responses, and (H,Y) is the matrix without errors. The dynamic force estimation problem as Eq. (8)
is equivalent to finding deviations in matrix H̃ and vector Ỹ leading to minimal Frobenius norm. The composite
matrix can be analyzed in terms of singular valued decomposition,

(
H̃, Ỹ

)
= U�VT , � = diag (σ1, . . ., σn+1) (9)

where σ1 ≥ σ2 ≥ . . . ≥ σn+1 ≥ 0 are the singular values of (H̃, Ỹ) and n is the number of columns of matrix
H̃. U and V are matrices formed by the left and right singular vectors, respectively. Note that the singular
values σ ′

i of H̃ interlace those of (H̃, Ỹ), i.e., σ1 ≥ σ ′
1 ≥ σ2 ≥ . . . ≥ σn ≥ σ ′

n ≥ σn+1 [46]. In dynamic force
estimation, H̃ has a full column rank, that is σ ′

n > 0 and σn > σn+1. Then, the minimum perturbation data
of (H̃, Ỹ) are attained for the rank one perturbation [51], so that the minimum is attained for the rank one
perturbation as given below

(
�H̃, �Ỹ

)
= −

(
H̃, Ỹ

)
vn+1vTn+1 = −σn+1un+1vTn+1 (10)
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Fig. 1 The plane truss structure

Table 1 The first ten vibration frequencies of the plane truss structure

Orders 1 2 3 4 5 6 7 8 9 10
Frequency(Hz) 15.0 25.9 28.2 41.5 43.6 48.6 48.7 53.3 54.1 63.7

for which
∥∥∥�H̃, �Ỹ

∥∥∥
F

= σn+1. A total least squares solution is then obtained from the right singular vector

vn+1 = −γ

(
F
−1

)
(11)

Since the matrix H̃ is of full column rank in force estimation and the condition σ ′
n ≥ σn+1 is satisfied in force

estimation problem, parameter γ �= 0 is assured. From Eq. (11), it follows that the regularization parameter λ
and the total least squares solution satisfy the following equation (cf. ref. [46]),

(
H̃T H̃ H̃T Ỹ
ỸT H̃ ỸT Ỹ

)(
F
−1

)
= λ

(
F
−1

)
(12)

The first row in Eq. (12) can be written as

(
H̃T H̃ − λI

)
F = H̃T Ỹ (13)

The condition σ ′
n ≥ σn+1 in force estimation problems is always satisfied. According to Ref. [50], the regu-

larization parameter can be selected as λ = σ 2
n+1, and then the total least squares solution can be computed

from Eq. (13).

4 Numerical tests

In order to validate the proposed dynamic force estimation method using the Tikhonov-like regularized total
least squares method (FE-RTLS), as described in the previous section, the proposed method will be applied to
a simulation example. Both noise in the ‘measured’ responses and modeling errors are considered, the inverse
problem is ill-posed, and therefore, these uncertainties are amplified. For validation purpose, the estimation
results obtained by FE-RTLS are compared with those from the regularized least squares method (RLS).
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Fig. 2 Identification results for NPy = 0.01 and NP = 0.001

4.1 Errors in numerical tests

In this numerical test, the errors include the white noise in ‘measured’ vibration responses, the deviation of
the numerical model from the ‘physical’ structures and the relative errors of estimated forces. In practical
engineering, the measured data often contain losses or distortions due to the limited range of measurement
data and limited number of sensors. In the numerical test, white noise is added to the calculated responses Ỹ
in Eq. (7) to simulate contaminated vibration responses in practical engineering

Ỹ = Y + NPy

⎛
⎝

√∑
Y 2
i

Nt

⎞
⎠ηy (14)

In the above,Y is the vector of the calculated vibration responses, and NPy is the white noise level in measured
responses ranging from 0.0 to 1.0. The ηy is a random noise vector in measured data with zero mean and unit
standard deviation.

In numerical computations, themathematicalmodels always have some degrees of deviation fromoperating
states of physical systems. In the present paper, the deviation in onlymass, damping and stiffness is considered,
for the sake of simplicity. Hence, the modeling errors are reflected by the modal frequencies, modal damping
and modal shapes. The deviations of modal parameters are then,

�ω = NP

⎛
⎝

√∑
ω2
i

No

⎞
⎠ ηω
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Fig. 3 Identification results for NPy = 0.01 and NP=0.003

�χa = NP

⎛
⎝

√∑
χ2
ai

No

⎞
⎠ηχa

�ζ = NP

⎛
⎝

√∑
ζ2i

No

⎞
⎠ ηζ (15)

In the above, NP is white noise level of modal parameters, ηω, ηχa and ηζ are random noise vectors of modal
frequencies, modal shapes and modal damping, with zero mean and unit standard deviation. The No is the
number of modes involved. These deviations �ω, �χa and �ζ introduce errors into system matrix Ã and B̃
and further bring deviations into matrix H̃ in Eq. (6). Finally, the relative errors of estimated forces are

ε%Errors = abs (Fest − Ftrue)

abs (Ftrue)
100% (16)

where Ftrue and Fest are the actual input forces and the estimated ones, respectively. abs(•) denotes the absolute
value.

4.2 The numerical test model

The numerical model displayed in Fig. 1 is a plane truss structure which consists of 24 planar bars. The length
of each bar is 5m, the mass per unit length is 4407kg/m, and the tensile stiffness is 1.7 × 1010 N/m. The first
ten natural frequencies of the structure are shown in Table 1, and the fundamental natural frequency is 15.0Hz.
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Fig. 4 Identification results for NPy = 0.02 and NP=0.001

Two excitation forces F1 and F2 are applied on the two top nodes for a duration of 2 s, respectively. The two
forces are

F1 = 100te−3t

F2 = 10 (1 − cos (4π t)) sin (12π t) (17)

In the above, t is a function of time. The responses at nodes marked ‘s1’ to ‘s4’ in Fig. 1, with added white
noise according to Eq. (14), are regarded as ‘measured’ data. In the subsequent force estimation process, the
modal damping ratio is 2% for all modes involved; the sampling frequency is 150Hz; and the number of
sampled data points is 300.

To demonstrate the application of the proposed method to dynamic force estimation, two test cases with
different amounts of white noise in vibration responses and system parameters are simulated. In the first case,
the vibration response noise level NPy in Eq. (14) and the modal parameter noise level NP are selected as
NPy = 0.01 and NP=0.001 and 0.003, respectively. In case two, the noise parameter noise level is taken as
NPy = 0.02 and NP=0.001 and 0.003, respectively.

4.3 Comparison of estimated results from different methods

For the sake of demonstrating the effectiveness of the proposed method, the identified results obtained
by the present method (FE-RTLS) are compared with those from the least squares method based on
Tikhonov regularization technique (RLS) where the regularization parameter is selected by GCVmethod [18].
Figs. 2 and 3 display the time histories and relative errors of the input forces estimated by FE-RTLS and RLS,
respectively, for the first case. On the whole, these identified results agree well with the actual input data. It
can be seen that the estimation results gained by FE-RTLS are better than those obtained by RLS. In Figs. 4
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Fig. 5 Identification results for NPy = 0.02 and NP=0.003

and 5, the same types of results acquired by FE-RTLS and RLS for case two are shown. In comparison, the
results from RLS exhibit larger fluctuations in some parts. In addition, it can also be seen that the results
obtained by FE-RTLS and RLS both have an increasing level of oscillation, with the increase of noise level
in vibration responses and modal parameters. It can be concluded that the FE-RTLS leads to much smaller
errors though it cannot totally eliminate influence of uncertainties in the system and white noise in measured
vibration responses. Improving the fidelity of a structural dynamics model and the measured signal to noise
ratio is still important to enhance the accuracy of force estimation.

5 Conclusions

Errors in modeling are inevitable when the dynamic force estimation techniques are applied to real engineer-
ing applications. In order to improve the force estimation results in practical engineering, a force estima-
tion method based on Tikhonov-like total least squares method is proposed. This method can deal with the
dynamic force estimation problem in which the measured vibration responses and system modeling are both
contaminated by noise. Numerical tests demonstrate that the force estimation method based on regularized
total least squares method (FE-RTLS) is valid provided that white noise is present to some degree. Although
the FE-RTLS cannot completely eliminate the effect of white noise in dynamic modeling and measured
responses, the forces identified by this method are more accurate and robust than those obtained by applying
the regularized least squares method within a certain noise level in measured vibration responses and system
parameters.
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