
Arch Appl Mech (2015) 85:893–907
DOI 10.1007/s00419-015-0998-3

ORIGINAL

Hui Ma · Xueling Wang · Heqiang Niu · Bangchun Wen

Oil-film instability simulation in an overhung rotor system
with flexible coupling misalignment

Received: 12 October 2014 / Accepted: 2 March 2015 / Published online: 11 March 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Aiming at the oil-film instability of the sliding bearings at high speeds, this paper systematically
investigates oil-film instability laws of an overhung rotor system with parallel and angular misalignments in
the run-up and run-down processes. A finite element (FE) model of the overhung rotor system considering
the gyroscopic effect is established, and the sliding bearings are simulated by a nonlinear oil-film force model
based on the assumption of short-length bearings. Moreover, the effectiveness of the FE model is also verified
by comparing our simulation results with the experimental results in the published literature. In the run-up and
run-down processes with constant angular acceleration, the effects of parallel misalignment (PM) and angular
misalignment (AM) on oil-film instability laws are simulated. The results show that under the perfectly aligned
condition, the onsets of the first and second vibration mode instability in the run-down process are less than
those in the run-up process due to the hysteresis effect. Under the misalignment conditions, the misalignment
of the coupling can delay the onset of the first vibration mode instability and decrease its vibration amplitude.
In comparison with the PM, the amplitudes of multiple frequency components are more obvious under the
givenAM conditions.Moreover, in the run-up and run-down processes with different misalignment conditions,
the variation of the dominant vibration energy was observed according to the rotating frequency fr, the first-
mode whirl/whip frequency fn1, the second-mode whirl/whip frequency fn2, or the their combinations, such
as fr–2 fn2.

Keywords Oil-film instability · Parallel misalignment · Angular misalignment · Overhung rotor system ·
Run-up and run-down

List of symbols

C Damping matrix of the global system (Rayleigh damping matrix).
c Mean radial clearance of the sliding bearing
D Journal diameter
E Young’s modulus
Fbi Oil-film force vector of the bearing
Fbxi , Fbyi Oil-film forces in x and y directions
Fg Static gravitational force vector
Fx2, Fy2 Coupling misalignment forces in x and y direction
fbx, fby Dimensionless oil-film forces in x and y directions
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fr Rotating frequency (Hz)
fn1, fn2 The first- and second-mode whirl/whip frequencies
G Gyroscopic matrix
g Acceleration of gravity
I Area moment of inertia
Idd , Ipd , Idc, Ipc Diametric and polar moments of inertia of the disk and the coupling
K Stiffness matrix of the global system
Kb Bending spring rate per degree per diskpack
L Bearing length
M General mass matrix of the global system
Mxi , Myi (i = 1, 2) Bending moments in xand y directions
me unbalance moment
Q The excitation forces/moments caused by coupling misalignment
q Displacement vector
q̃ Dimensionless displacement vector
Tq Rated torque
t Time (s)
xi,yi (i = 1, 2, . . . , 14) Displacements in x and y directions
x̃i , ỹi (i = 1, 2, . . . , 14) Dimensionless displacements in x and y directions
�Xi,�Yi (i = 1, 2) Misalignment displacements in x and y directions
Z3 Centre of articulation
α Angular acceleration of the rotor system
η Lubricant viscosity
θxi , θyi Angular displacements in rotation directions
θ1, θ2, ϕ1, ϕ2, θ3 Misalignment angles
ξ1, ξ2 The first and second modal damping ratios
ρ Density
υ Poisson’s ratio
ω Rotating speed of rotor (rev/min)
ω0 Initial angular velocity
ωn1, ωn2 The first and second natural frequencies (rev/min)

1 Introduction

Studies on the dynamic characteristics of a rotor–bearing system are frequently required in the design of
modern high-speed rotating machines, such as turbines, turbo-compressors and generators. Nowadays, some
rotating machines are designed for high speed, more flexibility to pursue larger operating range, which will
increase the risk of the fluid-induced instability.When the instability occurs, excessive vibrations at the first- or
second-mode oil whip frequency can be observed, which is at typically subsynchronous speed. The instability
may cause the unstable operation, high-level vibration of the system, rubbing between the rotor and stator,
which will lead to potential damage of the rotating machinery.

The most common unstable phenomena such as oil whirl and oil whip have already been studied widely.
In order to better simulate the nonlinearity of the sliding bearings, Muszynska [1] developed a nonlinear oil-
film force model based on a series of experimental results. Adopting the Muszynska’s model, Ding et al. [2]
investigated the Hopf bifurcation of a rotor/seal system and discussed the level of unbalance on the bifurcation
of non-synchronized whirl. On the basis of the short-length bearing assumption, Capone [3,4] proposed a
nonlinear oil-film force model, with which he shows high agreement between the simulation results and the
experimental results. Furthermore, his model shows excellent accuracy and convergence. Based on Capone’s
model, Adiletta et al. [5] analyzed the possible chaotic motions stemming from the nonlinear response of the
bearings, while Jing et al. [6,7] studied the nonlinear dynamic behavior of the bearings considering the oil whip
phenomenon. Moreover, de Castro et al. [8] investigated the instability threshold of a rotor system influenced
by the amount of unbalance, rotor arrangement form and bearing parameters. Ding et al. [9] analyzed the
non-stationary dynamic responses of the system during speed-up with a constant angular acceleration in a
multi-bearing rotor, while Cheng et al. [10] investigated the nonlinear dynamic behavior of a rotor–bearing–
seal coupled system. Ma et al. [11] proposed a rotor system with two disks and investigated the effects of
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Fig. 1 Spectrum cascade of vibration response of a steam turbine-driven compressor [18]

different eccentric phase angles between two disks on oil-film instability. Adopting Capone’s model and a
variational approximate finite bearing model, Liu et al. [12] analyzed stability characteristics of the inclined
rotor–bearing system by numerical simulation and experimental results.

Zhang and Xu [13] developed a model of nonlinear oil-film force acting on a journal with unsteady
motion and discussed nonlinear oil-film whip instability of a rigid Jeffcott rotor supported by short-length
journal bearings. Xie et al. [14] studied the complicated behavior of a flexible rotor–bearing system with two
unbalanced disks based on Zhang’s model [13]. Ding and Leung [15] analyzed non-stationary processes of
a rotor–bearing system by taking the rotating angular speed as the control parameter. Ding and Zhang [16]
investigated the dynamics of a continuous rotor–bearing–seal system based on the standard Galerkin method
and the nonlinear Galerkin method.

The literature mentioned above mostly deal with the first flexural mode instability. However, for some
rotating machines, the operational speed may be greater than several orders of the critical speeds. Under this
condition, the high-order mode instability may appear, such as the second flexural mode instability mentioned
in [1,11,17]. Muszynska [18] indicated that the second-mode whirl would occur under some special rotating
speeds and this phenomenon has been observed experimentally and reported from machinery field data (see
Fig. 1).Moreover, in the turbocharger rotor–bearing system, the instability caused by full-floating ring bearings
also have similar laws, such as instabilities of inner oil-film (Sub1: conical mode, Sub2: translatory mode) and
instability of outer oil-film (Sub3: instability of outer oil-film, conical mode) in [19–22].

In rotating machines, misalignment is one of the most common problems, which can induce many other
malfunctions. Considering the coupling effects of the flexible coupling misalignment and oil-film whirl/whip,
the oil-film instability laws will be more complicated. However, limited attention [23,24] has been paid to
the problem compared to unbalance, bearing damage [25], crack [26], rub-impact [27], and fluid-induced
vibrations [28,29]. El-Shafei et al. [23] presented an experimental research on the oil whirl and oil whip in
plain journal bearings and analyzed the effects of the supply pressure, unbalance of middle disk, unbalance of
overhung disk, offsetmisalignment, and angularmisalignment on the oil-film instability. Their results show that
angular misalignment can significantly delay the onset of instability. Wan et al. [24] performed theoretical and
experimental studies on the dynamic response of amulti-disk rotor systemwith flexible couplingmisalignment.
Their results indicate that the coupling misalignment can delay the occurrence of the first vibration mode
instability and suppress the system vibration.

In order to understand the complicated oil-film instability mechanism considering the coupling effects
of flexible coupling misalignment and oil-film whirl/whip, in this study, a rotor system provided in [23] is
adopted as the research object, and the sliding bearings are simulated by a nonlinear oil-film force model
(Zhang’s model [13]). The typical first-mode/second-mode whip phenomenon is produced in the run-up and
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run-down processes under parallel/annular misalignment conditions. The simulation results are compared with
the experimental results to verify the validity of the model.

This paper is organized as follows: in Sect. 2, a FE model of an overhung rotor–bearing system with
coupling misalignment is developed (see Sect. 2.1), and the model is verified by comparing the simulation
results with the experimental results (see Sect. 2.2). In Sect. 3, three simulation conditions will be presented:
the aligned overhung rotor system, the parallel misalignment, and the angular misalignment in Sects. 3.1, 3.2
and 3.3, respectively. Finally, the conclusions of this work are shown in Sect. 4.

2 Modeling of an overhung rotor system with coupling misalignment and model validation

2.1 Modeling of an overhung rotor with coupling misalignment

An overhung rotor–bearing system attached with four identical disks and one coupling and supported by two
oil-lubricated bearings, as shown in Fig. 2. In order to study the rotor–bearing system efficiently, the FE model
of the rotor–bearing system is simplified according to the following assumptions:

(a) The shaft is divided into 13 Timoshenko beam elements and 14 nodes; each node has four degrees of
freedom as is shown in Fig. 3. Note that xA, yA and θx A, θyA denote lateral displacements and angular
displacements, and subscripts A and B denote two adjacent nodes A and B in the shaft, respectively.

(b) The rigid disks and the coupling are simulated by lumped mass elements which are superimposed upon
the corresponding shaft nodes. These elements are simulated by the mass md ,mc, the diametric and
polar moments of inertia (Idd , Idc and Ipd , Ipc); meanwhile, the gyroscopic effects of the disks are also
considered. In Fig. 3, subscript C denotes node C on the rigid disk.

(c) The left and right bearings are identical and simulated by nonlinear oil-film forces [13].

The general displacement vector of a beam element for the shaft ue can be expressed as

ue = [xA yA θx A θyA xB yB θx B θyB]T, (1)

where the superscript e stands for element number. The general displacement vector of a rigid disk ued is given
as

ued = [xC yC θxC θyC ]T . (2)

The mass, stiffness and gyroscopic matrixes of shaft and disk/coupling elements are denoted as Me, K e, Ge,
Me

d , G
e
d [30].

Fig. 2 Schematic view of the overhung rotor–bearing system, nodes, and elements

Fig. 3 FE model schematic view of a shaft element and rigid disk
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Fig. 4 Coordinate system of the coupling positions: a parallel misalignment, b angular misalignment

Considering the nonlinear oil-film forces, unbalance exciting force, the forces and bendingmoments caused
by coupling misalignment and the rotor gravity, the dynamic equations of the rotor–bearing system can be
written as:

Mq̈ + (ωG + C) q̇ + Kq = Fu + Fb − Fg + Q, (3)

whereM, K,C and ωG are the mass, stiffness, damping, and gyroscopic matrixes of the system. q denotes the
displacement vector. Fu represents the excitation force due to the disk unbalanced mass and its eccentricity
during the run-up and run-down processes, which only exists at disk 1 (node 6). Fb denotes the nonlinear
oil-film force vectors of the sliding bearings at node 2 and node 10 (see Fig. 2). Fg denotes the vector related
to gravity in y direction. Q are the excitation forces/moments caused by misalignment of the coupling; they
are treated as excitations on the coupling (node 1), and only the fr, 2 fr, 3 fr and 4 fr harmonic components are
considered [24,31,32].

The nodal force vector Fu at node 6 is given as follows:

Fu =
⎡
⎢⎣

fux
fuy
Mux
Muy

⎤
⎥⎦ =

⎡
⎢⎣
meθ̇2 cos θ + meθ̈ sin θ

meθ̇2 sin θ − meθ̈ cos θ
0
0

⎤
⎥⎦ , (4)

where θ is the angular displacement in torsional direction.
The excitation forces/moments Q caused by coupling misalignment at node 1 are given as follows:

Q =
⎡
⎢⎣
Fx2 (sin (ωt) + sin (2ωt) + sin (3ωt) + sin (4ωt))
Fy2 (cos (ωt) + cos (2ωt) + cos (3ωt) + cos (4ωt))
Mx2 (sin (ωt) + sin (2ωt) + sin (3ωt) + sin (4ωt))
My2 (cos (ωt) + cos (2ωt) + cos (3ωt) + cos (4ωt))

⎤
⎥⎦ . (5)

The forces and bending moments which the coupling imposes on the machine shaft are expressed by
Fx2, Fy2, Mx2, My2 in x and y directions, as are shown in Fig. 4. The parallel or angular misalignment
parameters (�X1,�X2, �Y1, �Y2, θ3), bending spring rate per degree per diskpack (Kb), and the centre of
articulation (Z3) are also displayed in the figure. Care must be used to follow the sign convention shown in
Fig. 4 [32]. Assuming that z1 is the driving side, that (+) Tq is applied as shown in Fig. 4 and that the rotation
is in the same direction as the applied torque, the reaction forces, and moments that the coupling acts on the
shaft can be expressed as follows [32].
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For parallel misalignment:
⎧⎪⎨
⎪⎩

Fx2 = (Tq sin ϕ1 − kbθ1 + Tq sin ϕ2 + kbθ2)/Z3
Fy2 = −(Tq sin θ1 + kbϕ1 + Tq sin θ2 − kbϕ2)/Z3
Mx2 = Tq sin θ2 − kbϕ2
My2 = Tq sin ϕ2 + kbθ2

, (6)

where the misalignment angles θ1, θ2, ϕ1 and ϕ2 can be obtained by the Eq. (7).
{

θ1 = sin−1(�X1/Z3)

ϕ1 = sin−1(�Y1/Z3)
,

{
θ2 = sin−1(�X2/Z3)

ϕ2 = sin−1(�Y2/Z3)
. (7)

For angular misalignment: ⎧⎪⎨
⎪⎩

Fx2 = Tq sin θ3/Z3
Fy2 = kbθ3/Z3
Mx2 = −kbθ3
My2 = Tq sin θ3

. (8)

According to the short-length bearing theory, the nonlinear oil-film force vectors Fb at nodes 2 and 10 can
be written as:

Fbi =
⎡
⎢⎣
Fbxi
Fbyi
Mbxi
Mbyi

⎤
⎥⎦ = σ

⎡
⎢⎣

fbxi
fbyi
0
0

⎤
⎥⎦ (i = 2, 10), (9)

where i denotes the node number, fbxi and fbyi are dimensionless oil-film forces [13] where the dimensionless
q̃ = q

c and ˙̃q = q̇
cω are applied and σ is as follow:

σ = ηω
D

2
L

(
D

2c

)2 (
L

D

)2

, (10)

here, η, L , D and c are oil viscosity, bearing length, journal diameter and mean radial clearance, respectively.
In practical engineering,most structures aremultiple-degree-of-freedom systems,whose damping ismostly

assumed by using Rayleigh damping theory, namely the damping matrix is obtained by superposition of mass
matrix and stiffness matrix. This simulation method of energy dissipation has a lot of numerical advantages,
and it can meet the needs of the general structure dynamics analysis. In this paper, the Rayleigh damping form
is applied and obtained by the following formula [33]:

C = α1M + β1K , (11)

α1 = 60 (ωn2ξ1 − ωn1ξ2) ωn1ωn2

π
(
ω2
n2 − ω2

n1

) , β1 = π (ωn2ξ2 − ωn1ξ1)

15
(
ω2
n2 − ω2

n1

) , (12)

where ωn1 and ωn2 are the first and second natural frequencies (rev/min); ξ1 and ξ2 are the first and second
modal damping ratios, respectively. In this paper, ξ1 = 0.02 and ξ2 = 0.04.

In this paper, Eq. (3) is solved by using Newmark’s integration method, which is a reliable algorithm to
solve nonlinear equations in the time domain. In order to keep the accuracy and efficiency of the simulation,
the calculation time increment is 1 × 10−5 s. The spectrum cascade and top views of them are used to show
the change of the frequency components under different misalignment levels.

2.2 Model validation

In this section, the simulation results are compared with the experimental results in [23] in order to examine
the FE model validity. The detailed geometric dimensioning of the rotor is shown in Fig. 2, and the other
parameters are listed in Table 1. Aiming at a well balanced and aligned overhung rotor [23], the measured
amplitude spectrum (see Fig. 5a) at 5800 rev/min shows the oil whip component (OW) and its harmonics
such as 2 × OW and 3 × OW. Moreover, the first and second critical speed components also appear. For the
simulation without unbalance, the amplitude spectrum of the rotor shows only the first-mode whip frequency
fn1 and its harmonics (see Fig. 5b). The difference between the experimental result and simulation result is
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Table 1 Model parameters of the overhung rotor system

Parameters Value

Angular acceleration of the rotor system, α 25–125 rad/s2

Young’s modulus, E 2.1 × 1011 Pa
Poisson’s ratio, υ 0.3
Density, ρ 7800kg/m3

Bearing
Mean radial clearance, c 0.15 mm
Diameter, D 25.4 mm
Length, L 15 mm
Oil viscosity, η 0.04Pa s
Damping ratio, ξ1, ξ2 0.02, 0.04
Disk
Mass, md 2.6 kg
Polar moment of inertia, Ipd 9.25 × 10−3 kg/m−2

Diametric moment of inertia, Idd 4.82 × 10−3 kg/m−2

Unbalance moment,me 1.89 × 10−4 kg/m−1

Coupling
Type Diaphragm coupling
Mass, mc 1.102 kg
Polar moment of inertia, Ipc 1.38 × 10−3 kg/m−2

Diametric moment of inertia,Idc 0.72 × 10−3 kg/m−2

Fig. 5 Amplitude spectra at 5800 rev/min under case 1: a experimental results [23], b simulation results without unbalance, c
simulation results with unbalance

because the test rig is not balanced perfectly under practical condition. For the simulation with unbalance, the
amplitude spectrum shows fn1, fr1, combination frequency components of fn1 and fr1 (see Fig. 5c), which are
similar to those [23]. The comparison indicates that the FE model of the rotor system considering nonlinear
oil-film forces can accurately simulate the fluid-induced instability.

In order to validate the accuracy of the coupling misalignment model, the comparison between the sim-
ulation results and the experimental results [23] is displayed in Fig. 6. The measured results show that the
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Fig. 6 Spectrum cascades comparison between the experimental and simulation results under coupling misalignment conditions:
ameasured result under parallel misalignment [23], bmeasured result under angular misalignment [23], c simulation result under
parallel misalignment, d simulation result under angular misalignment

coupling misalignment mainly causes the 2 fr component and the angular misalignment can delay the onset
of instability more significantly than the parallel misalignment (see Fig. 6a, b). The similar instability phe-
nomenon can also be observed in the simulation results (see Fig. 6c, d). For the parallel misalignment, the
simulation results indicate that fr and its harmonics are dominant; however, the measured results show the
oil whip becoming dominant under the instability condition. Some reasons may lead to the different behavior,
such as the difference between the simulation parameters and the physically real operating state and damping
effects. On the whole, the FE model of the system can reproduce the fluid-instability law accurately under the
coupling misalignment conditions.

3 Simulations and discussions

In this section, three effects on the instability law are simulated based on the FE model: (i) the angular
acceleration α, (ii) parallel misalignment, and (iii) angular misalignment. The simulation conditions are shown
in Fig. 7, and the parameters related to specific coupling misalignments are listed in Table 2.

3.1 Simulation 1 for the aligned overhung rotor system

Assuming that there exists an unbalance (unbalance moment of 1.89× 10−4 kg/m−1) at disk 1 and other disks
are perfectly balanced for the aligned rotor systemwith constant angular acceleration, different run-up and run-
down processes are performed by changing the angular acceleration α from 0 to 125 rad/s2 with an increment
of 25 rad/s2. It is worth noting that the value of the angular acceleration α is negative in the run-down process
and α = 0 rad/s2 corresponds to steady-state condition. The angular displacement θ (t) can be expressed as
follows:
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Fig. 7 Simulation parameters diagram

Table 2 Parameters of the coupling misalignment

Parameters Value

Rated torque, Tq (Nm) 35
Bending spring rate per degree disk pack, Kb
(Nm/deg/diskpack)

65

Axial deflection of coupling, �Z
(mm)

0.8

Parameters of parallel misalignment
Parameters PM condition-1 PM condition-2 PM condition-3 PM condition-4

Z3 (mm) 150.5 120 120 112
�X1, �X2 (mm) 0.05, 0.05 0.1, 0.1 0.18, 0.18 0.2, 0.5
�Y1, �Y2 (mm) 0.05, 0.05 0.05, 0.05 0.1, 0.1 0.15, 0.15

Parameters of angular misalignment
Parameters AM condition-1 AM condition-2 AM condition-3 AM condition-4

Z3 (mm) 150.5 112 75.25 150.5
θ3 (◦) 0.15 0.15 0.2 0.7

θ(t) = ω0t + 1/2αt2, (13)

where ω0 is the initial angular velocity and t the acceleration time.
Spectrum cascades of the right bearing in y direction with angular acceleration at 0, 25 and 125 rad/s2

are displayed in Figs. 8 and 9. The first and second unstable thresholds under α = 0 ∼ 125 rad/s2 conditions
are depicted in Fig. 10. In these figures, points P1 and P2 denote the first and second unstable thresholds,
respectively. The main characteristics of the obtained results are summarized as follows:

(1) The frequency components at α = 0, 25 and 125 rad/s2 all show the first- and second-mode whirl/whip
frequencies fn1 and fn2, rotating frequency fr, and complicated combination frequency components about
fn1, fn2 and fr, such as 2 fn2, fr − fn1, and fr + fn1. (see Figs. 8 and 9).

(2) In comparison with the steady-state condition (α = 0 rad/s2), it is clear that under transient situations
(α = 25 and 125 rad/s2), the onsets of the first- and second-mode instability are greater than those at
α = 0 rad/s2 in the run-up process; however, they are all less than those at α = 0 rad/s2 in the run-down
process (see Figs. 8 and 9). Larger α has a greater hysteresis effect on the onset of oil-film instability
in comparison with α = 0 rad/s2 because of the tangential inertia force caused by run-up and run-down
processes.

(3) For the run-up and run-down processes, under small acceleration conditions (α ∈ [0, 50] rad/s2), the first-
and second-mode instability thresholds all monotonically increase and decrease, respectively. However,
the first- and second-mode instability thresholds are tending toward stability under large acceleration
conditions (α ∈ [75, 125] rad/s2), as is shown in Fig. 10.
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Fig. 8 Spectrum cascade of the right bearing in y direction at a = 0 rad/s2

Fig. 9 Spectrum cascades of the right bearing in y direction: a1 run-up process at α = 25 rad/s2, a2 run-down process at
α = 25 rad/s2, b1 run-up process at α = 125 rad/s2, b2 run-down process at α = 125 rad/s2.

3.2 Simulation 2 for the parallel misalignment

In this section, the effects of PM on the oil-film instability of the rotor system are discussed under four different
coupling PM conditions involving different misalignment levels. In the run-up and run-down processes, time-
domain waveforms of the left and right bearings under PM condition-1 are shown in Fig. 11a, b, respectively.
The rotating speed increases from 6 to 19,506 rev/min and decreases from 19,506 to 6 rev/min. Spectrum
cascades corresponding to the time-domain waveforms in Fig. 11 are shown in Fig. 12, where the run-up and
run-down processes are exhibited in one figure to give a better understanding of the differences between them.
In order to display the abscissa of spectrum cascades conveniently, the left-hand ordinate is denoted by time
not rotating speed. The top views of spectrum cascades of the left bearing under four different PM conditions
at α = 25 rad/s2 are shown in Fig. 13. The main characteristics of the obtained results are summarized as
follows:
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Fig. 10 Unstable thresholds under different angular accelerations

Fig. 11 Time-domain waveforms of the left and right bearings in y direction under the PM condition-1 (α = 25 rad/s2): a left
bearing, b right bearing
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Fig. 12 Spectrum cascades under the PM condition-1 (α = 25 rad/s2): a left bearing, b right bearing

Fig. 13 Top views of the spectrum cascades of the left bearing under four different PM conditions (α = 25 rad/s2): a condition-1,
b condition-2, c condition-3, d condition-4

(1) The displacement of the left bearing is larger than that of the right bearing at low rotating speeds, and the
non-synchronous frequency components for the left bearing are more complicated than those for the right
bearing, which are due to the shorter distance between the left bearing and the misaligned coupling (see
Figs. 11 and 12). These phenomena also indicate that the PM has greater influence on the left bearing
than on the right bearing.
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Fig. 14 Top views of the spectrum cascades of the left bearing under four different AM conditions (α = 25 rad/s2): a condition-1,
b condition-2, c condition-3, d condition-4

Apparently, the transform of system energy can be observed, in which the dominant vibration energy of
the system transfers from fr via fn1 and fn2 to fr-2fn2 in the run-up process and from fr-2fn2 via fn2 and
fn1 to fr in the run-down process (see Figs. 12a, 13a–c). Under PM condition-4, the dominant vibration
energy fn1 is replaced by fr, which indicates that the larger PM level can suppress the first-mode instability
by decreasing its amplitude.Meanwhile, the amplitude of multiple frequency components, such as 2fr, 3fr
and 4fr, increases with the ascending PM levels, as is shown in Fig. 13.

(2) The durations of the first- and second-mode instability are different in the run-up and the run-down
processes under four PM conditions. Because of the hysteresis effect, the duration of the first-mode
instability in the run-up process is longer than that in the run-down process, while the duration of the
second-mode instability is shorter than that in the run-down process (see Figs. 12 and 13).

(3) The onsets of the first and second vibration mode instabilities with PM faults in the run-up processes
are equal to or larger than those in the run-up processes without PM faults, except for the second-mode
instability under PM condition-4, which may be because the high PM level has an influence on the
transform of system energy. Furthermore, in the run-down process, the change in the law of the onset
of the first-mode instability is not regular and the onset of the second-mode instability has an increasing
trend with the ascending PM level under α = 25 rad/s2.

3.3 Simulation 3 for the angular misalignment

Under four angular misalignment conditions where the misalignment level also increases successively, the
results corresponding to run-up and run-down processes at α = 25 rad/s2 are shown in Fig. 14. The obtained
results are summarized as follows:
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(1) Under four different AM conditions, the durations of the first- and second-mode instabilities and the
transform law of system energy resemble those under the PM conditions. There are some differences under
AM condtion-4, where the frequency component fr/2 with larger amplitude appears and the vibration
amplitude is amplified at the intersection points of fr/2 and 2fn2.

(2) In contrast to the transient results without AM fault, the transient results with AM faults show some
interesting phenomena. In the run-up process, the onset of the first-mode instability is delayed, while the
onset of the second-mode instability is less than or equal to that in the run-up process without AM fault.
In the run-down process, the onset of the first-mode instability changes little and that of the second-mode
instability increases slightly.

(3) In comparisonwith the PMconditions, the amplitudes ofmultiple frequency components aremore obvious
under the given AM conditions (see Fig. 14). Under large AM conditions, such as condtion-4, fr and 2fr
are dominant.

4 Conclusions

Based on finite element method, this work systematically illustrates the effects of angular acceleration, parallel
misalignment (PM), and angular misalignment (AM) on the oil-film instability laws of a flexible rotor–bearing
system in the run-up and run-down processes. The variation of dominant vibration energy of the system under
different frequency components, such as fr, fn1, fn2, and fr–2fn2, were examined. The dominant vibration
energy fn1 is replaced by fr under the large misalignment level, which indicates that the larger misalignment
levels can suppress the amplitude of fn1. In the run-up process, smaller misalignment levels also delay the
onset of the second vibration mode instability; however, the instability may occur in advance under the larger
misalignment levels. Furthermore, the amplitudes of multiple frequency components under PM conditions are
more obvious than that under the AM conditions. Moreover, fr and 2fr are dominant under the large AM level,
and the frequency component fr/2 with larger amplitude was also observed and its amplitude is amplified at
the crossings of fr/2 and 2fn2.
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