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Abstract A theoretical model is proposed to predict the interfacial debonding length and fiber pull-out length
in fiber-reinforced polymer-matrix composites. The stress and displacement fields of fiber and matrix are
derived considering the dual phase region model, and the relation between the pull-out length and debonding
length of fiber is obtained. The interface debonding criterion is given based on the energy release rate relation
in an interface debonding process. The formulas are applied in glass fiber-reinforced epoxy composites to
demonstrate the newly theoretical model. The theoretical predictions of present model agree well with the
experimental results. Several parameters studies are performed to analyze the debonding length and the pull-
out length of fiber in glass fiber-reinforced epoxy composites.

Keywords Fiber-reinforced composites · Polymer-matrix composites · Interfacial debonding ·
Fiber pull-out · Theoretical analysis

1 Introduction

The interface between fiber and matrix in the fiber-reinforced polymer-matrix composites plays a major role
in determining the mechanical properties of composites. The fiber pull-out test has been well accepted as one
of the most popular and reliable test methods developed as a means of evaluating interfacial properties in the
fiber-reinforced composites. Some experimental studies have shown that when a crack propagates through a
matrix containing fibers, the fracture energies are absorbed by the failure mechanisms such as matrix cracking,
interfacial debonding between fiber and matrix, post-debonding friction, fiber pull-out, fiber fracture, stress
redistribution, among which the interfacial debonding and frictional sliding during fiber pull-out provide major
contributions to the fracture toughness of most fiber-reinforced composites with polymer-based matrices [1].

The stress transfer through interface between fiber and matrix is an important problem which critically
controls the mechanical properties of fiber-reinforced polymer-matrix composites under various loading con-
ditions. The shear-lag model originally proposed by Cox [2] provides a good evaluation of the stresses in
the fiber transferred from the matrix across the interface. Several shear-lag models were further developed
to study the stress transfer in conventional fiber-reinforced composites [3–7] and carbon nanotube-reinforced
polymer-matrix composites [8,9]. The effects of interphase on the stress transfer of the fiber- or carbon
nanotube-reinforced polymer-matrix composites based on the three-phase shear-lag model including an inter-
phase [10–15]. Based on the classical shear-lag theory and the strain gradient theory, Toll [16] presented a
second order shear-lag theory for elastic aligned short-fiber-reinforced composites.

The interfacial debonding and fiber pull-out problem have received much attention in the past decades.
There are two major approaches on the theoretical study of this problem: One is based on the maximum shear
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stress criterion where the interfacial debonding occurs when the interfacial shear stress induced by loading
reaches up to the interfacial shear strength. This approach is typified by the early work of Lawrence [17],
Aveston and Kelly [18], Takaku and Arridge [19] and Hsueh [20] based on the shear-lag model. The other
is based upon the critical energy release rate criterion of fracture mechanics where the debonding region is
regarded as an interfacial crack and its propagation is dependent on the energy balance in terms of the interfacial
fracture energy [21–33]. Hsueh and Becher [34] derived the relationship between the interfacial shear strength
and the interfacial debonding energy using an effective circumferential defect at the interface, which is defined
to account for the stress intensity due to the presence of the fiber in the matrix and the fiber pull-out geometry.
Based on an interface constitutive equation, which is a bilinear elastic-softening relation between interface
traction and fiber displacement, an analytical solution was performed for the interfacial debonding and fiber
pull-out problem by Schreyer and Peffer [35]. Pavia et al. [36] extended the classical shear-lag model to predict
the matrix cracking strength in a hybrid brittle-matrix composites containing both microscale and nanoscale
fibers.

Frictional sliding of interface between fiber and matrix is an important problem, and its correct charac-
terization remains an open issue. Theoretical models have usually assumed two characterization of sliding
friction: A constant friction stress over all portions of the interface experiencing compressive normal stress
[37–40], and Coulomb friction law which is caused by a friction coefficient and the normal stress across
the interface [22,26,29,41]. Furthermore, considering both cases of constant friction and Coulomb friction,
Hutchinson and Jensen [42] and Huang and Liu [43] studied the interfacial debonding and the fiber pull-out
in the fiber-reinforced composites. The energy release rate of the interfacial crack is one of the most signifi-
cant micromechanical parameters, and several theoretical models have been established for characterizing the
interfacial fracture behavior. Chua and Piggott [44] and Piggott [45] studied the fiber pull-out test and obtained
an expression for the interfacial fracture energy release rate. Budinasky et al. [22] developed an energy release
rate relation which is dependent on the interfacial debonding length. Gao et al. [26] presented an energy release
rate solution without considering the axial thermal stress of fiber and matrix. Sigl and Evans [41] derived an
energy release rate expression in the form of a linear function of the debond length. Hutchinson and Jensen
[42] obtained a steady-state energy release rate for interfacial debonding, which is not associated with the
debonding length and the interfacial frictional stress. Other forms of the energy release rate with various levels
of approximation have also been given [31,37,46–50].

To date, many studies have been carried out on the issues related to fiber debonding and pull-out in
the fiber-reinforced composites, but theoretical prediction on the length of fiber debonding and pull-out is
still very limited. Based on a fiber debonding criterion, Gao [37] and Gao et al. [26] presented a relation
between fiber pull-out length and debonding load. Li et al. [30] derived an expression of the debonding length
from energy considerations and using concepts of fracture mechanics. Hutchinson and Jensen [42] obtained
an approximate result of the fiber debonding length and pull-out length within the framework of fracture
mechanics and considering the interfacial friction. Kerans and Parthasarathy [28] yielded the expressions of
the debonding length and pull-out length in terms of the external load for the fiber pull-out test. The interfacial
debonding and fiber pull-out occur concurrently in the damage process of composites, but most theoretical
researches only obtained one of interfacial debonding length and fiber pull-out length.Moreover, the interfacial
debonding and fiber pull-out are influenced by loads, load increments and interfacial sliding. Therefore, in
this paper, we propose a theoretical model to predict the interfacial debonding length and fiber pull-out length
in fiber-reinforced composites, and study the effects of several parameters. The stress field and displacement
field of fiber and matrix are obtained using the dual phase region model, and the interfacial debonding length
is given by energy release rate criterion of interfacial debonding developed.

The rest of this paper is organized as follows: In Sect. 2, the failure mechanism of interfacial debonding
in fiber-reinforced composites is described. The stress and displacement fields of fiber and matrix are derived,
and the relation between the pull-out length and debonding length of fiber is obtained in Sect. 3. Energy release
rate criterion for the interfacial debonding is given in Sect. 4. In Sect. 5, the parameters studies of theoretical
model are carried out for a glass fiber-reinforced epoxy composites. Finally, Sect. 6 provides the concluding
remarks.

2 Failure mechanisms of interfacial debonding

Consider a composite of unidirectional continuous fibers aligned parallel to the axis of applied load, as shown
in Fig. 1. For the fiber-reinforced polymer-matrix composites under loads, the failure process generally starts
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Fig. 1 Schematic of the interface debonding and matrix cracking in fiber-reinforced polymer composites
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Fig. 2 Schematic of the post-cracking state of fiber-reinforced polymer-matrix composites under a uniform applied load

from thematrix cracking. Thematrix cracking has initiated,while the fibermay still be intact, and the composite
materials can continue to bear additional loads until the fracture strength of interface between fiber and matrix
reaches up to the critical value. When the size of the matrix cracking is large enough and the external load
reaches a certain critical vale, the interfacial debonding will occur near the matrix cracking, and the interface
protrudes to certain extent that enabled the crack to open. As the extent of these failures and the deformation
of fibers along its length increase, the fibers are pulled out gradually. During fiber pull-out, residual clamping
stresses due to matrix shrinkage on to the fiber during manufacture often exist at the interface and result in
interfacial sliding for the debonding interface, which also continue to provide the load transfer between fiber
and matrix. Therefore, after initial interfacial debonding, further interfacial debonding requires the applied
stress to overcome the interfacial sliding stress of the debonding interface, and the bonding strength at the
bonding interface. Actually, the interfacial debonding process is always accompanied by interfacial sliding
and crack opening. The post-cracking state of fiber-reinforced polymer-matrix composites is shown in Fig. 2.
Consequently, interface strength, interfacial sliding stress, debonding length and crack opening or pull-out
length become the major effect factors on the micromechanical properties of fiber-reinforced composites.
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3 Stress and displacement fields of fiber and matrix

According to Fig. 2, a simplified single-fiber pull-out model is considered, as shown in Fig. 3, where a fiber
(of radius a) is embedded at the center of a coaxial cylindrical shell of matrix (of an outer radius b) with the
fiber volume fraction

Vf = a2

b2
(1)

Then, the matrix volume fraction and the elastic modulus of the composite material are given by

Vm = 1 − Vf (2)

E = EmVm + EfVf (3)

where the subscripts f andm denote the fiber and the matrix, respectively. In this model, the fiber and the matrix
are assumed to be elastic and isotropic. The embedded fiber length is L , and the initial partial debonding length
is l from the free fiber end. Let the x direction be parallel to the fiber axis, and the matrix is fixed at one end
(x = L), while a tensile stress is applied to the other end (x = 0) of the embedded fiber. The applied stress is
assumed to be parallel to the fiber axis, and the applied stress for fiber and matrix at x = 0 is

σf = σ

Vf
(4a)

σm = 0 (4b)

In the single-fiber pull-out test [19], the composite is fixed at one end and a tensile stress is applied at the
other end of the embedded fiber at a constant displacement rate in the axial direction. Let u denote the applied
constant displacement, the axial stress at x = 0 is

σf = u

l
Ef (5)

where l is the debonding length of fiber. For a given applied axial force Pon the free end of the fiber, the axial
stress at x = 0 is

σf = P

πa2
(6)

The governing equations for the axis symmetric problem [51], in a displacement formulation and in terms
of the polar coordinates (r, θ, x), include the equilibrium equations (in the absence of body forces) are

∂σrr

∂r
+ ∂τr x

∂x
+ σrr − σθθ

r
= 0 (7a)

∂τr x

∂r
+ ∂σxx

∂x
+ τr x

r
= 0 (7b)

Fiber

x

L
l

Matrix

Matrixb

a

δ

σf

τs

τs

Single phase region Dual phase region

Fig. 3 Fiber pull-out model (or shear-lag model) of fiber-reinforced composites
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The geometrical equations are

εrr = ∂w

∂r
(8a)

εθθ = w

r
(8b)

εxx = ∂u

∂x
(8c)

γr x = ∂w

∂x
+ ∂u

∂r
(8d)

The constitutive equations are

εrr = σrr − v(σθθ + σxx )

E
(9a)

εθθ = σθθ − v(σxx + σrr )

E
(9b)

εxx = σxx − v(σrr + σθθ )

E
(9c)

γr x = τr x

G
(9d)

where σrr , σrθ , σxx and τr x are stress components, εrr , εrθ , εxx and γr x are strain components, w and u are
the radial and axial displacement components, and E , v and G are the elastic modulus, Poisson’s ratio and
shear modulus of the material, respectively.

According to Gao [39], the debonding region defined by 0 ≤ x ≤ l, is called dual displacement region
or dual phase region in which the relative frictional slipping occurs along the interface. The undebonding
region is called the single phase region. From the perspective of micromechanics, whether the dual phase or
the single phase region, the real distributions of stress, strain and displacement are very complicated, we thus
only consider the average value of each quantity. The initial residual stresses, the Poisson effects and the stress
components in the radial directions are neglected since they are small compared to the axial stress component
[6]. Let uf and um denote the average displacements for fiber and matrix, respectively, then the relationships
of displacements and axial stresses are given by

σf(x) = Ef
∂uf(x)

∂x
(10)

σm(x) = Em
∂um(x)

∂x
(11)

Consider the equilibrium of the axial force acting on the element of length dx in the debonding fiber and matrix
shown in Fig. 4, we can have the following differential equation relating the rate of change of normal stress σf
and σm along the x-axis and the interfacial sliding stress

∂σf(x)

∂x
= −2

a
τs (12)

∂σm(x)

∂x
= 2a

b2 − a2
τs = 2Vf

aVm
τs (13)

where τs is the interface sliding stress between fiber and matrix, and the negative sign denotes that the direction
of σf is opposite to that of σm. Equations (12) and (13) indicate the stress transfer between fiber and matrix in
the debonding region.

The model is further simplified by concentrating all of the axial stress-carrying area, and assuming that the
fiber and matrix supports only shear stresses [22]. The equilibrium and constitutive relations can be simplified
to

∂τr x

∂r
+ τr x

r
= 0 (14)

τr x = G
∂u

∂r
(15)



750 Q. Meng, Z. Wang
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Fig. 4 Stresses acting on fiber and matrix of element in the debonding region

By solving (14) and taking into account the following stress boundary conditions

τf(a, x) = τs (16a)

τm(a, x) = τs (16b)

τm(b, x) = 0 (16c)

One can express the shear stresses distribution in fiber and matrix as

τf(r, x) = a

r
τs (0 < r ≤ a) (17)

τm(r, x) = (b2 − r2)a

(b2 − a2)r
τs (a ≤ r ≤ b) (18)

Substituting Eqs. (17) and (18) into Eq. (15), and integrating from a to r for fiber and matrix, one gets

uf(r, x) = uf(a, x) + τs
a

Gf
ln

r

a
(0 < r ≤ a) (19)

um(r, x) = um(a, x) + τs

a(a2−r2)
2 + ab2 ln

( r
a

)

Gm(b2 − a2)
(a ≤ r ≤ b) (20)

where Gf and Gm are the shear modulus of fiber and matrix, respectively.
For the dual phase region, the deformation process is the superposition of two processes, the first is

the deformation of single phase material without debonding, and the second is the interfacial debonding
accompanied by the frictional slip [39]. If the displacements of the two processes are denoted by û and

	
u, then

uf(x) = û(x) + 	
uf(x) (21a)

um(x) = û(x) + 	
um(x) (21b)

Note that in the interfaicial frictional slip process, the displacements
	
uf and

	
um should be a self-equilibrating

stress relation,
∂

	
uf(x)

∂x
VfEf + ∂

	
um(x)

∂x
VmEm = 0 (22)
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Then, the following relation can be given by

	
uf(x) = VmEm

E
	
u(x) (23a)

	
um(x) = −VfEf

E
	
u(x) (23b)

Substituting Eq. (23) into Eq. (21), we have

û(x) = VfEf

E
uf(x) + VmEm

E
um(x) (24a)

	
u(x) = uf(x) − um(x) (24b)

To determine the stress relation, assume that

σ̂ (x) = E
∂ û(x)

∂x
(25a)

	
σ(x) = E

∂
	
u(x)

∂x
(25b)

Substituting Eqs. (21), (23) and (25) into Eqs. (10) and (11), we have

σf(x) = Ef

E
σ̂ (x) + Ef

E(1 + α)

	
σ(x) (26a)

σm(x) = Em

E
σ̂ (x) − Emα

E(1 + α)

	
σ(x) (26b)

where

α = VfEf

VmEm
(27)

Combination of Eqs. (12), (13) and (26), one gets

∂σ̂ (x)

∂x
= 0 (28a)

∂
	
σ(x)

∂x
= −2E(1 + α)

aEf
τs (28b)

For the single phase region (l ≤ x ≤ L), since the displacement at the interface between fiber and matrix
(r = a) is continuous (perfect bonding), we have

uf(x) = um(x) = σ

E
(L − x) (l ≤ x ≤ L) (29)

The total axial stresses satisfy
Vfσf(x) + Vmσm(x) = σ (l ≤ x ≤ L) (30)

The stress transfer and stress distribution in the single phase region (full bonding region) have been extensively
studied by Nairn [5], Fu et al. [6] and Qing [7]. No more about this will be mentioned here since it is not our
main focus.

Based on the above analysis, the stress and displacement boundary conditions of the dual phase region are
given by

σf(0) = σ

Vf
, σm(0) = 0 at x = 0 (31)

uf(l) = um(l) = σ

E
(L − l) at x = l (32)
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Substituting Eqs. (31) and (32) into Eqs. (24) and (26), the boundary conditions become

û(l) = σ

E
(L − l), σ̂ (0) = σ, (33)

	
u(l) = 0, 	

σ (0) = 1 + α

α
σ, (34)

Integrating of Eqs. (25a) and (28a), and considering the boundary condition (33), we have

σ̂ (x) = σ (35)

û(x) = σ

E
(L − 2l + x) (36)

Similarly, Integrating of Eqs. (25b) and (28b), and taking into account the boundary condition (34), one gets

	
σ(x) = 1 + α

α
σ − 2E(1 + α)τs

aEf
x (37)

	
u(x) = (1 + α)σ

αE
(x − l) + (1 + α)τs

aEf
(l2 − x2) (38)

Substituting Eqs. (35), (36), (37) and (38) into Eqs. (21), (23) and (26), the following stress and displacement
fields can be obtained

σf(x) = (1 + α)Ef

αE
σ − 2τs

a
x (39a)

σm(x) = 2Vfτs
aVm

x (39b)

	
uf(x) = σ

αE
(x − l) + τs

aEf
(l2 − x2) (40a)

	
um(x) = σ

E
(l − x) + ατs

aEf
(x2 − l2) (40b)

uf(x) = σ

αE
[L − (2α + 1)l + (α + 1)x] + τs

aEf
(l2 − x2) (41a)

um(x) = σ

E
(L − l) + ατs

aEf
(x2 − l2) (41b)

Then, combination of Eqs. (39a) and (39b), integrating from 0 to l for the debonding interface, the pull-out
length can be given by

δ =
∫ l

0

(
σf(x)

Ef
− σm(x)

Em

)
dx = (1 + α)σ

αE
l − (1 + α)τs

aEf
l2 (42)

Equation (42) is similar to the result obtained by the condition of energy balance [38]. According to Eqs. (38)
and (42), we have

δ = −	
u(0) (43)

where the negative sign describes the assumption that the direction of fiber pull-out is opposite to the positive
direction of axis, and Eq. (43) shows that the pull-out length is equivalent to the relative displacement between
fiber and matrix.
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4 Energy release rate criterion for interfacial debonding

The interfacial debonding of fiber-reinforced composite may be regarded as a crack propagation process along
the interface between fiber and matrix. For a prestressed elastic body under constant additional load, a general
relation is that crack propagation and opening is associated with the loss in potential energy and sliding
occurred along internal interfaces. These relations will be applied in the steady-state crack growth calculations
as follows.

Consider an elastic body Ω contains a steadily growing crack which possesses the interface sliding under
loading, as shown in Fig. 5. In the initial state (1), the external vector tractions T is applied on the surface ST, and
the sliding traction τ is assumed on the crack surface SC. The body contains an initial tensor stress distribution
σ1, initial displacement u1 and initial strain ε1. The body contains opening crack that is characterized by l0, as
well as the internal surface in which sliding has occurred. With no change in T , the body further becomes the
state (2), in which the length of crack becomes l, and the body now contains the stress σ2, displacement u2
and strain ε2. The interface sliding stress τs always exists to resist the relative sliding along the crack surface
SC. Then, the total potential energy of the elastic body in each case can be given by

π1 = 1

2

∫

Ω

σ1 : ε1dΩ −
∫

ST
T · u1dS (44)

π2 = 1

2

∫

Ω

σ2 : ε2dΩ −
∫

ST
T · u2dS (45)

Further, considering ε1 : σ2 = ε2 : σ2, the released energy may be written as

π2 − π1 = 1

2

∫

Ω

(σ1 + σ2) : (ε2 − ε1)dΩ −
∫

ST
T · (u2 − u1)dS (46)

Since the state (2) is an equilibrium state with the sliding stress τs on the crack surface and the external load
T , by the principle of virtual work we have

∫

Ω

σ2 : (ε2 − ε1)dΩ =
∫

ST
T · (u2 − u1)dS +

∫

SC
τs · sdS (47)

T

l0

ST

SC

T

ST

l
SC

τs

(a) (b)

Fig. 5 Two states of crack growth in material with external loads and interface sliding: a state (1); b state (2)
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where s is the magnitude of the relative slip on crack surface SC. Then the combination of Eqs. (46) and (47),
one gets

π2 − π1 = 1

2

∫

Ω

(σ2 − σ1) : (ε2 − ε1)dΩ +
∫

SC
τs · sdS (48)

If we assume further thatUF is the friction dissipation energy by friction with sliding τs on the internal surface,
then

π2 − π1 = 1

2

∫

Ω

(σ2 − σ1) : (ε2 − ε1)dΩ +UF (49)

in which

UF =
∫

SC
τs · sdS (50)

Let σ and ε, denote the increment of stress and strain respectively, namely

σ = σ2σ1, ε = ε2 − ε1 (51)

Hence, Eq. (49) cam be written as

π2 − π1 = 1

2

∫

Ω

σ : εdΩ +UF (52)

According to the Eq. (52), the potential energy release rate G, which is equivalent to the differential elastic
strain energy stored in the constituents with respect to the incremental debonding length for the per unit
thickness body, can be expressed as

G = ∂(π2 − π1)

∂l
= 1

2

∂

∂l

(∫

Ω

σ : ε

)
dΩ + ∂UF

∂l
(53)

For a unit debonding interface in the fiber-reinforced composite, the increment of surface area in per
debonding fiber is 2πal, where l is the debonding length, and the total release energy for such an interface is
2πalGC, where GC is the critical energy release rate for the debonding interface between fiber and matrix.
Then, we only consider an interfacial debonding process so that the energy release rate G must be balanced by
the sum of the frictional energy dissipation rate and the energy release rate of the debonding interface. Hence,
we have the following relation

1

2

∂

∂l

(∫

Ω

σ : εdΩ

)
= 2πaGC (54)

Equation (34) shows that the differential of increment of elastic strain energy with respect to the incremental
debonding length is equivalent to the energy release rate of the interfacial debonding.We consider an interfacial
debonding process where the interfacial debonding length changes from 0 to l, the release strain energy can
be written as

U =
∫ l

0

∫ a

0
πr

Vf
Ef

σ 2
f (x)drdx +

∫ l

0

∫ b

a
πr

Vm
Em

σ 2
m(x)drdx (55)

Then, according to Eq. (54), we have

∂

∂l

[∫ l

0

∫ a

0
r
Vf
Ef

σ 2
f (x)drdx +

∫ l

0

∫ b

a
r
Vm
Em

σ 2
m(x)drdx

]
= 2aGC (56)

Substituting Eq. (39) into Eq. (56), it can be obtained

(1 + α)a

4αE
σ 2 − στsl

Ef
+ (Ef + Em)Vf

aEfEm
τ 2s l

2 = GC (57)

Equation (57) gives the energy release rate criterion for interfacial debonding in the fiber-reinforced composite,
and the interfacial debonding length of fiber under loads can also be obtained using Eq. (57).
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5 Results and discussions

In order to validate the theoretical model developed in the preceding section and study the effect of material
parameters, the analyses are performed for a glass fiber-reinforced epoxy composites in this section. The
mechanical properties of the fiber and matrix [52] are defined as: The Young’s modulus of matrix is Em =
3GPa, the Young’s modulus of glass fiber is Ef = 70GPa, the radius of glass fiber is a = 7µm, the ultimate
strength of glass fiber is 1.65GPa, the critical energy release rate of composites is Gc = 50 J · m−2. The
interface sliding stress τs will be assigned in the calculation process for lack of the required information.

For the interfacial debonding of composites, the initial debonding stress is also an important parameter. The
initial debonding stress σd, which was obtained by Outwater and Murphy [53] based on the fracture energy, is
described as

σd = 2

(
EfGc

a

)1/2

(58)

For the glass fiber epoxy composites, the initial debonding stress approximately is 1.414GPa, obtained by Eq.
(58) and the corresponding material constants. In addition, the pull-out length of fiber in the fiber-reinforced
composites can be obtained by Eq. (42). The relation between the pull-out length and debonding length of fiber
for the glass fiber-reinforced composites is shown in Fig. 6 when σ = 1.5GPa, Vf = 15%, and the interface
sliding stress τs = 0.5MPa. It can be seen that theoretical predictions have a reasonable agreement with the
experimental results [52]. To study the effect of the material parameters, the pull-out lengths versus the load,
the fiber volume fraction and the interface sliding stress in the glass fiber-reinforced epoxy composites are
shown in Figs. 7, 8 and 9. It can be found that the pull-out length increases linearly with the increase in applied
load, while the pull-out length decreases gradually with the increase in interface sliding stress, and the effect
of load is larger than that of the interface stress when the other material parameters are given. Furthermore,
the pull-out length decreases gradually and closes to a limit value as the fiber volume fraction increases at the
same debonding length.

The debonding length of fiber in fiber-reinforced composites can be given by Eq. (57). For the given
materials, the debonding length is mainly determined by the load increment. The debonding length versus load
increment for the glass fiber-reinforced composites is shown in Fig. 10 when Vf = 15%, and the interface
sliding stress τs = 0.5MPa. It can be observed that with the increase in load increments, the debonding length
of fiber shows a nonlinear increase trend. Furthermore, the debonding length versus fiber volume fraction and
interface sliding stress for the various load increments in glass fiber-reinforced epoxy composites are plotted
in Figs. 11 and 12. It can be seen that the debonding length of fiber shows a nonlinear decrease trend as the
fiber volume fraction increases, and the debonding length also shows a decrease trend with the increasing of
the interface sliding stress. This trend of debonding length has also been observed by Chiang [33] and this also
verified our theoretical results.

Fig. 6 Comparison between theoretical predictions and experimental results for relation of fiber pull-out length and debonding
length [52] in glass fiber-reinforced epoxy composite
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Fig. 7 Pull-out length versus applied load for the different debonding lengths (mm) in glass fiber-reinforced epoxy composites

Fig. 8 Pull-out length versus fiber volume fraction for the different debonding lengths (mm) in glass fiber-reinforced epoxy
composites

Fig. 9 Pull-out length versus interface sliding stress for the different debonding lengths (mm) in glass fiber-reinforced epoxy
composites
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Fig. 10 The debonding length of fiber for the different load increments in glass fiber-reinforced epoxy composites with Vf = 15%
and τs = 0.5MPa

Fig. 11 Debonding length versus fiber volume fraction for various load increments (GPa) in glass fiber-reinforced epoxy com-
posites

Fig. 12 Debonding length versus interface sliding stress for various load increments (GPa) in glass fiber-reinforced epoxy
composites
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6 Concluding remarks

A theoretical prediction of interfacial debonding and fiber pull-out process has been carried out in fiber-
reinforced polymer-matrix composites. The interfacial debonding and fiber full-out are considered simultane-
ously. Relation between the pull-out length and debonding length of fiber was obtained considering the dual
phase region model. The interface debonding criterion was given based on the energy release rate relation in
an interface debonding process.

The formulas were applied in glass fiber-reinforced epoxy composites to demonstrate the newly developed
theoreticalmodel. The theoretical predictions of presentmodel agreewellwith the experimental results. Several
parameters studies were presented to analyze the debonding length and the pull-out length of fiber in glass
fiber-reinforced epoxy composites. The results showed that with the increase in applied load, the pull-out
length of fiber increases linearly while the pull-out length decreases gradually with the increase in interface
sliding stress. The pull-out length of fiber decreases gradually as the fiber volume fraction increases at the
same debonding length. The debonding length of fiber shows a nonlinear decrease trend with the increasing
of the fiber volume fraction and interface sliding stress.

Actually, for a given fiber-reinforced compositematerial, first the interfacial debonding length of fiber under
loads is obtained by Eq. (57), and then the pull-out length of fiber accompanied by the interfacial debonding
can be given using Eq. (42). Note that many research works of debonding and pull-out problem have been
carried out in the last several decades, but the measurement and analysis of the whole process are limited.
Therefore, the understanding and measurement of the debonding and pull-out processes still need to perform
further because they affect the fracture toughness of fiber-reinforced composites.
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