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Abstract This paper presents amethod for structuralmodifications for achieving desired eigenstructures based
on receptances, by adding multiple mass–spring systems to some locations of the primary system. This method
has the benefit that not only neither analytical nor modal models are needed, but also the original mass and
stiffness of the primary system are maintained. Moreover, when a complex structure or machine is designed
for some special functions so that its inner structure is not allowed to be modified, it is an effective way in
practice to achieve desired dynamical performance resulted from adding several external simple substructures.
The theory is presented in this paper, which is suitable for linear undamped systems. Numerical experiment is
set up, and the results of the modifications are compared with the method proposed by Braun and Ram. Both
theoretical derivation and numerical results demonstrate the effectiveness of this method.

Keywords Eigenstructure assignment · Structural modification · Receptance · Mass–spring system ·
Undamped systems

1 Introduction

In many engineering cases, in order to improve the dynamic characteristics of a structure, structural modifi-
cations are needed. Generally speaking, they mean modifications of the system mass, stiffness and damping
parameters to meet certain dynamic performance [1], such as the need to avoid resonance or creation of a node
on the system at a certain frequency.

Structural modification problems can be divided into forward and inverse problems. The forward problem
aims to predict the dynamic behaviour of the modified structure. The inverse problem aims to determine the
modifications required so that the modified structure would have the desired dynamic behaviour specified a
priori [2–5]. This paper deals with the inverse modification problem. Inverse problems are difficult to solve
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because issues such as the existence of solutions of the problem is unknown, and the solution may not be
unique. Thus, inverse structural modifications remain an area of active research, as can be seen from [6–8].

Structural modification problems can be solved by firstly constructing the system model and then casting
the problem of achieving certain dynamic performance as an optimisation problem. Optimisation generally
aims to find a solution that minimises or maximises an objective function from a given set of feasible solutions
that satisfy some constraints. An optimisation problem can be solved by a number of methods [9], such as
projected Landweber iterative method, genetic algorithms, simulated annealing and so on.

In principle, when solving structural modification problems, information of the original structure can be
obtained from the physical model, which includes the mass, stiffness and damping matrices [10]. The original
structure may also be characterised by modal data [11–14]. The accuracy of the original system parameters
directly affects the accuracy and feasibility of structural modifications. However, these methods are difficult to
apply to some complex and uncertain systems in engineering, because inverse problems are usually ill-posed
and their solutionsmay not exist or are sensitive to errors caused bymodel simplification and numericalmethods
used. To overcome these problems, the authors of [15–18] used the receptances (frequency response functions,
or FRFs for short) of the original system that could be measured quite accurately. This receptance-based
method is accurate and fairly easy to use.

One popular way of structural modifications is to change the values of existing masses and stiffnesses of a
structure [19–21]. This works well for many structures. However, there are two shortcomings in this approach.
The first one is that for some complex structures, it is difficult to modify existing masses and stiffnesses. The
second one is that the effectiveness in achieving a certain goal of structural modifications can be limited if
the modifications are only allowed at existing masses and stiffnesses. In some cases, the original structure
was designed for certain specific functions and requirements, which should not be modified. Therefore, an
alternative way of making structural modifications should be established and used. This involves adding a
subsystem to the original structure instead of modifying the existing degrees of freedom (dof) of the original
structure. In [22], one spring and one mass were added to a mass–spring system to assign the system with
one desired natural frequency. However, it is difficult to assign more than one frequency using this method.
Moreover, modes were not considered in the method proposed in [22]. It would be very useful to assign both
frequencies and modes (that is, eigenstructure).

This paper presents a structural modification strategy that adding multiple mass–spring systems to the
original structure instead of directly modifying the mass and stiffness values at the existing degrees of freedom,
based on receptances. Hence, this method has two main advantages. Firstly, it makes direct use of FRFs
(measured FRF data when real structures are concerned), so that the method proposed in this paper is neither
affected by the ill-conditioning of the eigenstructure extraction, nor it needs knowledge of the original system
mass matrix [8]. Secondly, this strategy is to add several external simple substructures, rather than to change
the original design, which overcomes both difficulties in accurately modifying stiffness values of the system in
practice and meanwhile avoids influencing the function of the machine or structure resulted from modification
of original purposeful design. It combines the idea of structural modifications in [22] and the approach in [8]
and casts eigenstructure assignment as an optimal problem. By means of numerical simulations, feasibility
and effectiveness of this method are verified.

2 Theoretical development

Although damping is always present, it is very small in most structures. Even if a damping ratio is 10%, the
difference between a damped natural frequency and an undamped natural frequency is different by only 0.5%.
Therefore, when free vibration or natural frequencies or modes are studied (as done in this paper), neglecting
damping is acceptable and the eigenstructure assignment made in this paper will not be affected. Then, a
general linear discrete conservative dynamic system is described by

Mẍ + Kx = f (1)

where M is the mass matrix, K is the stiffness matrix, ẍ is the vector of acceleration, x is the vector of
displacement and f is the force vector. In this paper, only mass–spring type of structures is studied.

Structural modifications cause themass and stiffness matrices to change by δM and δK, respectively, which
are treated as forcing terms on the unmodified structure. Therefore, Eq. (1) can then be re-written as

(M + δM) ẍ + (K + δK) x = f (2)
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Fig. 1 Conservative n-degree-of-freedom spring–mass systemmodified by a simple oscillator attached at the i thdegree of freedom

Assuming harmonic response x = ueiωt and substituting it into Eq. (2) yields
(−ω2M + K

)
u = (

ω2δM − δK
)
u + f (3)

The frequency response function (FRF) matrix of the original system is defined as H (ω) = (−ω2M + K
)−1

.
Then, Eq. (3) becomes

H−1u = (
ω2δM − δK

)
u + f (4)

It is assumed that a mass–spring subsystem is added at the i th freedom of original system, and the mass and
stiffness are dm and dk, as shown in Fig. 1, and the relative amplitude of vibration is du. Thus, an extra degree
of freedom is introduced. Consequently, the matrices in Eq. (4) are enlarged by one row and column. Then,
the equation of motion of the modified system is described by

(
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The last row of the above equation is

(−ω2dm + dk)du + dkui = 0 (6)

Solving for du in terms of ui yields

du =
(

dk

dk − ω2dm

)
ui (7)

By substituting Eq. (7) into Eq. (5), the following equation is derived:
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The i th and (n + 1)−th rows of the above equation can be written as

− dkui +
(

(dk)2

dk − ω2dm

)

ui + fi =
(

ω2dmdk

dk − ω2dm

)
ui + fi (9)

dkui +
(

ω2dm − dk

dk − ω2dm

)
dkui = 0 (10)
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Then, Eq. (5) becomes
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The derivation process above is about adding a single mass–spring subsystem. The general situation of
adding multiple mass–spring subsystems is investigated below.

It is assumed that the desired natural frequency and mode are, respectively, ωh and uh , and the FRFs for
the desired natural frequency are Hh . Moreover, denote that the number of mass–spring subsystems used for
modifications is j . The vector of modifications y is written as

yT = [ [
dm1 dk1

] [
dm2 dk2

] · · · [
dm j dk j

] ]
(12)

Each couple of parameters
[
dmi dki

]
, where i=1,…, j in vector y stands for an added mass–spring subsys-

tem. They can be collected into the first matrix on the right-hand side of Eq. (11), through the derivation process
above. The rearranged matrix in Eq. (11) contains both the desired natural frequency ωh and parameters from
y, and it is named G (y, ωh). By collecting all the parameters from vector y into matrix G, it is possible to
rearrange the single eigenpair assignment problem in Eq. (3) as

uh = H (ωh)G (y, ωh)uh (13)

The eigenstructure assignment problem can therefore be cast as

min
x

{
n∑

h=1

αh ‖H(ωh)G(y, ωh)uh − uh‖22
}

(14)

where weighting coefficient αh is a positive scalar.
Equation (14) can be solved by optimisation algorithms. There are many of them, which have been applied

in various fields [23,24]. But the focus of this paper is to study a novel strategy for structural modifications and
its feasibility. Hence, the algorithms for solving this optimisation problem will not be studied in this paper.

This receptance-based formulation does not require information of the original system mass and stiffness
matrices. This method is particularly suitable for those systems in which mass and stiffness matrices are
unknown or difficult to be measured. Moreover, it is particularly suitable when the external subsystems can be
added to the original system. The accuracy of this method depends on the accuracy of the FRF. Currently, since
techniques for measuring FRFs are quite mature, it is easy to get enough accurate data. It should be pointed
out that the current method cannot avoid spillover, that is, the unassigned frequencies and modes would get
changed unintentionally, like other passive vibration control methods. This thorny issue was overcome by a
different method of structural modifications for some simple structures in a very recent paper [25].

3 Numerical analysis

In this section, three simulated examples are analysed by the current method and another well-known
method [14] to demonstrate the effectiveness of the current method.

3.1 Numerical experiment set-up

In Fig. 2, mass (mi , i = 1, . . ., 4) and mass (m j , i = 2, . . ., 5) are connected through spring ki j ( j = i + 1),
and each of the five masses is also connected to the rigid ground through ground spring kgi (i = 1, . . ., 5).

For a comparison with the well-established technique proposed by Braun and Ram in [14], all the system
parameters used here are identical to those of the real example in [8] which was used to compare the method
in [8] with the method proposed by Braun and Ram, as listed in Table 1.
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m1 m2 m3 m4 m5

x1 x2 x3 x4 x5

Fig. 2 Simulated 5-dof system

Table 1 System parameters

Parameter Value

Mass (kg)
m1 1.73
m2 5.12
m3 8.21
m4 2.61
m5 1.34

Stiffness (N/m)
k12 7.36e4
k23 6.82e4
k34 7.35e4
k45 8.21e4
kg 9.89e4

Table 2 Desired eigenstructure

Mode number h 1 2

fh (Hz) 39.00 55.00
uh(1) 1.00 0
uh(2) −0.55 0.01
uh(3) 0.20 −0.10
uh(4) 0 0.80
uh(5) 0.05 1.00

The desired eigenstructure is also the same as that in [8], namely, it contains two frequencies 39 and 55Hz
and the corresponding modes, summarised in Table 2.

The structural modifications method proposed by Braun and Ram [14] is to change the values of existing
masses and stiffnesses of a structure, which requires the knowledge of the system’s left eigenvectors.Moreover,
regularization techniques, which in general are based on the knowledge of the system mass matrix, need to be
used in order to calculate eigenvectors reliably. However, for some complex systems, the system mass matrix
is not easy to obtain accurately or even unknown in practice.

On the other hand, the proposed method is to add multiple mass–spring systems to the original structure
based only on the frequency responses of the original system. In the numerical experiment of this paper, the
system FRFs are obtained from [ω2

hM − K]−1 at the natural frequencies of the desired modes, while they are
measured by experiment in practical applications.

3.2 Modification for one frequency and mode

3.2.1 Adding two mass–spring subsystems

Aimed at assigning the one mode listed in Table 2 at f1 (39Hz), two mass–spring subsystems are employed
firstly tomodify the system, which aremounted onmassesm1 andm2, as shown in Fig. 3. Twomasses (m6,m7)
are, respectively, added to masses (m1,m2) through springs (k16, k27). The range of computed parameters is
assumed and listed in Table 3.

In the above figure, two masses (m6 and m7) are, respectively, added to masses (m1,m2) through springs
(k16, k27) as a modification.
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m1 m3 m4 m5

x1 x2 x3 x4 x5

m6

x6

m7

x7

m2

Fig. 3 The modified system by adding two mass–spring subsystems

Table 3 Modification bounds

Parameter Lower bound Upper bound

Mass (kg)
m6 0 2
m7 0 2

Stiffness (kN/m)
k16 0 300
k27 0 300

Table 4 Parameters of added mass–spring systems

Mass (kg) Value (kg) Stiffness (kN/m) Value

m6 0.9153 k16 116.69
m7 0.6895 k27 70.98

Table 5 Modified mode shapes and eigenstructure comparison

Goal Method BR Proposed method

fi (Hz) 39.00 38.99 39.00
ui (1) 1.000 1.000 1.000
ui (2) −0.550 −0.547 −0.474
ui (3) 0.200 0.192 0.076
ui (4) 0.000 0.055 0.179
ui (5) 0.050 0.031 0.146
Desired mode number, h − 1 1
| fh − fi | (Hz) − 0.014 0.003
cos(ui ,uh) − 0.9987 0.9765

The parameters of mass–spring subsystems obtained by applying the modifications are listed in Tables 4
and 5. As a further proof, Fig. 4 shows the absolute values of FRFs (Hi,5(ω), i = 1, . . ., 5) of the system
modified by the proposed method (solid line) and the original system (dotted line). The frequencies and modes
after modification are collected in Table 5. The cosines between the desired eigenvectors and the attained ones
are also given.

It is easily seen that the attained frequencies are very accurate, but the attained modes are not very close to
the desired one, and particularly, the desired node is not realised. It is believed that this is because the number
of desired modal data (1 frequency and 5 modal elements) is much greater than the number of modifying
quantities (2 added masses and springs). Hence, in order to increase the chance of obtaining better solutions,
more mass–spring subsystems are considered in the next section.
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Fig. 4 System FRFs and assigned natural frequency

m1 m2 m3 m4 m5

x1 x2 x3 x4 x5

m6

x6

m7

x7

m8

x8

m2

Fig. 5 The modified system by adding three mass–spring subsystems

3.2.2 Adding three mass–spring subsystems

Three mass–spring subsystems (m6,m7 and m8) are employed to modify the vibration system in this section,
which are, respectively, connected to masses (m1,m2 and m4) through springs (k16, k27 and k48), as shown in
Fig. 5. The range of computed parameters is assumed and listed in Table 6.

In Fig. 5, the added three mass–spring subsystems (m6,m7 and m8) are, respectively, added to masses
(m1,m2 and m4) through springs (k16, k27 and k48).

The parameters of themass–spring subsystems obtained by applying themodifications are listed in Tables 7
and 8. Figure 6 shows the absolute values of FRFs (Hi,5(ω), i = 1, . . ., 5) of the systems modified by the
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Table 6 Modification bounds

Parameter Lower bound Upper bound

Mass (kg)
m6 0 2
m7 0 2
m8 0 2

Stiffness (kN/m)
k16 0 300
k27 0 300
k48 0 300

Table 7 Parameters of added mass–spring systems

Mass (kg) Value (kg) Stiffness (kN/m) Value

m6 0.8194 k16 93.46
m7 0.6690 k27 64.34
m8 1.9318 k48 262.85

Table 8 Modified mode shapes and eigenstructure comparison

Goal Method BR Proposed method

fi (Hz) 39.00 38.99 39.01
ui (1) 1.000 1.000 1.000
ui (2) −0.550 −0.547 −0.475
ui (3) 0.200 0.192 0.134
ui (4) 0.000 0.055 −0.020
ui (5) 0.050 0.031 −0.016
Desired mode number, h − 1 1
| fh − fi | (Hz) − 0.014 0.010
cos(ui ,uh) − 0.9987 0.9951

Fig. 6 System FRFs and assigned natural frequency

proposedmethod (solid line) and the original system (dotted line). The frequencies andmodes aftermodification
are collected in Table 8. The cosines between the desired eigenvector and the attained one are shown in the
last row of Table 8.
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m1 m2 m3 m4 m5

x1 x2 x3 x4 x5

m6

x6

m7

x7
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m9
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Fig. 7 The modified system by adding five mass–spring subsystems

Table 9 Modification bounds

Parameter Lower bound Upper bound

Mass (kg)
m6 0 2
m7 0 2
m8 0 2
m9 0 2
m10 0 2

Stiffness (kN/m)
k16 0 200
k27 0 200
k38 0 200
k49 0 200
k5,10 0 200

It is obvious that the modification in this section has better performance in mode assignment when using
more mass–spring subsystems in modification. Therefore, it is easier to find better solution through increasing
the number of added mass–spring subsystems.

However, it is important to note that the solution of this problem relies on the solution strategy chosen.
In another word, it does not mean the more mass–spring subsystems, and the better performance would be
achieved for modification. It is difficult to get a group of commendable solutions by some solution methods,
especially when dealing with many unknown parameters. Thus, a compromise must be considered in practice.

3.3 Modification for two frequencies and modes

In order to further assess the effectiveness of the method proposed, five mass–spring subsystems (mi , i =
6, . . ., 10) are added to modify the original 5-dof system in this section, for assigning the same desired
frequencies and corresponding modes as [14], as shown in Fig. 7. The added masses are connected through
springs (kmn,m = 1, . . ., 5; n = m + 5). The upper and lower bounds of the mass–spring subsystems are
listed in Table 9. Factors such as the economy and feasibility of the modifications needed are considered.

It is important to note that the solutions of inverse problems may not exist or not be unique. Therefore, a
different original system may need a different number of added mass–spring subsystems.

Five mass–spring subsystems (mi , i = 6, . . ., 10) are now added to modify the original 5-dof system,
connected to masses (mi , i = 1, . . ., 5), respectively, through springs (kmn,m = 1, . . ., 5; n = m + 5).

In the application of the numerical method described herein, the system FRFs come from inverting matrix[
ω2
hM − K

]
at the two targeted natural frequencies (ω1 and ω2). In order to treat them equally in the minimi-

sation of Eq. (14), of the two weighting parameters α1 and α2 in Eq. (14) are set to 1, which are the same as
those used by method BR.
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Table 10 Parameters of added mass–spring systems

Mass (kg) Value (kg) Stiffness (kN/m) Value

m6 0.9044 k16 108.62
m7 0.7336 k27 93.94
m8 0.7187 k38 73.46
m9 0.9962 k49 61.78
m10 1.5344 k510 38.81

Fig. 8 System FRFs and assigned natural frequencies

Through solving the optimisation problem, the values of the added masses and stiffnesses are shown in
Table 10. Using the modification parameters, the attained FRFs (solid line) and the original FRFs (dashed line)
are given in Fig. 8. The desired frequencies are marked in the figure.

Except the resonance peaks at desired frequencies (39 and 55Hz), the modified system has gained five
new degrees of freedom, and thus, several other resonance peaks appear within the scope of Fig. 8. Thus, it
is important to make sure that the new natural frequencies as a result of the modifications would not cause
degradation of the modified system. Often, it may not matter that the vibration amplitude of addedmass–spring
subsystem is large, as long as the original system has a good performance in engineering practice.

For comparison, the attained natural frequencies and corresponding modes are listed in Table 11. The
cosines between the desired modes and the attained ones are shown in the last row of Table 11. The attained
modes and desired modes of 39 and 55Hz are, respectively, shown in Fig. 9a, b.

Through comparing with the results of method BR, apparently the performance of the proposed method
is good. The proposed method also possesses the remarkable advantage that there is no need to have the
theoretical model of the original structure. In other words, the correctness of the proposed modifications
computed depends on the quality of measured FRFs (simulated FRFs in this theoretical paper though), avoid-
ing the need of exact knowledge of mass and stiffness matrices of the original structure. In case that the
accuracy of the measured FRFs is not adequate, before performing the inverse structural modification pro-
posed, one must reduce the noise in measurement. Another remarkable benefit of this method is addition of
some subsystems on certain points of the original structure, which do not changes the design of the original
structure.
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Table 11 Modified mode shapes and eigenstructure comparison

Goal Method BR Proposed method

1 2 1 2 1 2

fi (Hz) 39.00 55.00 38.99 54.93 39.00 55.01
ui (1) 1.000 0.000 1.000 −0.003 1.000 0.000
ui (2) −0.550 0.010 −0.547 0.011 −0.538 0.011
ui (3) 0.200 −0.100 0.192 −0.090 0.104 −0.278
ui (4) 0.000 0.800 0.055 0.799 −0.004 0.864
ui (5) 0.050 1.000 0.031 1.000 −0.002 1.000
Desired mode number, h − − 1 2 1 2
| fh − fi | (Hz) − − 0.014 0.066 0.004 0.005
cos(ui , uh) − − 0.9987 1.0000 0.9955 0.9910

Fig. 9 The desired and the attained modes: a 39 Hz, b 55 Hz

4 Conclusions

This paper presents a method for structural modifications based on receptances. It achieves the modification
by adding multiple mass–spring subsystems to the original structure instead of directly modifying the mass
and stiffness values at the existing degrees of freedom of the original structure. This method not only has
the benefit that does not need knowledge of original system mass and stiffness matrices, but also maintains
the original structure designed for certain specific functions and requirements which should not be modified.
The information needed is the measured FRFs of the original structure, which can be fairly easily obtained in
practice with sufficient accuracy.

Firstly, the theory of the proposed method is deduced in this paper. Then, numerical simulation for assign-
ment of two frequencies and two modes of a five-dof system is carried out to validate the effectiveness of
the method, using various numbers of added masses and springs. A comparison with a certified well-known
method by Ram and Braun is also made. It is obvious that the proposed method has very good performance.
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