
Arch Appl Mech (2015) 85:1459–1468
DOI 10.1007/s00419-014-0945-8

SPECIAL

Regina Schmitt · Charlotte Kuhn · Robert Skorupski ·
Marek Smaga · Dietmar Eifler · Ralf Müller

A combined phase field approach for martensitic
transformations and damage

Received: 23 December 2013 / Accepted: 3 June 2014 / Published online: 29 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract A combined continuum phase fieldmodel for martensitic transformations and fracture is introduced.
The positive volume change that accompanies the phase transformation from austenite to martensite leads to an
eigenstrain within themartensitic phase, which is considered within the present approach. Since the eigenstrain
leads to both tensile and compressive loads, the model accounts for the sign of the local volume change. With
aid of this model, the interactions between microcrack propagation and the formation of the martensitic phase
are studied in two dimensions. Martensite forms in agreement with experimental observations at the crack tip
and thus influences the crack formation. The numerical implementation is performed with finite elements. For
the transient terms, an implicit time integration scheme is employed.

Keywords Phase field model · Phase transformation · Continuum fracture model · Crack propagation · Finite
elements

1 Introduction

The microstructure evolution of metastable austenitic steels results from the complex interplay of different
processes on themicrolevel.One crucial phenomenon is themartensitic transformation, duringwhich the crystal
lattice changes from the austenitic to the α′-martensitic phase. The phase transformation is accompanied by a
positive volume change plus a lattice shear, which leads to an eigenstrain or transformation strain within the
martensitic phase. In conjunction with damage and fatigue behavior on the microscale, α′-martensite mainly
forms at the crack tip (see, e.g. [1–5]). This influences the crack propagation due to the eigenstrain acting in
the α′-martensite. On the other hand, the formation of the α′-phase is affected by crack growth. To study these
interactions, a combined phase field model for martensitic transformations and crack propagation is introduced
in this work.

A continuum fracture model is proposed in [6] as a variational formulation of brittle fracture, where the
total energy is minimized with respect to the crack geometry and the displacement field. However, in the

R. Schmitt (B) · R. Müller
Institute of Applied Mechanics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
E-mail: rschmitt@rhrk.uni-kl.de
Tel.: +631-205-2125

C. Kuhn
Computational Mechanics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
Tel.: +631-205-2125

R. Skorupski · M. Smaga · D. Eifler
Institute of Materials Science and Engineering, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
Tel.: +49 631-205-2411

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-014-0945-8&domain=pdf


1460 R. Schmitt et al.

presence of cracks, the numerical discretization is due to the discontinuous displacement field cumbersome.
These numerical difficulties can be overcome by a regularized approximation of the model, e.g. [7–9]. For
the regularization of the energy of fracture, a damage variable s is introduced describing crack formation and
growth. In this work, s = 1 indicates unbroken material, and s = 0 represents a crack.

To consider the martensitic transformation in the intact material, an order parameter c is introduced,
indicating the present phase. In this regard, several authors have studied phase field models for martensitic
transformations, e.g. [10–18].

The consideration of crystalline damage and martensitic transformations is studied in [19]. The authors
propose a thermomechanical model, where the volume fractions of the phases and damaged volume are taken
into account. In [20], Garion and coworkers use a combined model for phase transformation and damage to
examine the evolution of the volume fractions of both martensite and damage, which are related to the plastic
strain at cryogenic temperatures. A combined phase field approach is applied in [21], where a damage variable
is coupled with a phase field for ferroelectrics. In this work, a similar ansatz is applied: A combined phase
field potential is formulated that resembles for s = 1 the phase field potential for martensitic transformations
proposed in [22,23], taking into account the transformation-induced eigenstrain as a function of the order
parameter. Since the eigenstrain in the martensitic phase induces both compressive and tensile stresses, the
sign of the local volume change is considered and the compressive part is not affected by the crack field,
according to [24–26]. An alternative ansatz, based on a spectral decomposition of the strain tensor ε, is
proposed in [27].

With aid of the model introduced in this work, the interactions between crack propagation and martensitic
transformations are examined in a 2D plane strain setting. Therefore, an austenitic specimen with preexisting
crack under mode I loading is studied, where the transformation strain plays a crucial role. For the numerical
realization, finite elements together with an implicit time integration scheme are used.

2 A combined phase field approach for martensitic transformations and damage evolution

Acombined phase field approach formartensitic transformations and damage evolution is proposed. Therefore,
a damage variable s is introduced to indicate the crack situation. For s = 1, the material is undamaged while
s = 0 represents a crack. The combined phase field energy expression π is given as follows, see [7–9,21],

π = s2 ψs + ψns + (1 − s2) η
︸ ︷︷ ︸

πbulk

+ Gs

4Ls
(1 − s)2 + Gs Ls ||∇s||2

︸ ︷︷ ︸

πcrack

. (1)

In (1), π consists of two parts: the bulk energy πbulk and the fracture energy πcrack. In the bulk energy, ψs and
ψns account for the phase field potential of the undamaged solid subject to martensitic transformations, where
only ψs is coupled with the damage variable s. Details are discussed in subsection 2.1. The third term of (1),
(1 − s2) η with 0 < η � 1 is introduced to retain a residual stiffness if s = 0. Thus, for undamaged material
(s = 1), the bulk energy πbulk equals the phase field potential for martensitic transformations ψ = ψs + ψns .
If there is a crack (s = 0), only the residual stiffness η and the uncoupled part ψns remain.

The second part of (1) represents the fracture energy πcrack. According to existing theories on phase field
models for fracture (see, e.g. [9]), it depends on the damage parameter s and its gradient ∇s. The width of the
transition zone between undamaged and broken material is controlled by the parameter Ls while Gs stands
for the crack resistance, which can be expressed by the fracture toughness.

Furthermore, the temporal evolution of the damage parameter s is assumed to be proportional to the
variational derivative of the combined phase field potential π with respect to s, which is known as the time-
dependent Ginzburg-Landau equation (TDGL)

ṡ = −Ms
δπ

δs
= −Ms

[

2 s (ψs − η) − Gs

2 Ls
(1 − s) − 2Gs Ls Δs

]

. (2)

In (2), Ms is the mobility parameter, scaling the kinetics of the fracture process. A more detailed discussion
of a continuum phase field model for fracture can be found in [9].
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Fig. 1 Plot of the Landau polynomial expansion f (c) (solid line) split up into the symmetric double well d(c) (dotted line) and
the asymmetric part g(c) (dash-dotted line)

2.1 Phase field potential for martensitic transformations

During the martensitic transformation, the crystal lattice of the undamaged solid changes from the metastable
phase austenite to the stable phase α′-martensite. In this work, a phase field approach for martensitic transfor-
mations introduced in [22,23] is applied, where an order parameter c indicates the present phase: c = 0 for
austenite and c = 1 for α′-martensite. The phase field potential for martensitic transformations ψ consists of
three parts: the elastic energy density W , the gradient energy density ψgrad and the separation potential ψ sep

ψ(ε, c,∇c) = W (ε, c) + ψgrad(∇c) + ψ sep(c)

= W (ε, c) + 1

2
κgradG L||∇c||2 + κsep

G

L
f (c). (3)

According to [28], the proper choice for the calibration constants κgrad and κsep results inG corresponding to the
specific energy densitywhile the parameter L controls thewidth of the transition zone. The function f (c), which

appears in the separation potential ψ sep, is a Landau polynomial expansion f (c) = 1+ A

2
c2 − B

3
c3 + C

4
c4,

with B = 3A + 12 and C = 2A + 12 (see [15]). The plot of f (c) (solid line in Fig. 1) shows that
the function has a local minimum f (c) = 1 for c = 0, which corresponds to the metastable austenitic
phase and a global minimum f (c) = 0 for c = 1 corresponding to the stable martensitic phase. However,
this asymmetric function leads to difficulties when the phase field model for martensitic transformations is
combined with the damage model. Due to its higher separation energy, a crack in the austenitic phase would
be more likely than in martensite. Therefore, the separation potential is split into the symmetric double well
part with d(c) = c2(1 − c)2 (dotted line in Fig. 1) and the asymmetric part g(c) = D + E c2 + F c3 + G c4,
which is plotted with a dash-dotted line in Fig. 1. Thus, ψ sep can be written as

ψ sep = ψ
sep
d + ψ

sep
g = κsep

G

L
d(c) + κsep

G

L
g(c), (4)

where only the symmetric part ψ
sep
d is coupled with the damage parameter. The asymmetric function g(c)

should possess the same extrema as f (c), which leads to D = 1, E = G − 3, F = 2 − 2G and G > 3.
The elastic energy W (ε, c) in (3) is defined as

W (ε, c) = 1

2

[

ε − ε0(c)
] : C(c)

[

ε − ε0(c)
]

, (5)

where for the 2D analysis in this work, plane strain conditions are assumed. In (5), ε = 1
2

(∇u + ∇T u
)

is
the linearized strain tensor; the elastic stiffness tensor and the eigenstrain tensor depend linearly on the order
parameter c

C(c) = CA + c (CM − CA) , ε0(c) = c ε0 with ε0 =
[

ε0vol ε012

ε012 ε0vol

]

. (6)
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The martensitic transformation is accompanied by a positive volume change (see, e.g. [1]), which is considered
by the diagonal entries ε0vol in the eigenstrain tensor ε

0, while ε012 accounts for the lattice shear. To combine this
model for martensitic transformations with the damage model, the elastic energy is split up into a volumetric
W vol and a deviatoric part W dev. Additionally, the sign of the local volume change is taken into account (see
[24–26]),

W = W vol− + W vol+ + W dev, (7)

where

W vol− =

⎧

⎪
⎨

⎪
⎩

K (c)

2
tr(ε − ε0(c))2 if tr(ε − ε0(c)) < 0

0 else

, (8)

W vol+ =

⎧

⎪
⎨

⎪
⎩

K (c)

2
tr(ε − ε0(c))2 if tr(ε − ε0(c)) ≥ 0

0 else

(9)

and
W dev = μ(c)

[

e − c e0
] : [

e − c e0
]

. (10)

In (10), e = ε− tr(ε)

2
1 and e0 = ε0− tr(ε0)

2
1 are the deviatoric parts of the strain tensor ε and the eigenstrain

tensor ε0 in this 2D formulation, with 1 denoting the 2D identity tensor. Furthermore, K (c) and μ(c) are the
bulk and the shear modulus, respectively, depending on the phase transformation order parameter c. This
decomposition of the elastic energyW requires the elasticity tensorsCA andCM to be isotropic, which implies
K (c) = KA + c (KM − KA) and μ(c) = μA + c (μM − μA).

Thus, the phase field potential for martensitic transformations ψ can be split up in the following way

ψ =ψs + ψns, (11)

ψs =W vol+ + W dev + ψ
sep
d

︸ ︷︷ ︸

ψ∗

+ψgrad = ψ∗ + ψgrad, (12)

ψns =W vol− + ψ
sep
g . (13)

In (1), ψns is not coupled with the damage variable s. In that way, the elastic energy associated to the negative
volume change W vol− cannot be minimized by creating cracks, which leads to asymmetric results in tension
and compression [24–26]. This distinction is necessary since the eigenstrain ε0(c) of the martensitic phase
leads to compression even if exclusively traction load is applied. Additionally, the interaction of the asymmetric
part of the separation potential ψ

sep
g with the crack energy πcrack is prevented. A coupling of ψ

sep
g with the

damage variable would lead to unphysical results.
Different from the approach in [22,23], the evolution equation of the order parameter c is given by the

variational derivative of the combined phase field potentialπ (instead of the phase field potential formartensitic
transformations ψ) with respect to the order parameter c, i.e.,

ċ = −M
δπ

δc
= −M

[

s2
δψs

δc
+ δψns

δc

]

= −M

[

s2
(

∂W vol+

∂c
+ ∂W dev

∂c
+ κsep

G

L

∂d

∂c
− κgrad G L Δc

)

+∂W vol−

∂c
+ κsep

G

L

∂g

∂c

]

. (14)

The mobility parameter M influences the velocity of the martensitic transformation. Thus, the martensitic
phase evolves in dependence of the damage variable s, considering the influence of crack propagation on the
martensitic transformation.
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2.2 Field equations

Neglecting inertia effects, the balance of linear momentum states

divσ + f = 0, (15)

where the volume force f is assumed to be f = 0. In (15), the Cauchy stress tensor σ is given by the
constitutive relation

σ = ∂π

∂ε
= K (c) tr−(ε − ε0(c))1 + s2

[

K (c)tr+(ε − ε0(c))1 + 2μ(c)
(

e − c e0
)]

. (16)

The evolution Eq. (2) and (14), for the damage variable s and the order parameter c, respectively, plus the
equilibrium condition (15) complete the set of field equations.

3 Numerical implementation

The model is implemented in a 2D finite element framework, applying an implicit time integration scheme for
the transient terms. The nodal degrees of freedom are the mechanical displacements u, the order parameter c
and the damage variable s. The numerical implementation is explained in detail in [29]. For the implementation,
the weak formulations of the field Eqs. (15), (14) and (2) are discretized

∫

V

∇ηu : σ dV =
∫

∂Vt

ηu t
∗ dA, (17)

∫

V

ċ

M
ηc dV −

∫

V

s2 q ∇ηc dV +
∫

V

s2
∂ψ∗

∂c
ηc dV +

∫

V

∂ψns

∂c
ηc dV = −

∫

∂V

q∗ ηc dA, (18)

and
∫

V

ṡ

Ms
ηs dV −

∫

V

qs ∇ηs dV +
∫

V

∂π

∂s
ηs dV = −

∫

∂V

q∗
s ηs dA, (19)

where ηu, ηc and ηs are test functions for the respective field quantities while q = − κgrad G L ∇c and
qs = −Gs Ls ∇s. The boundary conditions for the stresses σ is the traction t∗ = σ n, for q the normal flux
q · n = 0 and for qs the normal flux qs · n = 0, where n is the outer normal vector to the volume V . For the
discretization of u, c and s, the shape functions NI for node I are used while Voigt notation is denoted by an
underbar (·) and nodal quantities by the superimposed hat ˆ(·)

u =
N

∑

I=1

NI ûI , ε =
N

∑

I=1

Bu
I ûI , (20)

c =
N

∑

I=1

NI ĉI , ∇c =
N

∑

I=1

Bc
I ĉI , (21)

s =
N

∑

I=1

NI ŝI , ∇s =
N

∑

I=1

Bs
I ŝI , (22)

ċ =
N

∑

I=1

NI ˆ̇cI , ṡ =
N

∑

I=1

NI ˆ̇sI , (23)

where

Bu
I =

⎡

⎣

NI,x 0
0 NI,y

NI,y NI,x

⎤

⎦ , Bc
I =

[

NI,x
NI,y

]

and Bs
I =

[

NI,x
NI,y

]

. (24)
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The discretizations (20–23) are applied to the left-hand sides of Eqs. (17), (18) and (19) to obtain the nodal

residuals as a function of the nodal degrees of freedom d̂ J = (ûJ , ĉJ , ŝJ )
T and the rates ˆ̇d J ,

R I (d̂ J ,
ˆ̇d J ) =

⎡

⎢

⎣

Ru
I (d̂ J )

Rc
I (d̂ J ,

ˆ̇d J )

Rs
I (d̂ J ,

ˆ̇d J )

⎤

⎥

⎦ (25)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∫

V

(

Bu
I

)T
σ dV

∫

V

NI
ċ

M
dV −

∫

V

(

Bc
I

)T
s2 q dV +

∫

V

NI

(

s2
∂ψ∗

∂c
+ ∂ψns

∂c

)

dV

∫

V

NI
ṡ

Ms
dV −

∫

V

(

Bs
I

)T qs dV +
∫

V

NI
∂π

∂s
dV

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The derivative of the nodal residuals with respect to the nodal degrees of freedom yields the entries of the
stiffness matrix K I J given by

K I J = ∂R I

∂ d̂ J

=
⎡

⎣

K uu
I J K uc

I J K us
I J

K cu
I J K cc

I J K cs
I J

K su
I J K sc

I J K ss
I J

⎤

⎦ , (26)

with

K uu
I J =

∫

V

(

Bu
I

)T ∂

∂ û

(

∂π

∂ε

)

dV

K uc
I J = K cu

I J =
∫

V

(

Bu
I

)T
s2

(

σ̃ − σ 0) NJ dV

K us
I J = K su

I J =
∫

V

(

Bu
I

)T ∂W

∂s
NJ dV

K cc
I J =

∫

V

[

s2 κgradGL
(

Bc
I

)T Bc
J + NI

(

s2
∂2ψ∗

∂c2
+ ∂2ψns

∂2c2

)

NJ

]

dV

K cs
I J = K sc

I J =
∫

V
2 s

[

NI
∂ψ∗

∂c
− (

Bs
I

)T q
]

NJ dV

K ss
I J =

∫

V

[

GsLs
(

Bs
I

)T Bs
J + NI

∂2π

∂s2
NJ

]

dV

where σ̃ = (

CM − CA

) (

ε − ε0(c)
)

and σ 0 = C(c)
∂ε0(c)

∂c
.

Furthermore, the damping matrix D I J reads

D I J = ∂R I

∂ ˆ̇d J

=
∫

V

⎡

⎢

⎢

⎢

⎣

0 0 0

0
1

M
N 2
I 0

0 0
1

Ms
N 2
I

⎤

⎥

⎥

⎥

⎦

dV . (27)

The integrals are evaluated using Gauß quadrature. Applying the backward Euler method as an implicit time
integration scheme (see, e.g. [30]), the system matrix SI J is formed according to

SI J = 1

Δt
D I J + K I J . (28)

Within the global Newton iteration, SI J is used to compute the increments of d̂ J for the new time step.
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Fig. 2 Inital configuration: austenitic specimen with preexisting crack under mode I loading

4 Numerical examples

The model is implemented into a four-node quadrilateral plane element with bilinear shape functions. Con-
cerning the material parameters, the bulk and shear moduli

KA = 1.027 105
N

mm2 , μA = 0.28 105
N

mm2 ,

KM = 1.1 KA, μM = 1.1μA, (29)

are taken into account, where KA and μA are proposed in [15]. The eigenstrain is set to

ε0 = [

0.02 0.02 0.1
]T (30)

which considers the volume change and the lattice shear during the martensitic transformation. The calibration
constants are determined to be κsep = 3.2937 and κgrad = 1.5, leading to the interface energy density between
the phases corresponding to G = 0.1 J

m2 . The length parameter is set to L = 5 nm, so that the transition zone

can be resolved by several elements. Furthermore, for the crack energy Gs = 0.2 J
m2 and the crack width

Ls = 5 nm are taken into account. The value of the mobility constant Ms = 1.0 · 1012 m3

J s is chosen fairly
high, so that the crack solution can be considered as quasi-static. In order to relate the phase transformation to
the same time scale, the mobility constant M = 1.0 · 1012 m3

J s is used for evolution of the martensitic phase.
In the following, two examples with the same initial configuration are studied, which can be seen in Fig. 2:

An austenitic specimen with a preexisting crack under mode I loading.

4.1 Purely austenitic specimen

For comparison, in a first example, themartensitic transformation is suppressed by imposingDirichlet boundary
conditions c = 0 on the order parameter c. The resulting contour plots can be seen in Fig. 3, where elements
with s < 0.1 are suppressed. Under the load applied, the crack starts to grow and propagates straight through
the austenitic matrix. This result is expectable since the material of the specimen is homogeneous.

4.2 Specimen subject to phase transformation

In this example, again an austenitic specimen is examined andhowever subject to themartensitic transformation.
In Fig. 4, the martensitic evolution can be seen, where austenite and α′-martensite are depicted in black and
white, respectively. Under mode I loading, α′-martensite forms at the crack tip (Fig. 4a), in agreement with
experimental studies [1,4]. In the following time steps, the martensitic phase evolves in a plate-like shape
in diagonal direction (Fig. 4b), confirmed by other theoretical studies, e.g. [15,22], and crystallographic
theories [31]. In [32], it is shown that the diagonal growing direction results from the volumetric part of the
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(a) (b)

Fig. 3 Crack formation for an austenitic specimen with preexisting crack under mode I loading. a t = 1.5 10−7. b t = 4.34 10−7

c

0 1

(a) (b) (c)

Fig. 4 Austenitic specimen (black) with preexisting crack under mode I loading: evolution of the martensitic phase (white). a
t = 1.5 10−7. b t = 2.17 10−7. c t = 2.45 10−7

transformation-induced eigenstrain. In comparison with the austenitic specimen in subsection 4.1, a different
crack pattern is observed (Fig. 4c). Thus, the formation of the martensitic phase influences the crack evolution.
Fig. 5b, d show the distribution of the normal stress component in vertical direction σyy for both simulations
after a few time steps, where tensile stresses are shown in white, compressive stresses in black. The stress
distribution for the purely austenitic specimen in Fig. 5b is expected since high tensile normal stresses in
vertical direction arise at the crack tip. However, the formation of martensite at the crack tip (Fig. 5c) leads
to a different stress field (Fig. 5d). The positive volume change, which accompanies the phase transformation,
results in a volumetric eigenstrain within the martensitic phase while the lattice shear during the transformation
yields an eigenshear component ε012. For the same load applied, the eigenstrain leads to higher tensile stresses
in vertical direction at the crack tip while compressive stress is induced in the adjacent austenitic area below
the crack and the martensitic phase.

Consequentially, the crack does not propagate straight through the specimen but kinks and grows initially
in vertical direction (Fig. 4b). Additionally, it can be observed that the crack propagation does not start until
the martensitic phase has grown almost completely through the specimen (Fig. 4b). Generally, the martensitic
transformation dissipates energy, which is therefore not available for cracking (see [2]). When the martensitic
plate extends across the width of the specimen, the elastic energy, which arises due to the eigenstrain, can be
reduced on the macro level in that the specimen is deformed (see [22]). Yet, this deformation of the specimen
induces additional stress on the crack tip. Regarding the considered eigenstrain tensor ε0 in (30), the shear
component ε012 is considerably larger than the volumetric components ε0vol, leading to a shear loading when
the martensitic phase has grown through the specimen. This shear loading induces high normal stresses in
horizontal direction below the crack tip in the martensitic phase (Fig. 6b).

The crack starts to propagate perpendicular to the strain axis in vertical direction. Short cracks inmetastable
austenitic steels, which are oriented perpendicular to the strain axis have been experimentally observed, e.g.,
by [2].

During the next time steps, the crack proceeds to propagate in the transition zone between the phases.
Considering the phase field potential for martensitic transformations in (3), the contributions of the gradient
energy density ψgrad and the separation energy density ψ sep are high in the transition zone. These energy
contributions can be reduced by the crack propagating in the phase boundary. In experimental studies, cracks
propagating along austenite-austenite grain boundaries are observed (see, e.g. [2]). For boundary orientations,
which deviate strongly from the current crack propagation direction, Stolarz and coworkers find a temporal
crack stopping. For this example, the interface between the phases exhibits a strong curvature. However, the
expansion of the martensitic phase in vertical direction enables the crack to grow in the transition zone without
strong changes in direction. Therefore, the crack formation also has impact on the evolution of α′-martensite.

Subsequently, the α′-martensite continues expanding in such a way that the crack propagates vertically
within the α′-phase (Fig. 4c). This again coincides with the findings in [2], where the authors observe the crack
growing without reaching the austenite-α′-martensite boundary.
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c

0 1

σ22

−250 MPa 350

(a) (b)

austenitic specimen

(c) (d)

specimen subject to

martensitic transformation

Fig. 5 Contour plots of σ22-components (right) and the corresponding evolution of the martensitic phase (left, austenite: white,
martensite: black), first row: austenitic specimen, second row: specimen subject to phase transformation. a t = 1.5 10−7. b
t = 1.5 10−7. c t = 1.5 10−7. d t = 1.5 10−7

c

0 1

σ11

−750 MPa 750

(a) (b)

Fig. 6 Contour plot of σ11-component (right) and the corresponding evolution of the martensitic phase (it left, austenite: white,
martensite: black). a t = 2.17 10−7. b t = 2.17 10−7

It can be concluded that the martensitic formation influences the crack propagation and vice versa. Thereby,
the eigenstrain within the α′-martensite affects the process on the microscale strongly. The simulation results
could be related to experimental observations.

5 Summary

A combined phase field model for martensitic transformations and fracture is proposed, based on the damage
variable s ∈ [0, 1], which is assumed to evolve according to the TDGL equation. The damage variable
is combined with the model for martensitic transformations introduced in [22,23] to study the impact of
the martensitic transformation on the crack propagation. In accordance with experimental observations α′-
martensite forms at the crack tip, which clearly influences the crack path. Due to the volume change and the
lattice distortion during the phase transformation, an eigenstrain in the martensitic phase arises. This leads
to a different stress field compared to a homogeneous austenitic specimen with the same load applied. The
eigenstrain induces a shear deformation, which initiates the crack propagation.

For future work, the influence of microstructure, especially the phase properties on the crack formation,
will be investigated, where, e.g., the eigenstrain, the energy barrier and the velocity of the phase transformation
could be taken into account.
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