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Abstract Piezoelectric inertia motors use the inertia of a body to drive it by means of a friction contact in
a series of small steps. It has been shown previously in theoretical investigations that higher velocities and
smoother movements can be obtained if these steps do not contain phases of stiction (“stick-slip” operation),
but use sliding friction only (“slip-slip” operation). One very promising driving option for such motors is
the superposition of multiple sinusoidal signals or harmonics. In this contribution, the theoretical results are
validated experimentally. In this context, a quick and reliable identification process for parameters describing
the friction contact is proposed. Additionally, the force generation potential of inertia motors is investigated
theoretically and experimentally. The experimental results confirm the theoretical result that for a given max-
imum frequency, a signal with a high fundamental frequency and consisting of two superposed sine waves
leads to the highest velocity and the smoothest motion, while the maximum motor force is obtained with
signals containing more harmonics. These results are of fundamental importance for the further development
of high-velocity piezoelectric inertia motors.

Keywords Inertia motor · High velocity · Stick-slip motor · Slip-slip operation ·
Friction parameter identification

1 Introduction

Piezoelectric inertia motors have originally been developed in themid-1980s for fine positioning inmicroscopy
applications [1–3]. Facilitated by the fact that they have a simple construction and are controlled by a single
signal, which allows for low production costs and simplifies miniaturization, inertia motors have been applied
in several other fields in the last years, often in miniaturized consumer goods [4–8]. In such applications,
criteria like the motor velocity or its power consumption and lifetime are much more important than in classic
microscopy applications.

All these motors use the inertia of a body to drive it by means of a friction contact in a series of small steps.
The steps are classically assumed to consist of alternating phases of stiction and sliding, which is why inertia
motors are also known as “stick-slip-drives”. Figure 1 illustrates one such movement cycle of an inertia motor
with a fixed stator.

But inertia motors can also operate without phases of stiction. Different researchers have presented inertia
motors using such a “slip-slip” mode of operation in the last years, e.g., in [5,9–13]. The principal advan-
tages, disadvantages and limitations of these two modes of operation have been investigated recently using a
theoretical model [14,15]. The following section gives a short summary of the theoretical findings. For their

M. Hunstig · T. Hemsel (B) · W. Sextro
Mechatronics and Dynamics, University of Paderborn, Pohlweg 47–49, 33098 Paderborn, Germany
Tel.: +49-5251-601805
Fax: +49-5251-601803
E-mail: tobias.hemsel@upb.de

http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-014-0940-0&domain=pdf


1734 M. Hunstig et al.

Fig. 1 Classic inertia motor operation cycle

Fig. 2 Ideal stator movement pattern for high motor velocity

experimental validation, a test motor has been set up, which is described in Sect. 3. Section 4 introduces the
model used for its simulation. Because inertia motors operate through friction, an appropriate characterization
of the friction contact is crucial for a valid motor model. Section 5 describes the experiments performed to
characterize the friction contact. Section 6 explains the experimental setup for the operational experiments,
during which different motor parameters have been measured. In Sect. 7, experimental results are described
and compared with simulation results. Section 8 closes this contribution with a short summary and conclusions
for further developments of high-velocity inertia motors.

2 Drive signals for high-velocity inertia motors

Inertia motors can be driven with a large variety of drive signals. A theoretical investigation of the idealized
operation of inertia motors [14] has shown that there are four principally different operation modes of inertia
motors, differentiated by two criteria: Does the slider move in discrete steps or continuously and is the propul-
sion of the slider achieved using stiction or by sliding friction only? The motor velocity in stick-slip operation
and/or with discrete steps is limited principally, only continuous slip-slip operation allows very high velocities.
To achieve the highest possible velocity, the displacement profile xR of the stator of an inertia motor would
ideally be a “parabolic sawtooth” signal as shown in Fig. 2, repeated at a high frequency and with a large stroke
[14].

Such sawtooth signals with their—ideally infinitely—steep flanks are hard to obtain with a real actuator,
especially at high fundamental frequencies. One very promising alternative drive signal for high-velocity
inertia motors is the superposition of multiple sinusoidal signals, i.e., harmonics. Such signals contain only
a few frequencies and thus do not require high-bandwidth actuators. They have been successfully used in
inertia motors by different researchers. In appropriately designed motors, these drive signals can make use
of resonant amplification to achieve large stator amplitudes and thus high velocities [9–11,16], even with
electrical excitation amplitudes as low as 0.8 V [10].

In [15], frequency-limited signals composed of different numbers of harmonics were derived from the ideal
signals shown in Fig. 2 using Fourier series and Lanczos’ σ factors [17, pp. 534–538] to reduce undesired
vibrations. Figure 3 shows examples of such signals with 2, 3, and 4 superposed harmonics.

With a transducer of limited bandwidth, a trade-off between a high fundamental drive frequency and a large
number of harmonics has to be made. Simulations documented in [15] show that, with a given frequency fn
of the highest harmonic, the highest velocity and the smoothest motion are achieved when the motor is driven
with a signal containing only two harmonics. With this signal, the motor also reaches the highest velocity per
electrical input power. Recent investigations [18] show that the force generation potential of an inertia motor is
largely independent of the drive frequency, but can be increased significantly by using a drive signal containing
more than two harmonics.
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Fig. 3 Drive signals derived from the parabolic sawtooth signal in Fig. 2, composed of n harmonics, with the same fundamental
frequency 1,156 Hz (left) the same maximum frequency fn = n · f0 = 4,625Hz (right)

Fig. 4 Test motor—top view (left) and front view (right)

Fig. 5 Frequency sweep of amplitude and phase of the ”mechanical admittance” Ymech = ẋR/u of the stator without slider

3 Design of a test motor

In order to validate the above-mentioned theoretical results, a test motor has been built, which is capable
of operating with the same stator amplitude at different frequencies and numbers of harmonics. Resonant
inertia motors provide high velocities at low electric excitation amplitudes as well, but they are not suitable
for the experiments because they can operate properly only at one fixed fundamental frequency and with
two harmonics. Instead, a motor has been constructed whose operation is unimpaired by any resonant ef-
fects at frequencies up to more than 10kHz. Its stator consists of a piezoelectric multilayer actuator with
a rod made of carbon fiber-reinforced plastic glued to one of its ends. The other end of the piezoelectric
actuator is glued to a massive steel block. A cylindrical brass slider moves along the rod. It is cut into
two halves which are held together by rubber bands providing the normal force in the friction contact. Fig-
ure 4 shows photographs of the motor. It has a total length of about 52 mm, and the slider has a mass of
6.92 g.

Figure 5 shows a frequency sweep of the “mechanical admittance” Ymech, i.e., the relation of the velocity
of the rod tip ẋR and the excitation voltage u. Measurements of the surface velocity along the rod have shown
that it is approximately the same at each point. The rod can thus be regarded as a rigid body.

4 Motor model

The rigid body model shown in Fig. 6 is used to simulate the motor operation: xR(t) and xS(t) are the
displacements of rod and slider, respectively; mS is the slider mass. The contact force Fc(t) between rod and
slider results from the gravitational force Fg = mSg, where g = 9.81m/s2 is the gravitational constant, and
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Fig. 6 Rigid body model of the investigated inertia motor

an external force Fz(t), both assumed to act on the center of gravity C of the slider. The friction force Ff (t)
acts between rod and slider. An additional force Fx (t) acts on the slider in positive direction of xS .

The equation of motion of the slider is thus

mSẍS(t) = Fx (t) − Fg sin γ + Ff (t). (1)

A frictionmodel with two discrete states of stiction and sliding is assumed in the following. During stiction,
rod and slider move together, which results in

Ff (t) = mSẍR(t) + Fg sin γ − Fx (t). (2)

Sliding begins when Ff (t) exceeds the break-away force Ff,0(t) determined by Fc(t) and the coefficient of
stiction μ0: ∣

∣Ff (t)
∣
∣ > Ff,0(t) = μ0Fc(t). (3)

During sliding, the friction force is determined by

Ff (t) = μd Fc sgn (ẋR(t) − ẋS(t)) , (4)

where μd is the coefficient of sliding friction, which can be a function of the relative velocity between rod and
slider. Stiction begins again when the velocities of rod and slider are equal:

ẋR(t) = ẋS(t). (5)

In all following calculations and experiments, the slider is operated horizontally, i.e., with γ = 0◦, with a
constant contact force Fc = Fc(t), and unless explicitly stated otherwise, without any external force in sliding
direction, i.e., with Fx (t) = 0.

5 Characterization of the friction contact

When characterizing friction contacts, the measurement conditions should generally be as close as possible to
the operating conditions of the investigated system [19], because friction coefficients and other parameters of
one and the same friction contact can change significantly with measurement conditions [20].

In the test motor, the friction force between rod and slider could easily be measured by dragging the slider
along the rod and measuring the force required to move the slider. But this setup with large movements and an
approximately constant relative velocity is very different from the conditions during inertia motor operation.
It is also possible to determine the friction force acting on the slider during normal motor operation from
the slider acceleration, which can be derived from a laser vibrometer measurement of the slider velocity, as
described in [21]. But this method is rather time-consuming and produces heavily fluctuating results.

The friction forces in the inertia motor have therefore been determined using a method based on evaluating
the movement of the slider when the rod performs a sinusoidal motion: Assuming Coulomb friction, the slider
velocity shows one of three characteristics depending on the excitation amplitude and frequency. Examples of
these characteristics are shown in Fig. 7: The slider either continuously sticks to the rod as in Fig. 7a, breaks
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(a) (b)

(c) (d)

Fig. 7 Principal characteristic of the slider velocity at sinusoidal rod motion of different amplitude. Simulated for a frequency
of 2,000Hz and stator amplitudes of a 0.6µm, b 1.2µm, c 1.8µm, and d 18µm. a Continuous stiction. b Partial sliding.
c Continuous sliding (low excitation amplitude). d Continuous sliding (high excitation amplitude)

Fig. 8 Measured velocities of rod and slider. Excitation frequency 2,000Hz, excitation amplitude rising from upper left to lower
right, approximately 0.1, 0.8, 2.5, and 8.0µm

loose and slides for parts of the period as in Fig. 7b, or slides all the time as in Fig. 7c, d. In the first case,
the slider velocity is sinusoidal. In the third case, it is triangular. This transition with increasing excitation
amplitude from a sinusoidal to a triangular waveform has consequences for the mean absolute velocity and
acceleration of the slider, the phase shift between the velocities of rod and slider and the amplitudes of higher
harmonics in the slider velocity. These characteristics can be evaluated in order to determine the coefficients
of stiction and friction [18]. For example, the mean absolute slider acceleration āS,abs increases linearly with
increasing excitation amplitude as long as the slider continuously sticks to the rod as in Fig. 7a. If the slider is
sliding all the time as in Fig. 7c, d, āS,abs equals the acceleration produced by the friction force μd Fc, which
is constant in a Coulomb friction model, cp. equation (4).

The velocities of rod and slider are measured independently. By driving the stator with a sinusoidal voltage
of stepwise increasing and decreasing amplitude at a suitable fixed frequency, and evaluating each of the steps,
a large number of measurement points is obtained in a short time. As an example, Fig. 8 shows measured time
series of the velocities of rod and slider at different excitation amplitudes. Fig. 9 shows the dynamic friction
force, calculated from the mean absolute slider acceleration as

Ff,d = mS · āS,abs = mS · 1

(k2 − k1) · T
∫ k2T

k1T
|ẍS(t) − ẍR(t)| dt, (6)

for all measured cases, plotted over the individual mean absolute relative velocity

�v = 1

(k2 − k1) · T
∫ k2T

k1T
|ẋS(t) − ẋR(t)| dt, (7)
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Fig. 9 Dynamic friction force Ff,d calculated from the mean absolute slider acceleration āS,abs in the experiments with sinusoidal
rod motion, plotted over the mean absolute relative velocity v̄r,abs

Fig. 10 Experimental setup for the determination of motor characteristics

where T is the excitation period and k1, k2 are appropriately chosen whole numbers.
Other than in a Coulomb frictionmodel, Ff,d does not saturate with rising v̄r,abs, but continuously increases.

The experiments show that there is no significant phase of stiction at v̄r,abs ≥ 10 mm/s. In this range of v̄r,abs,
the friction force can thus be determined from āS,abs as described above. A regression line was calculated using
a least squares approach. It follows the equation

Ff,d(v̄r,abs) = 0.940 N + 2.213 Ns/m · v̄r,abs. (8)

For a Coulomb friction model, i.e., a constant friction force, the regression yields

Ff,d = 1.01N. (9)

The break-away force Ff,0 = μ0Fc generally has little to no influence on the characteristics of high-velocity
inertia motors as these mostly use sliding friction. Several classic experiments suggest that the coefficients
μ0 and μd are equal in systems with large rates of change of the tangential force [22, p. 90 and references
given therein]. This is the case in high-velocity inertia motors such as the investigated test motor. Because it
is difficult to determine directly at conditions similar to the operation of the test motor, the break-away force
is therefore assumed to equal the dynamic friction force at infinitely small relative velocity, which can be
calculated as Ff,d

(

v̄r,abs = 0
)

from Eq. (8) or (9).

6 Experimental setup and procedure

The desired stator displacement signals can be obtained only if the electric driving signal accounts for the
stator dynamics. This is achieved in two steps: First, the desired signal is passed through an inverse linear
model of the stator dynamics derived from the frequency sweep shown in Fig. 5, as described in [23]. The
stator is then excited using the obtained electrical signal. Due to nonlinearities of the system such as hysteresis
and amplitude dependence, the desired displacement profile is typically reached only roughly with this signal.
Thus, in a second step, the measured rod displacement is analyzed and amplitudes and phases of the electrical
signal are adjusted accordingly. Typically, one such iteration cycle is sufficient to achieve amplitude and phase
errors below 1%, respectively, 1◦.

Figure 10 shows the experimental setup used for the experimental determination of motor characteristics.
The motor is driven so that the slider moves between the two end stops. These are connected to a force sensor
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Fig. 11 Mean steady state spring force F̄x calculated for different spring stiffnesses kL

whose signal is recorded together with the velocities of rod and slider, the voltage applied to the piezoelectric
actuator, and the resulting current.

All performance indicators defined in detail in the theoretical analyses in [14,15] are investigated experi-
mentally: The steady state velocity v̄∞ is determined as the mean slider velocity after the start-up phase and
before the slider hits an end stop. The start-up time t0.99, after which the motor reaches 99% of its steady
state velocity, is determined using an exponential regression function. At very low excitation frequencies, the
mean motor velocity does not increase, but decrease over the first periods. In these cases, the same procedure
is used to determine t1.01, , the time after which the motor reaches 101% of its steady state velocity. For the
investigated frequencies, the steady state velocity of the motor is reached after only a few excitation periods,
often even in the first period. Combined with inevitable measurement noise, this makes the start-up time the
performance indicator which is most difficult to determine. Instead of the steady state smoothness indicator
ς∞ introduced in [14], its inverse, the steady state peak-to-peak ripple r∞ of the slider velocity is investigated,
because a standard definition of ripple can be used. It is determined from the measured slider velocity ẋS(t)
in steady state and v̄∞ as

r∞ = max (ẋS(t)) − min (ẋS(t))

|v̄∞| . (10)

The durability indicator δ∞ introduced in [15] describes the ratio of traveled distance and worn volume.
For its calculation, the normal force Fc in the friction contact must be known. Because this force cannot be
measured in the test motor, Fcδ∞, which can be determined without knowing Fc, is calculated and compared
instead. ζ∞ = v̄∞/S is an indicator for the energy efficiency of an inertia motor, describing the ratio of steady
state velocity v̄∞ and input power S. For its experimental determination, the amplitude S of the complex power
is determined from the measured voltage and current of the piezoelectric actuator.

In addition to the aforementioned performance indicators, the force generation potential of the motor is
investigated. The force generated by an inertia motor has been investigated by only a few researchers to date
and has previously been measured by making the slider move against a spring or load cell [24–27], by driving
a part directly connected to a load cell instead of a slider [28], or by lifting weights [29]. The influence of the
measurement method on the results and their practical significance have not been investigated so far. A model
simulation, using Fx (t) as a spring force, shows that running the slider against a spring is a robust method to
determine the force generation potential of an inertia motor if the spring is sufficiently soft. Figure 11 shows
the mean spring force F̄x in steady state for one example setup. In this case, the critical spring stiffness is
approximately 80 N/mm. At lower stiffnesses, the steady state spring force is independent of the stiffness.
This method can therefore be used to determine the force generation potential of an inertia motor even if the
load stiffness is not known exactly, as long as it can be assured to be below this critical value which can be
identified from model simulations.

In the experiments, the motor is driven using signals containing 2, 3, or 4 harmonics with fundamental
frequencies f1 between 578 and 9,250Hz. The frequency of the highest harmonic in a signal is referred to as
fn = n f1. The amplitude of the excitation voltage is chosen so that the rod has a stroke of 15 µm in all of
these cases.

7 Results

The results of the experiments have been comparedwith simulations using two different frictionmodels derived
from the characterization of the friction contact described in Sect. 5: Model 1 uses Coulomb friction with the
dynamic friction force Ff,d = 1.01N. Model 2 uses a velocity-dependent dynamic friction force Ff,d(�v) as
described by Eq. 8. Figure 12 shows simulation and experimental results.
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Fig. 12 Steady state velocity v̄∞, velocity ripple r∞, start-up time tq (with q = 0.99 or 1.01), durability indicator δ∞Fc, velocity
to input power ratio ζ∞, and maximum load force Fx of the test motor, determined experimentally and in simulations with
different numbers of harmonics n and different maximum frequencies fn

Except for the start-up time, which is difficult to determine experimentally especially at low frequencies,
all experimental results are well reproducible. In almost all cases, simulation with friction model 2 produces
results closer to the measurement than simulation with friction model 1. A larger relative deviation between
model 2 and the measurement can only be observed in the case with the lowest fundamental frequency (n = 4
at fn = 2,312Hz), where stiction has the largest influence on the slider motion.

8 Conclusions

The comparison of the two friction models shows that it can be important to pay attention to the dependence
of the friction force on the relative velocity between the friction partners when simulating an inertia motor.
Using a friction model which incorporates a velocity-dependent friction force, the simulation reproduces the
measured motor characteristics well, especially at higher frequencies. Inertia motors which are constructed for
high velocity usually operate at frequencies above the highest frequencies which can be investigated using the
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test motor. A model with a velocity-dependent friction force should thus also be appropriate for the simulation
of these motors.

The experiments confirmed the theoretical findings from [14,15], that high-velocity inertia motors should
be drivenwith high frequencies and that two superposed sinusoidal signals are sufficient to reach high velocities.
If the motor shall be able to generate larger forces, signals with more harmonics should be used. The driving
frequency has little influence on the generated force above a relatively low threshold.
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