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Abstract In this work, the response and dissipated energy of the well-known Bouc–Wen model are examined
in detail. New analytical and numerical solutions are derived using a generic model formulation without any
parameter constraints. Theoretical issues, such as the inexistence of an elastic domain and the evaluation of
the residual deformation after a loading–unloading cycle are addressed by means of analytical equations.
This work capitalizes on previous findings by the author and recent advancements in the field to target both
theoretical and numerical implementation issues.
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1 Introduction

Hysteresis is a phenomenon observed across many scientific fields ranging from mechanics, materials, and
magnetism to biology, sociology, and economics. According to Visintin [1], hysteresis = rate-independent
memory effect. Thus, the future state of a hysteretic system depends not only on its current state but also on its
past history.

A popular and versatile hysteretic model is the Bouc–Wen model [2,3]. It has been applied in many
problems, including the response of beam members [4,5], concrete walls [6], masonry walls [7], seismic
isolation devices [8,9], wood joints [10], caisson foundations [11], magnetorheological fluid dampers [12,13],
as well as more specific applications such as the stick-slip phenomena in elevator guide rails [14], or the
restoring force in seat suspension systems [15], to name a few. A survey on the implementations of the Bouc–
Wen model can be found in the work of Ismail et al. [16].

Being phenomenological, the Bouc–Wen model is able to describe complex responses using even single-
degree-of-freedom (SDoF) systems. These can be embedded into large-scale models or used in finite element
analysis [17–19]. The complex internal mechanism producing the overall hysteresis is not examined at all.
Obviously, the response and dissipated energy of such a system is of great interest. A previous study examined
the model and produced certain analytical solutions [20], useful e.g., in the derivation of a modified Bouc–
Wen model compatible with Drucker’s and Il’iushin’s postulates of plasticity [21]. The study [20] is extended
herein in the following ways: (a) A popular generic formulation of the model is used, without any parameter
constraints, (b) Additional analytical solutions are derived, (c) Certain theoretical issues are addressed, such
as the inexistence of an elastic domain, the evaluation of the residual deformation after a loading-unloading
cycle, the relation of the derived solutions with other results found in the literature. (d) Detailed implementation
guidelines are presented in the Appendices, including worked examples and numerical algorithms.
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After the model formulation, the remainder of the study is arranged in two major sections, treating the
evaluation of the response and dissipated energy, respectively. The state of the art in each topic is described in
the introduction of the corresponding section.

2 Model formulation

The Bouc–Wen model captures the true hysteresis by means of auxiliary hysteretic variables which follow
suitable differential equations with zero initial conditions. For the case of a SDoF system, and following the
notation in [22], the hysteresis is given by:

� (t) = a k x (t) + (1 − a) D k z (t) (1)

where, 0 < a < 1, k > 0, D > 0, x (t) is the time history of the input variable and z (t) is a dimensionless
hysteretic variable which is governed by the following differential equation:

ż = D−1 (
Aẋ − β |ẋ | |z|n−1 z − γ ẋ |z|n) (2)

or, simply:

ż = D−1 (
A − (β sgn (z ẋ) + γ ) |z|n) ẋ (3)

in which n > 0 and sgn (·) is the signum function. It is noted that nowadays the notation varies from paper
to paper, and in several cases, the parameters β and γ are interchanged, e.g., [20]. In the context of structural
mechanics, x is usually the displacement, k the initial (elastic) stiffness, a the ratio of post to pre-yield stiffness,
D is the yield displacement, and n is a dimensionless exponential parameter which governs the abruptness
of transition between pre- and post-yield response. The dimensionless parameters A, β, γ control the shape
and size of the hysteretic loop. The parameter D can be omitted from Eqs. (1)–(3), in which case z obtains
units of length and may be referred to as the hysteretic displacement. However, using dimensionless hysteretic
variables is usually advantageous, since they are more meaningful with respect to the level of the plastification
of the system. Based on Eq. (1), the Bouc–Wen model can be visualized as two springs connected in parallel,
i.e., a linear elastic and a hysteretic spring, with �el (t) = a k x (t) and �h (t) = (1 − a) D k z (t).

3 Model response

3.1 Literature survey

Regarding the model response, Wen claims that when n = 1, the x − z curve “is of exponential type” [3].
However, he does not provide results. Dominguez et al. [23] provide results for n = 1 and n = 2, but some
integration constants aremissing [16]. Ikhouane andRodellar analyze themodel using “instrumental functions”
[22]. This approachwill be investigated in detail in a subsequent paragraph. Recently, analytical relations for the
response were derived for a Bouc–Wen model with well-defined mechanical properties [20]. These properties
are ensured by imposing specific parameter constraints, which are not necessary from a mathematical point
of view. Thus, analytical relations will be produced in the next section, in their most general form, for the
formulation of Eqs. (1) and (3).

3.2 Model classification

In [16,22], several classes of bounded-input, bounded-output (BIBO) stable Bouc–Wen models have been
defined. We will focus in classes I and II (in which A > 0, Table 1), as these usually represent the behavior
of actual systems, although the derived relations may be also applicable to non-BIBO-stable models. Cases
III and IV, in which A < 0, can be analyzed using the same methodology, if needed. In case V (A = 0), the
system exhibits linear response since z (0) = 0 and hence dz/dx = 0 due to Eq. (4). This case will be ignored
altogether.
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Table 1 BIBO stable Bouc–Wen model classification [16,22]

Parameter constraints Class

A > 0 and β + γ > 0 and β − γ ≥ 0 I

A > 0 and β − γ < 0 and β ≥ 0 II

Fig. 1 Response of a SDoF Bouc–Wen model under cyclic excitation

3.3 Solution for arbitrary n

The hysteresis produced by the Bouc–Wen model is rate independent. Equation (3) can be written in the form:

dz

dx
= D−1 (

A − (β sgn (z ẋ) + γ ) |z|n) (4)

where ẋ within the signum function serves only as an indicator of movement direction. Thus, the response of
Bouc–Wen model can be divided into four segments (AB, BC, CD, and DA) depending on the sign of ẋ and z
(Fig. 1).

Assuming A �= 0 and q = β sgn (z ẋ) + γ , constant for the transition under examination, i.e., there is
no transition between branches, the indefinite integral of Eq. (4) is given by Gauss’ hypergeometric function
2F1 (·). Accounting for initial conditions, one obtains:

x − x0
D

= z

A
2F1

(
1,

1

n
, 1 + 1

n
; q

A
|z|n

)∣∣
∣∣

z

z0

(5)

Equation (5) is valid even when q = 0, i.e., when γ = β and sgn (z ẋ) = −1, in which case it is simplified as:

x − x0
D

= z − z0
A

(6)

Note that Eq. (6) is independent of n.
Equation (5) explicitly provides the input x of the hysteretic operator in terms of its output z. Solving

Eq. (5) for z does not seem to be possible for an arbitrary value of n. Analytical solutions will be produced for
n = 1 and n = 2 in the subsequent sections.

The lack of a generic inverse relation z = f (x) is not so important, because the numerical evaluation
of z can be performed very efficiently. An inspection of Eq. (4) shows that the hysteretic parameter z is a
continuous and strictly monotonic function of x . Thus, there exists a single root, if any, of Eq. (5) within a
bracketed range. The root can be evaluated efficiently by bisection-type methods [20]. In particular, the Van
Wijngaarden–Dekker–Brent method exhibits excellent performance [20,24]. In order to define a bracket, the
maximum possible value of z is useful. Assuming loading conditions and setting dz/dx = 0 in Eq. (4), this
value is:

zmax = n

√
A

β + γ
(7)
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Note that A/(β + γ ) > 0 for classes I and II, as they exhibit softening behavior; thus, zmax is real. Alterna-
tively, other root-finding methods which do not require root bracketing may be applied. A worked example,
demonstrating loop tracing with arbitrary n, is provided in the Appendix A.

Note that, considering the hypergeometric function 2F1 (a, b, c;w), point (1, 0) is singular in the complex
plane and the limit needs to be evaluated as w → 1−. Proper evaluation techniques are given in the Appendix
C. In particular, when loading in either direction, root bracketing is attempted with maximum value of |z| equal
to zmax − ε, where ε is a sufficiently small number. If root bracketing fails, then the system has yielded fully
and z = ±zmax. When unloading, if root bracketing fails then there is a segment transition, i.e., from AB to
BC or from CD to DA, and the response needs to be evaluated in two steps.

3.4 Solution for n = 1

For n = 1, Eq. (5) is simplified as:

x − x0
D

= − sgnz

q
(ln (A − q |z|) − ln (A − q |z0|)) (8)

where, ln (·) is the natural logarithm and sgnz = sgn (z + z0), the sign of the hysteretic variable in the
transition under examination, i.e., sgnz = 1 for DA and AB branches; sgnz = −1 otherwise. This algorithmic
manipulation is necessary since occasionally z or z0 may be zero. Equation (8) is solved for z analytically:

z = sgnz A + (q z0 − sgnz A) e
− sgnz q (x − x0)

D

q
(9)

3.5 Solution for n = 2

For n = 2, Eq. (5) is simplified as:

x − x0
D

=
atanh

(√
q
A z

)
− atanh

(√
q
A z0

)

√
q A

(10)

where, atanh (·) is the inverse hyperbolic tangent. Equation (10) is solved for z analytically:

z =
tanh

(√
q A(x−x0)

D + atanh
(√

q
A z0

))

√
q
A

(11)

where, tanh (·) is the hyperbolic tangent. In the previous relations, complex numbers may be involved but the
result is real. The relation atanh (iy)/ i = atan (y) , i = √−1 can be used to simplify the equations.

3.6 Relation with other results in the literature

Regarding the limit cycle, Ikhouane and Rodellar analyzed a normalized version of the Bouc–Wenmodel using
“instrumental functions” [22]. In particular, for w ≥ 0 (σ ≥ 1/2 is always assumed):

ϕ−
σ,n (w) =

∫ w

0

du

1 + (2σ − 1) un
(12)

ϕ+
σ,n (w) =

∫ w

0

du

1 − un
(13)

while for w ≤ 0:

ϕ−
σ,n (w) =

∫ w

0

du

1 − (−u)n
(14)
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(a) (b)

Fig. 2 a Supposed closed loading/unloading cycle with no residual deformation b actual loading/unloading cycle of Bouc–Wen
model. The dotted line signifies the response of the linear spring

ϕ+
σ,n (w) =

∫ w

0

du

1 + (2σ − 1) (−u)n
(15)

Although these functions are defined explicitly, their use is cumbersome (e.g., the use of tabulated pairs of
inputs/results is suggested [22], with linear interpolation in between). Herein, it is noted that the integrals in
Eqs. (12)–(15) also have analytical solutions in terms of Gauss’ hypergeometric function. In particular, for
w ≥ 0:

ϕ−
σ,n (w) = w 2F1

(
1,

1

n
, 1 + 1

n
; (1 − 2σ)wn

)
(16)

ϕ+
σ,n (w) = w 2F1

(
1,

1

n
, 1 + 1

n
; wn

)
(17)

while for w ≤ 0:

ϕ−
σ,n (w) = w 2F1

(
1,

1

n
, 1 + 1

n
; (−w)n

)
(18)

ϕ+
σ,n (w) = w 2F1

(
1,

1

n
, 1 + 1

n
; (1 − 2σ) (−w)n

)
(19)

The use of the hypergeometric function is advantageous, because most software packages either have the
function already built-in, or it is easy to program it, as demonstrated in the Appendix C. Finally, the evaluation
of the inverse functions can be accomplished to any accuracy with bisection-type methods, in the spirit of the
methodology presented previously.

3.7 Inexistence of elastic domain

Regarding the response, Ikhouane et al. analyzed the hysteretic loops produced by the Bouc–Wen model by
dividing the response into a linear part, a transition part, and a plastic part [25]. Although clearly stated in [25],
it is worth emphasizing that the “linear” part of the response is almost linear. The Bouc–Wen model belongs
to the class of endochronic models, pioneered by Valanis [26], which discard the notion of a yield surface to
describe plasticity [27]. Based on the analytical relations produced herein, one can elaborate on this point.

Suppose there exists a closed loading/unloading cycle of theBouc–Wenmodelwith no residual deformation
(Fig. 2a). The response of the elastic spring is irrelevant in a closed deformation cycle. Regarding the hysteretic
spring, employing Eq. (5) for the transitions 0 → 1 and 1 → 2 (in which z1 > 0) and adding by parts, one
obtains:

2F1

(
1,

1

n
, 1 + 1

n
; β + γ

A
zn1

)
= 2F1

(
1,

1

n
, 1 + 1

n
; γ − β

A
zn1

)
(20)

Due to the monotonicity of the branches, Eq. (20) holds only when β = 0. In this case, the hysteretic spring
degenerates into a nonlinear elastic one with a response resembling to an elongated “S”.
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3.8 Evaluation of residual deformation

If β �= 0, then there exists some residual deformation irrespective of the amplitude of the loading, as shown
in Fig. 2b. Employing Eq. (5) in the transition 0 → 1 we obtain (z0 = 0, x0 = 0, z1 > 0):

x1
D

= z1
A

2F1

(
1,

1

n
, 1 + 1

n
; β + γ

A
zn1

)
(21)

Examining the transition 1 → 2 (z2 = 0):

x2 − x1
D

= 0 − z1
A

2F1

(
1,

1

n
, 1 + 1

n
; γ − β

A
zn1

)
(22)

While for the transition 2 → 3 (z2 = 0):

x3 − x2
D

= z3
A

2F1

(
1,

1

n
, 1 + 1

n
; β + γ

A
|z3|n

)
− 0 (23)

At point 3, z3 < 0 and the response of the linear spring is the opposite of that of the hysteretic spring. Setting
� = 0 in Eq. (1) we obtain:

z3 = − a x3
(1 − a) D

(24)

By adding Eqs. (21)–(23) by parts and substituting Eq. (24), we obtain an equation relating the value of z1,
i.e., the maximum value of z achieved during loading, obtained from Eq. (21), with the residual deformation
x3. In particular, for n = 1, z1 is given by:

z1 = A
1 − e− (β+γ )x1

D

(β + γ )
(25)

Then, x3 is given by:

x3 = − D

a (β + γ )

×

⎛

⎜⎜
⎝(α − 1) A + a ProductLog

⎛

⎜⎜
⎝−

(α − 1) e
1−a
a A (A − (β + γ ) z1)

(
1 − (γ−β)z1

A

)− β+γ
γ−β

a

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠ (26)

where, ProductLog(·) gives the principal solution of Lambert’s W function (or Omega function) [28].
Following the aforementioned methodology, we can examine the residual deformation x3 in a load-

ing/unloading cycle as a function of the loading intensity x1 (Fig. 3), where we observe that x3 maybe small
but it is nonzero, especially when n is small.

4 Dissipated energy

4.1 Literature survey

The dissipated energy is of great importance in mechanics as it is a direct measure of the damage level in
structural elements, especially when they are subjected to inelastic deformations [29]. Usually, the dissipated
energy of the Bouc–Wen model is either evaluated numerically or estimated based on the equivalent bilinear
system. Recently, analytical relations for the dissipated energy were derived for a Bouc–Wen model under
symmetric wave T-periodic input [20]. Herein, the parameter constraints imposed in [20] are lifted and the
most generic relations will be derived, for the formulation of Eqs. (1) and (3).
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Fig. 3 Normalized residual deformation of a system with A = 1, β = 0.75, γ = 0.25, k = 25, D = 0.15, α = 0.10 in a
loading/unloading cycle as a function of the maximum displacement during loading

Fig. 4 Steady-state response of hysteretic spring under symmetric wave T-periodic excitation

4.2 Solution

4.2.1 General outline

The dissipated energy is expressed by the area enclosed by hysteretic loops. The elastic spring of the Bouc–Wen
model does not dissipate energy, nor does it store energy in a closed displacement loop, and will be ignored.

In our case, the displacement amplitude is common in both directions (Fig. 4). Points A and C signify sign
reversal of velocity ẋ , whereas points B and D signify sign reversal of hysteretic parameter z. The maximum
value of the latter, occurring at point A, corresponds to the maximum displacement. Making use of symmetry,
it follows that xA = xmax = −xC and zA = −zC , where the subscript denotes the corresponding point of the
hysteretic loop. Considering the transition from point C to point A and employing Eq. (5), we obtain:

xmax

D
= zA

2A

(

2F1

(
1,

1

n
, 1 + 1

n
; γ − β

A
znA

)
+ 2F1

(
1,

1

n
, 1 + 1

n
; β + γ

A
znA

))
(27)

where, zA is the unknownmaximumobserved value of hysteretic parameter z, corresponding to the steady-state
response under symmetric excitation of amplitude xmax. There exist several analytical expressions of zA for
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Table 2 Analytical expressions for coefficient k̄∗
CD = k∗

CD

∣
∣
zA=zmax

for specific values of n

n k̄∗
CD

1
β−γ−2γ ln

(
2β

β+γ

)

(β−γ )2

2
2
√

γ−β atanh
(√

1− 2β
β+γ

)
−√

β+γ ln
(

2β
β+γ

)

2
√
A(γ−β)

4
4√γ−β

(
atan

(
4
√
1− 2β

β+γ

)
+atanh

(
4
√
1− 2β

β+γ

))
+ 4√β+γ atanh

(√
1− 2β

β+γ

)

2
4√
A3

√
γ−β

specific model parameters. In general, however, numerical evaluation must be employed. In similar manner, as
in the preceding section, the Van Wijngaarden–Dekker–Brent method [24] can be employed which converges
rapidly. If root bracketing with zA ∈ [0, zmax − ε] fails, then full yield is assumed and zA = zmax.

Having evaluated zA, the dissipated energy during a complete cycle can be expressed in terms of it. The
enclosed area is given by:

E =
∮

�hdx (28)

For softening models, such as Class I and II models, attempting to change variable and integrate in terms
of z leads to a formulation that is numerically unstable, as analyzed in [20]. A method that eliminates this
problem is to evaluate the complementary areas, i.e., the dashed areas of Fig. 4, and subtract them from the
outer rectangle. Making use of symmetry, the dissipated energy is then expressed as follows:

E = 4�h
maxxmax − 2

xA∫

xC

(
�h

max − �h
)
dx (29)

Where, the maximum possible value of �h
max = (1 − a) D k zmax has been used, although this is not

mandatory.

4.2.2 Unloading branch CD

Restricting attention to segment CD, the complementary area is given by:

ED′C ′CD = �h
max D

0∫

−zA

1 − z/zmax

A − (γ − β) (−z)n
dz (30)

This expression is simplified as ED′C ′CD = �h
max D k∗

CD , where the coefficient k
∗
CD can be expressed in its

general form as follows:

k∗
CD = zA

A

(

2F1

(
1,

1

n
, 1 + 1

n
; γ − β

A
znA

)
+ zA

2zmax
2F1

(
1,

2

n
, 1 + 2

n
; γ − β

A
znA

))
(31)

In the common case of fully yielding systems, we can substitute zA = zmax and Eq. (31) is simplified as:

k̄∗
CD = zmax

A

(

2F1

(
1,

1

n
, 1 + 1

n
; γ − β

β + γ

)
+ 1

2
2F1

(
1,

2

n
, 1 + 2

n
; γ − β

β + γ

))
(32)

There exist several elegant analytical simplifications of Eq. (32) for specific values of n. These are summarized
in Table 2, where ln (·) is the natural logarithm and atan (·) is the inverse tangent.

In the special case of β = γ , the unloading branches are straight lines and Eq. (31) is simplified as:

k̂∗
CD = zA (zA + 2zmax)

2A zmax
(33)

Finally, when both β = γ and the system yields fully, Eq. (31) is simplified as:

ˆ̄k∗
CD = 3zmax

2A
(34)
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Table 3 Analytical expressions for coefficient k̄∗
DA = limzA→z−max

(
k∗
DA

)
for specific values of n

n k̄∗
DA

1
2

5A
3(β+γ )2

1 1
β+γ

3
2

2
(√

3π−9
)

9 3
√

A(β+γ )2

2 ln(2)√
A(β+γ )

3 π

3
√
3 3

√
A2(β+γ )

4 π+ln(4)

8 4
√

A3(β+γ )

6
√
3π+ln(64)

18 6
√

A5(β+γ )

12 12
√

A
β+γ

2π+ln(4)+√
3 ln

(
7+4

√
3
)

24A

4.2.3 Loading branch DA

Following similar formulation for segment DA, the complementary area is evaluated as:

EAD′D = �h
maxD

zA∫

0

1 − z/zmax

A − (β + γ ) zn
dz (35)

This expression is simplified as EAD′D = �h
maxD k∗

DA, where the coefficient k∗
DA can be expressed in its

general form as follows:

k∗
DA = zA

A

(

2F1

(
1,

1

n
, 1 + 1

n
; β + γ

A
znA

)
− zA

2zmax
2F1

(
1,

2

n
, 1 + 2

n
; β + γ

A
znA

))
(36)

In case of fully yielding systems, it follows that zA → z−max and the limit of Eq. (31) must be evaluated. Proper
evaluation techniques are provided in the Appendix C. Several elegant analytical solutions also exist for the
coefficient k̄∗

DA = lim
zA→z−max

(
k∗
DA

)
, as summarized in Table 3.

4.2.4 Full cycle

Having evaluated k∗
CD and k∗

DA, the dissipated energy is given by the simple expression:

E = �h
maxD

(
4
xmax

D
− 2

(
k∗
CD + k∗

DA

))
(37)

In case the system yields fully (zA → z−max), then the dissipated energy can be evaluated by:

Ē = �h
maxD

(
4
xmax

D
− 2

(
k̄∗
CD + k̄∗

DA

))
(38)

In this case, we can summarize some simplified expressions for n = 1, n = 2 and n = 4, as follows:

Ēn=1

�h
maxD

= 4
xmax

D
− 2

⎛

⎝ 1

β + γ
+ 1

β − γ
−

2γ ln
(

2β
β+γ

)

(β − γ )2

⎞

⎠ (39)

Ēn=2

�h
maxD

= 4
xmax

D
− 2√

A

⎛

⎜
⎝
atanh

(√
γ−β
β+γ

)

√
γ − β

+
(β − γ ) ln (4) + (β + γ ) ln

(
2β

β+γ

)

2 (β − γ )
√

β + γ

⎞

⎟
⎠ (40)
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Fig. 5 Normalized dissipated energy of a system with A = 1, β = 0.75, γ = 0.25 under symmetric wave T-periodic excitation

Ēn=4

�h
maxD

= 4
xmax

D
− 1

4
4√
A3

×
⎛

⎜
⎝4

4
√

γ − β
(
atan

(
4
√

γ−β
β+γ

)
+ atanh

(
4
√

γ−β
β+γ

))
+ 4

√
β + γ atanh

(√
γ−β
β+γ

)

√
γ − β

+ π + ln (4)
4
√

(β + γ )

⎞

⎟
⎠

(41)

Finally, if the system yields fully and β = γ , the corresponding expressions are further simplified, as follows:

ˆ̄En=1

�h
maxD

= 4
xmax

D
− 5

2β
(42)

ˆ̄En=2

�h
maxD

= 4
xmax

D
− 3 + ln(4)√

2Aβ
(43)

ˆ̄En=4

�h
maxD

= 4
xmax

D
− π + 12 + ln (4)

4 4
√
2A3β

(44)

A worked example, demonstrating the evaluation of the dissipated energy of Bouc–Wen model, is provided in
the Appendix F.

4.3 Parametric studies

Based on the derived relations, we can perform parametric studies of the dissipated energy of the Bouc–Wen
model. In Fig. 5, we show the normalized dissipated energy E/

(
�h

maxD
)
as a function of the normalized

displacement amplitude xmax/D for a system with A = 1, β = 0.75, γ = 0.25 and specific values of n.
Note that A/(β + γ ) = 1 which yields a system with well-defined mechanical properties [30]. In this case,
zmax = 1, irrespectively of n. The corresponding bilinear model is also included in Fig. 5, which yields no
dissipated energy in the elastic regime (xmax ≤ D). Since β > γ (Class I model), the hysteretic loops are
rounded and the bilinear model either overestimates or slightly underestimates the dissipated energy as xmax/D
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Fig. 6 a Imposed displacement pattern b response of a system with A = 1, β = 0.75, γ = −0.25, k = 25, D = 0.15 and
n = 1.5. The dotted line signifies the response of the linear spring

is increased. However, if β ≤ γ , the bilinear model always overestimates the dissipated energy, since either
the unloading branches are straight lines (for β = γ ), or the hysteretic loops take the form of a slim “S” (for
β < γ , Class II). Note also that Eqs. (39)–(44) are linear with respect to the normalized amplitude xmax/D,
and represent the tangent of the exact Eq. (37) as xmax/D is increased. Only the tangent for n = 1 is included
in Fig. 5, for reasons of clarity.

5 Conclusions

A previous study [20] regarding the response and dissipated energy of the Bouc–Wen model is extended
considerably. New analytical and numerical solutions are derived based on a generalmodel formulationwithout
any parameter constraints. These solutions provide insight into the inner workings of the model; they are used
herein to address issues such as the inexistence of elastic domain or the calculation of the residual deformation
in a loading-unloading cycle. It is also shown that other results found in the literature are related to the ones
presented herein, with the latter being in an advantageous form for analytical and numerical evaluation.

Appendix A: Loop tracing

Consider a system with A = 1, β = 0.75, γ = −0.25, k = 25, D = 0.15, a = 0.1 and n = 1.5 (Class I),
with consistent units. The system is subjected to a prescribed sinusoidal pattern with amplitude equal to 5D,
as shown in Fig. 6a, where the vertical axis has been normalized. The hysteretic loop is independent of the
period of excitation, the rate of loading, or even the actual pattern; the same result is also obtained e.g., with
a triangular pattern. In fact, the only information required is the sequence of local minima and maxima of x ,
i.e., x = 0 → 5D → −5D → 5D → · · · . The resulting hysteretic loop is shown in Fig. 6b, where the dotted
line signifies the linear response.

When z at the end of the transition is known, solving Eq. (5) for x produces:

x = D

(
z

A
2F1

(
1,

1

n
, 1 + 1

n
; q

A
|z|n

)∣
∣∣∣

z

z0

)

+ x0 (45)

When x is known but z is not, we rewrite Eq. (5) to define an auxiliary function for the bisection method:

R (x, x0, z, z0, q) = z

A
2F1

(
1,

1

n
, 1 + 1

n
; q

A
|z|n

)∣
∣∣
∣

z

z0

− x − x0
D

(46)
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For the root bracketing, we evaluate zmax from Eq. (7) as zmax ∼= 1.5874. The loops are traced as follows:
Step 1 (DA branch): x0 = 0, z0 = 0, x = 0.75, z is unknown. Low value of z = 0 produces R (5D, 0, z, 0,

β + γ ) = −5. High value of z = zmax − 10−6 produces R (5D, 0, z, 0, β + γ ) ∼= 10.4646. Value of
z ∼= 1.56776 is obtained by root bracketing and bisection, with �/(kD) = 1.91098.

Step 2 (AB branch): x0 = 5D, z0 = 1.56776, z = 0, x is unknown and evaluated directly by Eq. (45) with
q = γ − β as x ∼= 0.602919, with x/D = 4.01946.

Step 3 (BC branch): x0 = 0.602919, z0 = 0, x = −5D, z is unknown. High value of z = 0 produces
R (−5D, 0.602919, z, 0, β + γ ) ∼= 9.01946.Lowvalueof z = − (

zmax − 10−6
)
produces R (−5D, 0.602919,

z, 0, β + γ ) ∼= −6.44517. Value of z ∼= −1.58696 is obtained by root bracketing and bisection, with
�/(kD) = −1.92826.

Step 4 (CD branch): x0 = −5D, z0 = −1.58696, z = 0, x is unknown and evaluated directly by Eq. (45)
with q = γ − β as x ∼= −0.601953, with x/D = −4.01302.

Step 5 (DA branch): x0 = −0.601953, z0 = 0, x = 5D, z is unknown. Low value of z = 0 produces
R (5D, −0.601953, z, 0, β + γ ) ∼= −9.01302.Highvalueof z = zmax−10−6 produces R (5D, −0.601953, z,
0, β + γ ) = 6.45161. Value of z ∼= 1.58696 is obtained by root bracketing and bisection, with �/(kD) =
1.92826.

Even from the first load cycle, the response converges in the symmetric hysteretic loop (x,�/(kD)) ∼=
(5D, 1.92826) � (−5D, −1.92826) (Fig. 6b). The proof that oscillation between two opposite values of z
traces the same loop precisely is given in the Appendix B.

When n = 1 or n = 2, the procedure is facilitated considerably. Instead of using Eq. (46) for root bracketing
and bisection, one can use directly Eqs. (9) or (11).

Appendix B: Symmetric hysteretic loop

We will prove that, beginning at point P+ (
x+, z+

)
, a hysteretic loop for which z varies in the sequence

z+ → −z+ → z+ will be guided to P+ exactly.
We assume that the final point is P̂+ (

x̂+, z+
) �= P+. The hysteretic loop can be analyzed into the sequence

P+ → P1 (x1, 0) → P2
(
x2, −z+

) → P3 (x3, 0) → P̂+. By successive application of Eq. (5), one obtains:

x1 − x+

D
= 0 − z+

A
2F1

(
1,

1

n
, 1 + 1

n
; (γ − β)

A

∣
∣z+

∣
∣n

)
(47)

x2 − x1
D

= − z+

A
2F1

(
1,

1

n
, 1 + 1

n
; (β + γ )

A

∣
∣−z+

∣
∣n

)
− 0 (48)

x3 − x2
D

= 0 −
[
− z+

A
2F1

(
1,

1

n
, 1 + 1

n
; (γ − β)

A

∣∣−z+
∣∣n

)]
(49)

x̂+ − x3
D

= z+

A
2F1

(
1,

1

n
, 1 + 1

n
; (β + γ )

A

∣∣z+
∣∣n

)
− 0 (50)

By adding Eqs. (47)–(50) by parts, one obtains x̂+ = x+. Thus, P̂+ = P+.

Appendix C: Evaluation of Gauss’ hypergeometric function

In this study, one is interested in the evaluation of 2F1 (a, b, c;w) for real values of w ∈ (−∞, 1) with
c = a + b.

The hypergeometric function is the analytical continuation of the hypergeometric series [31]:

2F1 (a, b, c;w) = 1 + ab

1!c z + a (a + 1) b (b + 1)

2!c (c + 1)
z2 + · · · =

∞∑

n=0

(a)n (b)n
(c)n

wn

n! (51)

where, (·)n is Pochhammer’s symbol, defined as (w)n = w (w + 1) · · · (w + n − 1) with (w)0 = 1, and n!
the factorial of n.
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Series (51) converges for all |w| < 1, but its rate of convergence is satisfactory only for |w| ≤ 1/2 [24].
Thus, for w ∈ (−1/2, 1/2), evaluation is performed directly by Eq. (51).

For w ∈ (1/2, 1), a linear transformation is required. In the cases presented herein, c = a + b and hence
the following formula is used [31, eq. 15.3.10]:

2F1 (a, b, a + b;w) = 
 (a + b)


 (a) 
 (b)

∞∑

n=0

(a)n (b)n
(n!)2

× [2ψ (n + 1) − ψ (a + n) − ψ (b + n) − ln (1 − w)] (1 − w)n (52)

where, 
 (·) is the gamma function and ψ (·) the psi (digamma) function. These functions are treated in
Appendix D and E, respectively. In general, Eq. (52) exhibits satisfactory rate of convergence even when
evaluating lim

w→1− 2F1 (a, b, c;w).

Finally, for w ∈ (−∞, −1/2), the following linear transformation is used [31, eq. 15.3.4]:

2F1 (a, b, c;w) = (1 − w)−a
2F1

(
a, c − b, c; w

w − 1

)
(53)

The new function evaluation falls into one of the cases covered by Eqs. (51) and (52).

Appendix D: Evaluation of gamma function

The gamma function can be defined for Re z > 0 by Euler’s integral [31, eq. 6.1.1]:


 (z) =
∫ ∞

0
t z−1e−t dt (54)

where, in general, z is complex. 
 (z) is single-valued and analytic everywhere in the complex plane except at
z = k, k = 0,−1, −2, . . ., where it possesses simple poles.

The evaluation of the gamma function is most commonly accomplished using Lanczos algorithm [32],
which corrects Stirling’s approximation with contributions from the function’s poles. It requires O (− log ε)
time, independent of z, to calculate z! with a relative error ε. Note that usually ln
 (z) is evaluated instead of

 (z), because overflow is unavoidable even with moderate values of z. The evaluation of gamma function can
also be accomplished using Spouge’s algorithm [33]. This algorithm has the same form and requires slightly
more computations as compared to Lanczos’. However, it can be used for the evaluation of psi (digamma)
function as well, while the error is easier to estimate. For these reasons, it will described in brief.

According to Spouge’s algorithm, the relative error ε for computing 
 (z + 1) with Re z > 0 is bounded
by the expression [33]:

|ε| ≤ a−1/2 (2π)−(a+1/2) (55)

where, a ≥ 3 controls the number of terms of the approximation. Herein, we choose εmax = 10−10. Solving
(55) numerically for a yields 11.3772 . . ., thus �a = 12, where �a is the ceiling of a, denoting the unique
integer satisfying �a − 1 < a ≤ �a. The coefficients ck of Spouge’s algorithm are given by [33]:

c0 = 1

ck = (2π)−
1
2

(−1)k−1

(k − 1)! (−k + a)k−
1
2 e−k+a, k ∈ {1, 2, . . . , �a − 1} (56)

Note that the evaluation of the coefficients is much simpler than those of Lanczos [32]. For �a = 12, these
are:

c0 = 1

c1 = 79,221.98306133379

c2 = −277,878.4609602073

c3 = 392,768.5278126612
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c4 = −287,031.5426615348

c5 = 115,798.0850399489

c6 = −25,546.27531493711

c7 = 2,873.128215161947

c8 = −141.6143919456524

c9 = 2.258414498459323

c10 = −5.881944949935368 × 10−3

c11 = 2.988419178293727 × 10−7 (57)


 (z) is thus given by the following expression:


 (z) = (z + �a)z+ 1
2 e−(z+�a)

×
√
2π

z

[
c0 + c1

z + 1
+ c2

z + 2
+ · · · + c�a−1

z + �a − 1
+ ε

]
, Re z > 0 (58)

Finally, evaluation of 
 (z) for Re z < 0 can be accomplished using the reflection formula [31, eq. 6.1.17]:


 (z) = π

sin (π z) 
 (1 − z)
(59)

Appendix E: Evaluation of psi (digamma) function

The psi (digamma) function ψ (·) is defined as the logarithmic derivative of 
 (z), defined everywhere in the
complex plane except at z = k, k = 0,−1,−2, . . .:

ψ (z) = d

dz
ln
 (z) = 
′ (z)


 (z)
(60)

Its evaluation canbe accomplished efficiently usingSpouge’s algorithm [33].LetD = (
1 − (2/3)1/2 (2π)−2)−1

= 1.02111 . . . The absolute error for computing ψ (z + 1) with Re z > 0 and a ≥ 3/2 is bounded by the
expression [33]:

|ε| ≤ D ln (2a) a−1/2 (2π)−(a+1/2) (61)

We choose εmax = 10−10. Solving (61) numerically for a yields 11.993 . . ., therefore �a = 12, which
coincides with the case described in Appendix D. Thus, the particular coefficients ck are given by Eq. (57) and
ψ (z) is evaluated as:

ψ (z) = ln (z + �a) − (�a − 1/2) (z + �a)−1

−
c1

(z+1)2
+ c2

(z+2)2
+ · · · + c�a−1

(z+�a−1)2

c0 + c1
z+1 + c2

z+2 + · · · + c�a−1
z+�a−1

− 1

z
+ ε,Re z > 0 (62)

where, the recurrence formula ψ (z + 1) = ψ (z) + 1/z [31, eq. 6.3.5] was employed. Finally, evaluation of
ψ (z) for Re z < 0 can be accomplished using the reflection formula [31, eq. 6.3.7]:

ψ (z) = ψ (1 − z) − π

tan (π z)
(63)

Appendix F: Evaluation of dissipated energy in a closed displacement cycle

Consider the system of Fig. 6b. Using Eq. (7), we obtain zmax ∼= 1.58740 and therefore �h
max = 5.35748.

Using root bracketing for zA in the range [0, 1.58740 − ε], we evaluate zA ∼= 1.58696 from Eq. (27). Note
that this coincides with the final value of z, evaluated in the corresponding example, when the system settled
in the steady-state response. Next, k∗

CD = 1.38652 and k∗
DA = 1.25502 from Eqs. (31) and (36), respectively.

Finally, E = 11.82680 from Eq. (37).
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