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Abstract The bending analysis of a thin rectangular plate is carried out in the framework of the second
gradient elasticity. In contrast to the classical plate theory, the gradient elasticity can capture the size effects
by introducing internal length. In second gradient elasticity model, two internal lengths are present, and the
potential energy function is assumed to be quadratic function in terms of strain, first- and second-order gradient
strain. Second gradient theory captures the size effects of a structure with high strain gradients more effectively
rather than first strain gradient elasticity. Adopting the Kirchhoff’s theory of plate, the plane stress dimension
reduction is applied to the stress field, and the governing equation and possible boundary conditions are derived
in a variational approach. The governing partial differential equation can be simplified to the first gradient or
classical elasticity by setting first or both internal lengths equal to zero, respectively. The clamped and simply
supported boundary conditions are derived from the variational equations. As an example, static, stability and
free vibration analyses of a simply supported rectangular plate are presented analytically.

Keywords Second strain gradient elasticity · Rectangular plate · Kirchhoff’s theory · Bending analysis

1 Introduction

Plates are one of the most commonly used structures in different applications. Due to the specific geometrical
properties, the analysis of these structures is usually carried out with the aid of dimension reduction assumptions.
The Kirchhoff theory of plates is a quite popular model for thin plates. The problem of Kirchhoff plate in the
framework of classical elasticity is dealt extensively in the literature [1].

In the classical elasticity, the lack of characteristic length results in a formulation independent of the scale
of the structures. This issue has been dealt with in the gradient elasticity framework. For instance, in the strain
gradient elasticity theory, the strain energy is generalized and is not simply a function of strain but also depend
on the gradient of strain. Thus, an internal length will appear in the constitutive equations. In the first strain
gradient elasticity, the strain energy is assumed to be a quadratic function in terms of strain and first-order
gradient strain, while in the second strain gradient elasticity, the strain energy is a function of strain, first- and
second-order gradient strain.

Recently, the analysis of the gradient elastic plates has been the topic of some investigations. Papargyri-
Beskou and Beskos [2], using the equilibrium equations, derived the sixth-order governing equation of gradient
elastic flexural Kirchhoff plates. As was expected, this approach presents no information about the modeling
of the boundary conditions. Later, Papargyri-Beskou et al. [3] presented a variational formulation of the same
problem and derived the governing equation as well as possible boundary conditions. Lazopoulos [4] derived
the governing plate equation with its boundary conditions through a variational method. A new Kirchhoff
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plate model based on a modified couple stress theory was reported by Tsiatas [5]. It should be noted that the
resulting boundary value problem is of the fourth order instead of existing gradient theories which is of the
sixth order.

The above-mentioned formulations considered one material length scale parameter. Wang et al. [6] devel-
oped a size-dependent Kirchhoff micro-plate model based on the strain gradient elasticity theory. Their model
contains three material length scale parameters to capture the size effect. They have solved the problem of
a simply supported micro-plate. Furthermore, Ashoori Movassagh and Mahmoodi [7] presented a Kirchhoff
micro-plate model based on the modified strain gradient elasticity theory. Their analysis is general and can be
reduced to the modified couple stress plate model or classical plate model once two or all material length scale
parameters in the theory are set zero, respectively.

Second gradient elasticity can capture the size effects more effectively than the first gradient theory [8,9].
Recently, second gradient elasticity has been the topic of investigations in the generalized continuum mechanics.
Dell’isola et al. [8] investigated the Generalized hooke’s law for isotropic second gradient materials. Lazar
et al. [9] analyzed the dislocations in the second strain gradient elasticity. These studies motivate the analysis
of plates in the second gradient elasticity.

Similar to the classical elasticity, the analytical solution is limited to special cases such as simply supported
micro-plates. Some of the numerical techniques have been extended to the problem of gradient elasticity. In
the territory of the Kirchhoff micro-plate, Tsiatas [5] applied the method of fundamental solutions (which
is a boundary-type meshless method) to a plate model in the modified couple stress theory. The extended
Kantorovich method is applied successfully to a micro-plate model based on the modified strain gradient
elasticity theory [7]. Ahmadi et al. [10] presented the static deflection analysis of flexural simply supported
sectorial micro-plate using p-version finite element method. Furthermore, a higher continuity finite element
method was used by Ahmadi and Farahmand [11] for the static deflection analysis of flexural rectangular
micro-plate.

The boundary element method has also been proved to be capable for the static and dynamic analysis of
strain gradient elastic solids and structures [12,13]. Fischer et al. [14] extended the concept of isogeometric
analysis toward the numerical solution of the problem of gradient elasticity in two dimensions. Differential
quadrature method (DQM) is another technique which is used by Wang and Wang [15] to determine the
dynamic behavior of a micro-cantilever plate. They applied the DQM to the governing equation obtained by
Tsiatas [5].

In the present article, the bending analysis of the Kirchhoff plate is carried out in a simplified second
gradient elasticity formulation. The variational approach provides the governing differential equation as well
as possible boundary conditions of the second gradient elasticity. By setting first or both internal lengths equal
to zero, this general case can be simplified to the first gradient or classical elasticity, respectively. In the case
of a simply supported rectangular plate, the analytical solution is provided for three boundary value problems
dealing with the static, stability and free vibration of the plate.

2 Second strain gradient elasticity

For a linear elastic solid, the potential energy function, W , is assumed to be quadratic function in terms of
strain, first-order gradient strain and second-order gradient strain [16]

W = W
(
εi j , ∂kεi j , ∂l∂kεi j

)
(1)

while in a compatible situation (defect-free), the elastic strain is a function of gradient of the displacement as

εi j = ε j i = 1

2

(
u j,i + ui, j

)
(2)

while ui, j is the gradient of the displacement field. In the gradient elasticity, the general stress tensors (including
the classical and hyper-stress components) are defined as

σi j := ∂W

∂εi j
, τi jk := ∂W

∂εi j,k
, τi jkl := ∂W

∂εi j,kl
(3)

while εi j,k = ∂kεi j and εi j,kl = ∂l∂kεi j .
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A simplified second strain gradient model can be defined in the following form [9]

W = 1

2
Ci jklεi jεkl + 1

2
l2Ci jmnεmn,kεi j,k + 1

2
l ′4Ci jmnεmn,klεi j,kl , (4)

where l and l ′ are internal lengths, and Ci jkl is the stiffness tensor of an isotropic material

Ci jkl = λδi jδkl + μ
(
δikδ jl + δ jkδil

)
. (5)

where λ and μ are Lame’s constants. Thus, the potential energy function for an isotropic material will be

W = 1

2
λεi iεkk + μεi jεi j + l2

(
1

2
λεi i,kε j j,k + μεi j,kεi j,k

)
+ l ′4

(
1

2
λε j j,klεi i,kl + μεi j,klεi j,kl

)
(6)

Consequently, the general stress tensors (3) are simplified to

σi j = λδi jεkk + 2μεi j

τi jk = l2 (
λδi jεmm,k + 2μεi j,k

)
(7)

τi jkl = l ′4
(
λδi jεmm,kl + 2μεi j,kl

)

For the sake of simplicity, dimension reduction is useful in the gradient elasticity analysis of thin plate structures.
Similar to the classical elasticity where Hooke’s law can be simplified for plane stress assumption, the general
stress tensors in-plane stress can be assumed as

σαβ = λ′δαβεγ γ + 2μεαβ, σzz = λεγγ α, β, γ = x, y

ταβk = l2σαβ,k, τzzk = l2σzz,k k = x, y, z

ταβkm = l ′4σαβ,km, τzzkm = l ′4σzz,km k, l = x, y, z

(8)

while λ′ = νE/(1 − ν2) and μ = E/2(1 + ν).

3 Governing equations of the Kirchhoff’s plate model

An initially flat thin rectangular plate of constant thickness h, length a and width b is considered (Fig. 1).
The plate is made of homogeneous and isotropic elastic material. A lateral load q = q(x, y) is applied on the
plate’s upper flat surface. Adopting the Kirchhoff’s theory of plates, the plate can be geometrically described
by its mid-plane occupying the two-dimensional domain Ω bounded by the curve Γ . Following the Kirchhoff’s
theory, the displacements of the plate are

uα(x, y, z) = −zw,α α = x, y

uz(x, y, z) = w(x, y)
(9)

where ux , uy and uz represent the x, y and z components of the displacement vector, respectively.

Fig. 1 Thin plate: geometrically described by its mid-plane Ω in the (x, y) plane bounded by the curve Γ
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Considering Eq. (9), the Kirchhoff’s theory assumptions result in the following nonzero strain tensor
components

εαβ = −zw,αβ (10)

The nonzero stress components can be determined by applying (10) to (8) (“Appendix A”).
The governing equation of the plate can be derived through the variational method. In the framework of

the second strain gradient elasticity, the first variation of the strain energy is defined by,

δU =
∫

V

(
σi jδεi j + τi jkδεi j,k + τi jklδεi j,kl

)
dv (11)

while V is the region occupied by the plate. Using the strain (10) and general stress components (8), the
variation of the strain energy for a Kirchhoff’s plate is

δU = −
∫

V

(
zσαβδw,αβ + zl2σαβ,γ δw,αβγ + l2σαβ,zδw,αβ + zl ′4σαβ,γ κδw,αβγ κ + 2l ′4σαβ,γ zδw,αβγ

)
dv

(12)

To apply the dimension reduction for the Kirchhoff’s theory of plates, definition of the general bending moments
is useful. The variation of the strain energy in terms of bending moments is

δU = −
∫

Ω

(
Mαβδw,αβ + l2 N̄αβδw,αβ + l2 Mαβ,γ δw,αβγ + 2l ′4 N̄αβ,γ δw,αβγ + l ′4 Mαβ,γ κδw,αβγ κ

)
da

(13)

while Ω is the mid-plane of the plate in the (x, y) plane and the general bending moments are defined as

N̄αβ =
h/2∫

−h/2

σαβ,zdz, Mαβ =
h/2∫

−h/2

zσαβdz (14)

In view of the stress components given in “Appendix A”, the general bending moments in term of deflection
take the form

N̄αβ = h
(−λ′δαβw,γ γ − 2μw,αβ

)
, Mαβ = h3

12

(−λ′δαβw,γ γ − 2μw,αβ

)
(15)

in which D = Eh3/12(1 − ν2). Applying the Green’s theorem to (13) yields

δU =
∫

Ω

[− (
1 − l2∇2) Mαβ,αβ − (

l2 − 2l ′4∇2) N̄αβ,αβ − l ′4∇4 Mαβ,αβ

]
δwda

+
∫

Γ

[(
1 − l2∇2) Mαβ,α + (

l2 − 2l ′4∇2) N̄αβ,α + l ′4∇2 Mακ,αβκ

]
nβδwds

+
∫

Γ

[− (
1 − l2∇2) Mαβ − (

l2 − 2l ′4∇2) N̄αβ − l ′4 Mγ κ,αβγ κ

]
nαδw,βds

+
∫

Γ

[(−l2 Mαβ,γ − 2l ′4 N̄αβ,γ + l ′4 Mκγ,αβκ

)
nγ δw,αβ

]
ds −

∫

�

[
l ′4 Mαβ,γ κnαδw,βγ κ

]
ds (16)

while ∇2 = ∂γ γ , ∇4 = ∂γ γ κκ .
Moreover, the variation of the work of the external force including the lateral load is,

δW =
∫

Ω

qδwdΩ (17)
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The principle of virtual work reads

δW = δU (18)

Considering the variation of the strain energy (16) and the variation of the work of the external force (17),
principle of virtual work (18) yields

∫

Ω

[− (
1 − l2∇2) Mαβ,αβ − (

l2 − 2l ′4∇2) N̄αβ,αβ − l ′4∇4 Mαβ,αβ − q
]
δwda = 0 (19a)

and⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫
Γ

[(
1 − l2∇2

)
Mαβ,α + (

l2 − 2l ′4∇2
)

N̄αβ,α + l ′4∇2 Mακ,αβκ

]
nβδwds = 0

∫
Γ

[− (
1 − l2∇2

)
Mαβ − (

l2 − 2l ′4∇2
)

N̄αβ − l ′4 Mγ κ,αβγ κ

]
nαδw,βds = 0

∫
Γ

[(−l2 Mαβ,γ − 2l ′4 N̄αβ,γ + l ′4 Mκγ,αβκ

)
nγ δw,αβ

]
ds = 0

∫
Γ

[
l ′4 Mαβ,γ κnαδw,βγ κ

]
ds = 0

(19b)

Due to the fundamental lemma of calculus of variation, the variational equation (19a) results in the governing
equilibrium equation,

− (
1 − l2∇2) Mαβ,αβ − (

l2 − 2l ′4∇2) N̄αβ,αβ − l ′4∇4 Mαβ,αβ = q (20a)

Taking into account the definition of the moments (15), the total differential order of the governing differential
equation (20a) in terms of the displacement of plate is 8. Therefore, four boundary conditions for each edge
of plate are expected. The variational boundary equation (19b), in view of the fundamental lemma of calculus
of variation, gives the four expected consistent boundary conditions for the rectangular plate

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[(
1 − l2∇2

)
Mαβ,α + (

l2 − 2l ′4∇2
)

N̄αβ,α + l ′4∇2 Mακ,αβκ

]
nβ = 0 or δw = 0

[− (
1 − l2∇2

)
Mαβ − (

l2 − 2l ′4∇2
)

N̄αβ − l ′4 Mγ κ,αβγ κ

]
nα = 0 or δw,β = 0

(−l2 Mαβ,γ − 2l ′4 N̄αβ,γ + l ′4 Mκγ,αβκ

)
nγ = 0 or δw,αβ = 0

Mαβ,γ κnα = 0 or δw,βγ κ = 0

(20b)

These equations list all the possible boundary conditions of the second gradient elastic plate which refer to either
prescribed boundary deformations or prescribed boundary actions (in terms of general bending moments). For
any specific types of boundaries, appropriate conditions can be selected among the above-mentioned conditions.

In the case of a simply supported plate, the conditions for the boundaries of the plate are selected as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

δw = 0
[− (

1 − l2∇2
)

Mαβ − (
l2 − 2l ′4∇2

)
N̄αβ − l ′4 Mγ κ,αβγ κ

]
nα = 0

(−l2 Mαβ,γ − 2l ′4 N̄αβ,γ + l ′4 Mκγ,αβκ

)
nγ = 0

Mαβ,γ κnα = 0

(21)

while for a rectangular plate, Eq. (21) reach
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w = 0

− (
1 − l2∇2

)
Mxx − (

l2 − 2l ′4∇2
)

N̄xx − l ′4 Mγ κ,xxγ κ = 0

−l2 Mxx,x − 2l ′4 N̄xx,x + l ′4 Mκx,xxκ = 0

Mxx,xx = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

at x = 0, a

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w = 0

− (
1 − l2∇2

)
Myy − (

l2 − 2l ′4∇2
)

N̄yy − l ′4 Mγ κ,yyγ κ = 0

−l2 Myy,y − 2l ′4 N̄yy,y + l ′4 Mκy,yyκ = 0

Myy,yy = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

at y = 0, b

(22)



1140 S. M. Mousavi, J. Paavola

Setting l = l ′ = 0 or l ′ = 0, the classical boundary conditions and the first gradient elasticity boundary
conditions are achieved, respectively.

In the case of a clamped plate, the boundary conditions are selected as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δw = 0

δw,β = 0
(−l2 Mαβ,γ − 2l ′4 N̄αβ,γ + l ′4 Mκγ,αβκ

)
nγ = 0

l ′4 Mαβ,γ κnα = 0

(23)

which for a rectangular plate are simplified to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w = 0

w,x = 0

−l2 Mxx,x − 2l ′4 N̄xx,x + l ′4 Mκx,xxκ = 0

Mxx,xx = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

at x = 0, a

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w = 0

w,y = 0

−l2 Myy,y − 2l ′4 N̄yy,y + l ′4 Mκy,yyκ = 0

Myy,yy = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

at y = 0, b

(24)

Using Eq. (15), the governing differential equation (20a) can be written in term of the deflection in the following
form

(
1 + 12

l2

h2

)
∇4w −

(
l2 + 24

l ′4

h2

)
∇6w + l ′4∇8w = q

D
(25)

where ∇4, ∇6 and ∇8 are given explicitly by

∇4 = ∂4

∂x4 + 2
∂4

∂x2∂y2 + ∂4

∂y4

∇6 = ∂6

∂x6 + 3
∂6

∂x4∂y2 + 3
∂6

∂x2∂y4 + ∂6

∂y6 (26)

∇8 = ∂8

∂x8 + 4
∂8

∂x6∂y2 + 6
∂8

∂x4∂y4 + 4
∂8

∂x2∂y6 + ∂8

∂y8

and D = h3(λ′ + 2μ)/12 = Eh3/[12(1 − ν2)].
It is observed that for l = l ′ = 0, the Eq. (25) leads to the classical Kirchhoff plate governing equation [1],

D∇4w = q (27)

and for l ′ = 0, it leads to the equation for the first strain gradient theory [4],

(
1 + 12

l2

h2

)
D∇4w − l2 D∇6w = q. (28)

Due to different constitutive equations, the above governing equation is different from the one derived by
Papargyri-Beskou et al. [3].

For a straightforward stability analysis, considering finite strain will directly lead to the proper governing
equation. However, the current static analysis can be applied for stability analysis by augmenting Eq. (25) with
the terms originated from the in-plane forces. The effect of the in-plane forces can be modeled similar to the
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classical elasticity [17]. Consider a plate under the in-plane constant normal compressive (Px , Py) and shear
forces (Pxy). The governing equation of equilibrium (25) for this case takes the form

(
1 + 12

l2

h2

)
∇4w −

(
l2 + 24

l ′4

h2

)
∇6w + l ′4∇8w + Px

D

∂2w

∂x2 + 2
Pxy

D

∂2w

∂x∂x
+ Py

D

∂2w

∂y2 = q

D
(29)

Once the plate is under dynamic loading q(x, y, t), it undergoes deflection w = w(x, y, t), where t denotes
time. Similar to the classical elasticity, an inertial force ρh∂2w/∂t2 appears in the equilibrium equation, where
ρ is the mass per unit volume of the plate [18]. Thus, the governing equation of motion of a second gradient
elastic flexural plate takes the form

(
1 + 12

l2

h2

)
∇4w −

(
l2 + 24

l ′4

h2

)
∇6w + l ′4∇8w + ρh

D

∂2w

∂t2 = q(x, y, t)

D
(30)

It should be mentioned that by using the Hamilton’ principle, the motion equation for the dynamic analysis of
plate can be derived directly.

4 Simply supported rectangular plate

Among the plates with different boundary conditions, simply supported rectangular plate can be solved analyt-
ically with the aid of Fourier series as in classical elasticity [1]. In this section, the static, stability and dynamic
analyses of the simply supported rectangular plate are presented.

4.1 Static analysis of simply supported rectangular plate

The governing equation (25) and the boundary conditions (22) describe the behavior of a rectangular plate
with simply supported boundaries. In this case, a solution is assumed of the form

w (x, y) =
∞∑

m=1

∞∑

n=1

wmn sin
mπx

a
sin

nπy

b
(31)

which fulfills the boundary conditions (22). The applied static load q can also be expressed in a similar
sinusoidal series form,

q (x, y) =
∞∑

m=1

∞∑

n=1

qmn sin
mπx

a
sin

nπy

b
(32)

while for a general loading, qmn is

qmn = 4

ab

b∫

0

a∫

0

q(x, y) sin
mπx

a
sin

nπy

b
dxdy. (33)

Substitution of (31, 32) into (25) yields an expression for wmn of the form

wmn = qmn/
{

D A2
mn

[(
1 + 12l2/h2) + (

l2 + 24l ′4/h2) Amn + l ′4 A2
mn

]}
(34)

while Amn = (mπ/a)2 + (nπ/b)2. In the case of the classical elasticity, (l = l ′ = 0), the expression is
simplified to wcl

mn
= qmn/(D A2

mn) [1], and in the case of the first gradient elasticity (l ′ = 0), it is reduced to
[4]

wmn = qmn/
{

D A2
mn

[(
1 + 12l2/h2) + l2 Amn

]}
(35)

To shed more light on the plate deformation, the second strain gradient elasticity can be written with respect
to classical case as
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wmn

wcl
mn

= 1
(
1 + 12l2/h2

) + (
l2 + 24l ′4/h2

)
Amn + l ′4 A2

mn
(36)

For a square plate (a = b) under a simple loading, such asq(x, y) = q0 sin πx
a sin πy

b , Eq. (36) yields

wmn

wcl
mn

= 1

1 + 12l2/h2 + 2
(
1 + 24l ′4/ l2h2

)
(πl/a)2 + 4 (πl ′/a)4 (37)

It is observed that increasing the first and second gradient lengths reduces the plate’s deflection. Equation (37)
depicts the plate’s deflection with geometrical quantities (a, h) and for any combination of internal lengths
(l, l ′).

4.2 Stability analysis of simply supported rectangular plate

Equation (29) belongs to the stability analysis of a plate under general in-plane loadings. As an example,
consider a plate under in-plane loading along x-axis direction (Px ). Thus, the governing equation of the plate
(29) is reduced to

(
1 + 12

l2

h2

)
∇4w −

(
l2 + 24

l ′4

h2

)
∇6w + l ′4∇8w + Px

D

∂2w

∂x2 = 0 (38)

Once again, the solution (31) fulfills the boundary conditions. Thus, for a square plate (a = b), substitution of
(31) into (38) produces following expression for Px ,

Px = D A2
mn

[(
1 + 12l2/h2) + (

l2 + 24l ′4/h2) Amn + l ′4 A2
mn

] /
(mπ/a)2 (39)

Minimizing the value of Px over (m, n), the critical load for a square plate of side a takes the form

Pcr = 4D (π/a)4 [(
1 + 12l2/h2) + 2

(
l2 + 24l ′4/h2) (π/a)2 + 4l ′4 (π/a)4]

/
(π/a)2 (40)

while this expression (40) is reduced to the classical critical load value for l = l ′ = 0 [17].

4.3 Free vibration of simply supported rectangular plate

The governing equation of motion (30) for the free flexural vibrations of a simply supported rectangular plate
reads

(
1 + 12

l2

h2

)
∇4w −

(
l2 + 24

l ′4

h2

)
∇6w + l ′4∇8w + ρh

D

∂2w

∂t2 = 0 (41)

Equation (41) with conditions (22) has a solution of the form

w (x, y, t) =
∞∑

m=1

∞∑

n=1

wmn sin
mπx

a
sin

nπy

b
sin (ωt) (42)

while ω is the vibrational frequency. Substitution of (42) in motion equation (41) gives the expression for
vibrational frequency as

ω2 = Amn

√
D

[(
1 + 12l2/h2

) + (
l2 + 24l ′4/h2

)
Amn + l ′4 A2

mn

]
/ρh (43)

The frequency of the classical plate is obtained by substitution of l = l ′ = 0 in Eq. (43) [18].
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5 Conclusion

The Kirchhoff’s theory of plate is formulated in the second strain gradient elasticity. The potential energy
function is assumed to be quadratic function in terms of strain, first-order gradient strain and second-order
gradient strain. The governing equation and the possible boundary conditions are derived in a variational
approach. The application of the second strain gradient elasticity results in scale sensitivity of the model
with first and second gradient lengths. Furthermore, the simply supported and clamped boundary conditions
are determined from variational equations. The governing equation is extended to analyze the stability and
dynamic problems. The static, stability and free vibration analyses of a micro-plate with simply supported
boundaries are carried out analytically. The results depict that the deflection decreases with increasing values
of first and second internal lengths. Once the internal lengths are set zero, the solution in the classical elasticity
is obtained.

Appendix A

The nonzero stress components of second gradient elasticity for the Kirchhoff’s theory of plate are

σαβ = −λ′δαβ zw,γγ − 2μzw,αβ, σzz = −λzw,γγ α, β, γ = x, y

ταβk = −l2δαβ zw,γγ k − 2l2μzw,αβk, τzzk = −l2λzw,γγ k k = x, y, z

ταβkm = −l ′4δαβ zw,γγ km − 2l ′4μzw,αβkm, τzzkm = l ′4λzw,γγ km k, l = x, y, z

(A1)
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