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Abstract The problem of reflection and refraction of waves at the interface of an elastic solid and microstretch
thermoelastic solid with microtemperatures has been investigated. It is shown that due to incidence of P-wave
or SV-wave at the interface, the waves are reflected and refracted. The amplitude ratios of these various reflected
and refracted waves have been computed numerically, and graphical representation of their variations is made
with the angle of incidence. Effect of microrotation on these amplitude ratios has been shown graphically.
Some particular cases of interest have also been discussed.
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1 Introduction

It is known that material response to external stimuli is dependent heavily on the motions of its inner structures.
Classical elasticity ignores this effect by ascribing only translation degrees of freedom to material points of
body. Eringen [1] developed the micropolar theory by including intrinsic rotations of the microstructure which
can support body and surface couples and display high-frequency optical branch of the wave spectrum. For
engineering applications, it can model composites with rigid chopped fibers, elastic solids with rigid granular
inclusions, and other industrial materials such as liquid crystals Eringen [2–4].

The theory of microstretch elastic bodies developed by Eringen [5] is a generalization of the micropolar
theory. Eringen [6] also developed the theory of thermo-microstretch elastic solids. Microstretch continuum
represents a model for Bravais lattice with basis on the atomic level and two phase dipolar solid with a core
on the macroscopic level. Composite materials reinforced with chopped elastic fibers, porous media whose
pores are filled with gas or inviscid liquid, asphalt, or other elastic inclusions and “solid-liquid” crystals, etc.
should be characterizable by microstretch solids. This model is a generalization of the micropolar theory and
a special case of the micromorphic theory Eringen [7,8], which Eringen introduced several decades back.

Micropolar theory is now well established, and it has found many important applications, while the math-
ematical challenges presented by micromorphic theory make it dormant. Microstretch theory is much simpler,
still it does not possess the scope of physical phenomena covered by the micromorphic continuum mechanics
and can be used as a mathematical model for many different material media that fall outside the domain of
micropolar elasticity.
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Singh [9] studied reflection of plane waves from free surface of a microstretch elastic solid, Singh and
Kumar [10] discussed wave propagation in a generalized thermo-microstretch elastic solid, Ciarletta and
Scalia [11] give some result in linear theory of thermo-microstretch elastic solids, Iesan and Quintanilla
[12] studied thermal stresses in microstretch elastic plates, and Tomar and Khurana [13] discussed reflection
and transmission of elastic waves from a plane interface between two thermo-microstretch solid half-spaces.
Various authors studied problems in thermo-microstretch medium, e.g., [14–29].

Grot [30] settled a theory of thermodynamics of elastic bodies with microstructure whose microelements
possess microtemperatures. The Clausius–Duhem inequality is improved to include microtemperatures, and
the first-order moment of the energy equations are added to the usual balance laws of a continuum with
microstructure.

Riha [31] studied heat conduction in materials with microtemperatures. Experimental results for the silicone
rubber containing spherical aluminum particles and for human blood were found to conform closely to predicted
theoretical thermal conductivity. The linear theory of thermoelasticity with microtemperatures for materials
with inner structure whose particles, in addition to the classical displacement and temperature fields, possess
microtemperatures was presented by Iesan and Quintanilla [32].

Iesan [33] proposed the theory of micromorphic elastic solids with microtemperatures. Various problems
using thermoelasticity with microtemperatures were studied by Iesan and Quintanilla [34]. Exponential stability
in thermoelasticity with microtemperatures was studied by Casas and Quintanilla [35]. Scalia and Svandze
[36] give the representation of solutions of the theory of thermoelasticity with microtemperatures and Iesan
[37] discussed thermoelasticity of bodies with microstructure and microtemperatures. Aouadi [38] studied
some theorems in the isotropic theory of microstretch thermoelasticity with microtemperatures. Scalia et al.
[39] studied basic theorems in the equilibrium theory of thermoelasticity with microtemperatures. Quintanilla
[40] discussed the growth and continuos dependence in thermoelasticity with microtemperatures, Steeb et al.
[41] studied time harmonic waves in thermoelastic material with microtemperatures. Chirita et al. [42] studied
the theory of thermoelasticity with microtemperatures.

The purpose of the present paper is to analyze the reflection and refraction of waves at the boundary between
an elastic half-space and microstretch thermoelastic half-space with microtemperatures. The amplitude ratios
of reflected longitudinal wave (P-wave), transverse wave (SV-wave) and refracted longitudinal displacement
wave (LD-wave), thermal wave (T-wave), microstretch wave (LM-wave), microtemperature wave (LT-wave),
transverse displacement wave coupled with microrotational wave, and microtemperature wave (namely CD-I
wave, CD-II wave and CD-III wave) have been obtained and presented graphically as a function of angle of
incidence. The microrotational effect on these amplitude ratios is shown for a particular model.

2 Basic equations

Following Eringen [6] and Iesan [43], the field equations and constitutive relations for a homogeneous, isotropic
microstretch thermoelastic solid with microtemperatures without body forces, body couples, stretch force, heat
sources, and first heat source moment are

(i) Stress equation of motion:

(λ+ 2μ+ K )∇ (∇.u)− (μ+ K )∇ × (∇ × u)+ K (∇ × ϕ)+ λ0∇φ∗ − ν∇T = ρ
∂2u
∂t2 , (1)

(ii) Couple stress equation of motion:

(α + β + γ )∇ (∇.ϕ)− γ∇ × (∇ × ϕ)+ K (∇ × u)− 2Kϕ − μ1(∇ × w) = ρ j
∂2ϕ

∂t2 , (2)

(iii) Equation of balance of stress moments:

α0∇2φ∗ + ν1T − λ1φ
∗ − λ0 (∇.u)− μ2(∇.w) = ρ

j0
2

∂2φ∗

∂t2 , (3)

(iv) Equation of balance of energy:

K ∗∇2T − ρc∗ ∂T

∂t
− ν1T0

∂φ∗

∂t
− νT0 (∇.u)+ k1(∇.w) = 0, (4)



Reflection and refraction of plane waves 573

(v) Equation of balance of first moment of energy:

k6∇2w + (k4 + k5)∇(∇.w)+ μ1
∂

∂t
(∇ × ϕ)− μ2

∂

∂t
(∇φ∗)− b

∂w
∂t

− k2w − k3∇T = 0, (5)

(vi) Constitutive relations:

ti j = λur,rδi j + μ
(
ui, j + u j,i

) + K
(
u j,i − εi jrφr

) − νT δi j + λ0φ
∗δi j , (6)

mi j = αφr,rδi j + βφi, j + γφ j,i + b0εmjiφ
∗
m, (7)

λ∗
i = α0φ

∗
,i + b0εi jmφ j,m, (8)

qi j = −k4wr,rδi j − k5wi, j − k6w j,i , i, j,m = 1, 2, 3 (9)

In the above K , α, β, γ, λ, μ, α0, λ0, λ1, μ1, μ2, j0, ki (i = 1, . . . . . . . . . . . . , 6) are constitutive coef-
ficients. The ti j and mi j are the components of stress tensor and couple stress tensor, λ∗

i is the microstress
tensor, qi j is the first heat flux moment tensor, u and ϕ are the displacement and microrotation vectors, w is
the microtemperature vector and φ∗ is the scalar microstretch, ρ is the density, j is the microinertia, c∗is the
specific heat at constant strain, K ∗ is the thermal conductivity, T is the thermodynamic temperature, T0 is the
reference temperature,αT1, αT2 are the coefficients of linear thermal expansion.

Following Bullen [44], the equation of motion and constitutive relation of isotropic elastic solid

(λe + μe)∇ (∇.ue) + μe∇2ue = ρe ∂
2ue

∂t2 , (10)

te
i j = λeue

r,rδi j + μe
(

ue
i, j + ue

j,i

)
, (11)

where λe, μe are Lame’s constants, ue is the displacement vector, and ρe is density of an isotropic elastic
solid.

3 Formulation of the problem and solution

An isotropic elastic solid half-space overlying a homogeneous isotropic, microstretch thermoelastic solid half-
space with microtemperatures is considered. The origin of the Cartesian coordinate system Ox1x2x3 is taken
at any point on the plane surface (interface) and x3-axis points vertically downwards into the microstretch
thermoelastic solid half-space with microtemperatures. The region x3 ≤ 0 is occupied by an elastic solid
half-space (medium M1), and microstretch thermoelastic solid half-space with microtemperatures occupies
the region x3 ≥ 0 (medium M2) as shown in Fig. 1. The plane waves are considered in the x1x3-plane with
wave front parallel to the x2-axis.

For two-dimensional problem, the displacement vector u, microtemperature vector w, microrotation vector
ϕ in medium M2, and displacement vector ue in medium M1 are thus taken as

u = (u1 (x1, x3) , 0, u3 (x1, x3)) , w = (w1 (x1, x3) , 0, w3 (x1, x3)) , ϕ = (0, φ2 (x1, x3) , 0)

ue = (
ue

1 (x1, x3) , 0, ue
3 (x1, x3)

)
(12)

The dimensionless quantities are

x ′
1 = x1

L
x ′

3 = x3

L
(u′

1, u′
3) = (u1, u3)

1

L
(ue′

1 , ue′
3 ) = (ue

1, ue
3)

1

L
φ′

2 = φ2,

φ∗′ = φ∗, t ′i j = 1

νT0
ti j m′

i j = 1

LνT0
mi j ,

λ∗′
i = 1

LνT0
λi q ′

i j = 1

Lc1νT0
qi j , te′

i j = 1

νT0
te
i j

t ′ = c1

L
t, T ′ = T

T0
, w′

i = Lwi , L =
(

b

ρc∗T0

) 1
2

, c2
1 = λ+ 2μ+ K

ρ
(13)
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Fig. 1 Geometry of the problem

The relations connecting displacement components and microtemperature components to the potential func-
tions in dimensionless form are

u1 = ∂φ

∂x1
− ∂ψ

∂x3
, u3 = ∂φ

∂x3
+ ∂ψ

∂x1
, w1 = ∂φ1

∂x1
− ∂ψ1

∂x3
, w3 = ∂φ1

∂x3
+ ∂ψ1

∂x1
(14)

where the primes have been suppressed.
Using the dimensionless quantities given by Eq. (13) in Eqs. (1)–(5) and with the aid of Eqs. (12) and (14),

we obtain

[
(a1 + 1)∇2 − a5

∂2

∂t2

]
φ + a3φ

∗ − a4T = 0, (15)

(
∇2 − a5

∂2

∂t2

)
ψ + a2φ2 = 0, (16)

(
∇2 − 2a6 − a8

∂2

∂t2

)
φ2 − a6∇2ψ + a7∇2ψ1 = 0, (17)

(
∇2 − a10 − a13

∂2

∂t2

)
φ∗ − a11∇2φ − a12∇2φ1 + a9T = 0, (18)

(
∇2 − a14

∂

∂t

)
T − a15

∂φ∗

∂t
− a16∇2φ + a17∇2φ1 = 0, (19)

[
∇2(1 + a18)− a21 − a23

∂

∂t

]
φ1 − a20

∂φ∗

∂t
− a22T = 0, (20)

(
∇2 − a21 − a23

∂

∂t

)
ψ1 + a19

∂φ2

∂t
= 0, (21)

where the values of ai are given in Appendix 9.
Assuming the motion to be simple harmonic, we can write:

{
φ, T, φ∗, φ1, ψ, φ2, ψ1

} = {
φ, , T , φ∗, φ1, ψ, φ2, ψ1

}
e−ιωt , (22)
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where ω is the angular frequency, φ, T , φ∗, φ1, ψ, φ2, ψ1 are independent of time and are functions of coor-
dinates x1 and x3. Using Eq. (22) into Eqs. (15)–(21), we obtain:

(a∗
1∇2 + a5ω

2)φ + a3φ∗ − a4T = 0, (23)

(∇2 + a5ω
2)ψ + a2φ2 = 0, (24)

(∇2 − 2a6 + a8ω
2)φ2 − a6∇2ψ + a7∇2ψ1 = 0, (25)

(∇2 − a10 + a13ω
2)φ∗ − a11∇2φ − a12∇2φ1 + a9T = 0, (26)

(∇2 + a14ιω)T + a15ιωφ∗ − a16∇2φ + a17∇2φ1 = 0, (27)

(∇2a∗
18 − a21 + a23ιω)φ1 + a20ιωφ∗ − a22T = 0, (28)

(∇2 − a21 + a23ιω)ψ1 − a19ιωφ2 = 0, (29)

Solving Eqs. (23), (26), (27) and (28), we obtain

[F1(∇2)4 + F2(∇2)3 + F3(∇2)2 + F4∇2 + F5]φ = 0, (30)

where the values of Fi ’s are defined in Appendix 10.
The general solution of Eq. (30) can be written as

φ = φ1 + φ2 + φ3 + φ4, (31)

where the potentials φi ; i = 1, 2, 3, 4 are solutions of wave equations, given by
[

∇2 + ω2

V 2
i

]

φi = 0, i = 1, 2, 3, 4. (32)

Here, V1, V2, V3, and V4 are the velocities of four longitudinal waves, that is LD, T, LM, and LT waves, and
are derived from the roots of biquadratic equations in V 2, given by

F5V 8 − F4ω
2V 6 + F3ω

4V 4 − F2ω
6V 2 + F1ω

8 = 0, (33)

Solving Eqs. (24), (25), and (29), we obtain

[(∇2)3 + F6(∇2)2 + F7∇2 + F8]ψ = 0, (34)

where F6 = (a5 + a8)ω
2 + (−a23 + a7a19)ιω + a21 − a6(2 − a2), F7 = −a5ω

2(−a21 + a23ιω − a8ω
2 +

2a6 − a7a19ιω)+ (−2a6 + a8ω
2 + a2a6)(a21 − a23ιω), F7 = −a5ω

2(2a6 − a8ω
2)(a21 − a23ιω),

The general solution of Eq. (34) can be written as

ψ = ψ5 + ψ6 + ψ7, (35)

where the potentials ψi ; i = 5, 6, 7 are solutions of wave equations, given by
[

∇2 + ω2

V 2
i

]

ψi = 0, i = 5, 6, 7. (36)

Here V5, V6, and V7 are the velocities of three transverse waves, that is CD-I, CD-II, and CD-III waves, and
are derived from the roots of cubic equations in V 2, given by

F8V 6 − F7ω
2V 4 + F6ω

4V 2 − ω6 = 0, (37)

Making use of Eq. (31) in Eqs. (23), (26), (27), and (28) and with the aid of Eqs. (22) and (32), the general
solutions for φ, T, φ∗, φ1 are obtained as

{φ, T, φ∗, φ1} =
4∑

i=1

{1, ni ,mi , ki }φi , (38)
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Making use of Eq. (35) in Eqs. (24), (25), and (29) and with the aid of Eqs. (22) and (36), the general solutions
for ψ, φ2, ψ1 are obtained as

{ψ, φ2, ψ1} =
4∑

i=1

{1, gi , fi }φi

where the values of ni ,mi , ki , gi , fi are given in Appendix 11.
Using the dimensionless quantities (13) in Eq. (10) with the aid of (12) and after suppressing the primes,

we obtain
(
αe2 − βe2

)

c2
1

∂

∂x1

(
∂ue

1

∂x1
+ ∂ue

3

∂x3

)
+ βe2

c2
1

∇2u1 = ∂2ue
1

∂t2 , (40)

(αe2 − βe2
)

c2
1

∂

∂x3

(
∂ue

1

∂x1
+ ∂ue

3

∂x3

)
+ βe2

c2
1

∇2u3 = ∂2ue
3

∂t2 , (41)

where αe = √
(λe + 2μe)/ρe, βe = √

μe/ρe are velocities of longitudinal and transverse waves correspond-
ing to medium M1, respectively.

The components ue
1 and ue

3 are related by the potential functions as

ue
1 = ∂φe

∂x1
− ∂ψe

∂x3
, ue

3 = ∂φe

∂x3
+ ∂ψe

∂x1
, (42)

where φe and ψe satisfy the wave equations as

∇2φe = 1

α′2
∂2φe

∂t2 , ∇2ψe = 1

β ′2
∂2ψe

∂t2 , (43)

where α′ = αe

c1
, β ′ = βe

c1
.

4 Reflection and refraction

We consider a harmonic (P-wave or SV-wave) propagating through an isotropic elastic solid half-space and
is incident at the interface x3 = 0 with its direction of propagation with angle θ0 normal to the surface as
shown in Fig. 1. Corresponding to each incident wave, we get reflected longitudinal wave (P-wave), transverse
wave (SV-wave) in an isotropic elastic solid half-space (medium M1), and refracted longitudinal displacement
wave (LD-wave), thermal wave (T-wave), microstretch wave (LM-wave), microtemperature wave (LT-wave),
transverse displacement wave coupled with microrotational wave, and microtemperature wave namely (CD-I
wave, CD-II wave and CD-III wave) in medium M2.

In an elastic solid half-space, the potential functions satisfying Eq. (43) are

φe = Ae
0e[ιω{(x1 sin θ0+x3 cos θ0)/α

′−t}] + Ae
1e[ιω{(x1 sin θ1−x3 cos θ1)/α

′−t}], (44)

ψe = Be
0e[ιω{(x1 sin θ0+x3 cos θ0)/β

′−t}] + Be
1e[ιω{(x1 sin θ2−x3 cos θ2)/β

′−t}], (45)

The coefficients Ae
0, Be

0, Ae
1, and Be

1 represent the amplitudes of the incident P (or SV), reflected P, and reflected
SV-waves, respectively.

Following Borcherdt [45], in an isotropic microstretch thermoelastic solid half-space with microtempera-
tures, the potential functions satisfying Eqs. (32) and (36) are

{φ, T, φ∗, φ1} =
4∑

i=1

{1, ni ,mi , ki }Bi e
(Ai ·r)e{ι(Pi ·r−ωt)}, (46)

{ψ, φ2, ψ1} =
7∑

j=5

{
1, g j , l j

}
B j e

(A j ·r)e{ι(P j ·r−ωt)}, (47)
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The coefficients Bi , i = 1, 2, 3, 4, 5, 6, 7 represent the amplitudes of transmitted LD, T, LM, LT, CD-I, CD-II,
and CD-III waves, respectively. The propagation vector Pi , i = 1, 2, 3, 4, 5, 6, 7 and the attenuation vector
Ai , i = 1, 2, 3, 4, 5, 6, 7

Pi = ξR
∧
x1 +dVi R

∧
x3, Ai = −ξI

∧
x1 −dVi I

∧
x3, i = 1, 2, 3, 4, 5, 6, 7 (48)

where

dVi = dVi R + dVi I = p.v.

(
ω2

V 2
i

− ξ2

)1/2

; i = 1, 2, 3, 4, 5, 6, 7 (49)

and ξ = ξR + ιξI is a complex wave number. The subscripts R and I denote the real and imaginary parts of
the corresponding complex quantity, and p.v. stands for the principal value of the complex quantity obtained
after square root. The inequality ξR ≥ 0 ensures propagation in the positive x1− direction. The complex wave
number ξ in microstretch thermoelastic solid half-space with microtemperatures is

ξ = |Pi | sin θ ′
i − ι |Ai | sin(θ ′

i − γi ), i = 1, 2, 3, 4, 5, 6, 7 (50)

where γi , i = 1, 2, 3, 4, 5, 6, 7 is the angle between the propagation and the attenuation vectors and θ ′
i , i =

1, 2, 3, 4, 5, 6, 7 is the angle of refraction in medium M2.

5 Boundary conditions

The boundary conditions at the interface x3 = 0 are t33 = te
33, t31 = te

31, m32 = 0, λ∗
3 = 0, q33 = 0, q31 =

0, u3 = ue
3, u1 = ue

1,

∂T

∂x3
= 0 (51)

Making the use of potentials given by Eqs. (46), (47), we find that the boundary conditions are satisfied if and
only if:

ξR = ω sin θ0

V0
= ω sin θ1

α′ = ω sin θ2

β ′ , (52)

and

ξI = 0, (53)

where V0 = α′, for incident P-wave and V0 = β ′, for incident SV-wave
Making use of Eqs. (44)–(47) in boundary conditions (51) and with the help of Eqs. (52) and (53), we

obtain a system of nine non-homogeneous equations
9∑

j=1

ai j Z j = Yi ; (i = 1, 2, 3, 4, 5, 6, 7, 8, 9) (54)

where the values of ai j are given in Appendix 12.
(1) For incident P-wave:

A∗ = Ae
0, Be

0 = 0, Y1 = −a11 Y2 = a21 , Y3 = 0, Y4 = 0,

Y5 = 0, Y6 = a61, Y7 = a71, Y8 = −a81, Y9 = 0

(2) For incident SV-wave:

A∗ = Be
0, Ae

0 = 0, Y1 = −a12 Y2 = a22, Y3 = 0, Y4 = 0,

Y5 = 0, Y6 = a62, Y7 = a72, Y8 = −a82, Y9 = 0

and

Z1 = Ae
1

A∗ , Z2 = Be
1

A∗ , Z3 = B1
A∗ , Z4 = B2

A∗ , Z5 = B3
A∗ , Z6 = B4

A∗ , Z7 = B5
A∗ ,

Z8 = B6
A∗ , Z9 = B7

A∗

where Z1, Z2 are the amplitude ratios of reflected P-wave, SV-wave medium M1 and Z3, Z4, Z5, Z6, Z7,
Z8, Z9 are the amplitude ratios of refracted LD-wave, T-wave, LM-wave, LT-wave, and coupled CD-I, CD-II,
and CD-III waves in medium M2.
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Fig. 2 Variation of |Z1| with the angle of incidence (P-wave)
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Fig. 3 Variation of |Z2| with the angle of incidence (P-Wave)

6 Particular cases

(a) If we neglect micropolarity effect in medium M2, i.e., K = 0, then we obtain amplitude ratios at an interface
of an elastic solid half-space and microstretch thermoelastic solid half-space with microtemperatures without
microrotational effect as

8∑

j=1

ai j Z j = Yi ; (i = 1, 2, 3, 4, 5, 6, 7, 8) (55)

where the values of ai j are given in Appendix 13.
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Fig. 4 Variation of |Z3| with the angle of incidence (P-wave)
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Fig. 5 Variation of |Z4| with the angle of incidence (P-Wave)

7 Numerical results and discussion

The following values of relevant parameters are taken for numerical computations.
Following Eringen [46], the values of micropolar constants are

λ = 9.4 × 1010 Nm−2, μ = 4.0 × 1010 Nm−2,

K = 1.0 × 1010 Nm−2, γ = 7.79 × 10−10 N,

j = 0.0000002 × 10−14 m2, ρ = 1.74 × 103 Kgm−3.

and thermal parameters are [47]:

c∗ = 0.104 × 104 NmKg−1 K−1,

T0 = 298 K, K ∗ = 1.7 × 102 Nsec−1 K−1, τ1 = 0.613 × 103 s.
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Fig. 6 Variation of |Z5| with the angle of incidence (P-wave)
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Fig. 7 Variation of |Z6| with the angle of incidence (P-Wave)

Microstretch parameters are

j0 = 0.000019 × 10−13 m2, b = 0.15 × 10−10 N , λ0 = 0.21 × 1011 Nm−2, λ1 = 0.007 × 1012 Nm−2,

α0 = 0.008 × 10−7 N.

and microtemperatures parameters are

k1 = 0.0035 Ns−1, k2 = 0.045 Ns−1, k3 = 0.055 NK−1s−1, k4 = 0.065 Ns−1m2, k5 =0.076 Ns−1m2,

k6 = 0.096 Ns−1m2, μ1 = 0.0085 N, μ2 = 0.0095 N.

Following Bullen [44], the numerical data of granite in elastic medium are

ρe = 2.65 × 103 Kgm−3, αe = 5.27 × 103 ms−1, βe = 3.17 × 103 ms−1.

The values of amplitude ratios for incidence of P-wave and SV-wave have been computed at different angles
of incidence. In Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19, MMT corresponds to
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Fig. 8 Variation of |Z7| with the angle of incidence (P-wave)
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Fig. 9 Variation of |Z8| with the angle of incidence (P-Wave)

microstretch thermoelastic solid with microtemperatures and WMT corresponds to microstretch thermoelastic
solid with microtemperatures without microrotational effect.

7.1 Incident P-Wave

Variations of amplitude ratios |Zi | ; 1 ≤ i ≤ 9 with the angle of incidence θ0, for incident P-wave are shown
in Figs. 2, 3, 4, 5, 6, 7, 8, 9, and 10.

It is clear from Fig. 2 that the values of amplitude ratio |Z1| for MMT increase in the range 0◦ < θ0 < 20◦
and then decrease in the further range, while the values for WMT decrease monotonically with increase in θ0.
It is noticed that the values for MMT are greater than the values for WMT in the whole range, except the initial
range 0◦ < θ0 < 8◦ which shows that the effect of micropolarity increases the magnitude of amplitude ratio
with increase in θ0.
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Fig. 10 Variation of |Z9| with the angle of incidence (P-wave)
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Fig. 11 Variation of |Z1| with the angle of incidence (SV-Wave)

It is evident from Fig. 3 that the values of amplitude ratio |Z2| for MMT increase in range 0◦ < θ0 < 55◦
and the values of amplitude ratio decrease with further increase in θ0. The values for WMT start with minimum
value at the normal incidence and then increase with angle of incidence upto θ0 < 78◦, and in the further
range, the magnitude of amplitude ratio decrease. The values for WMT in comparison with MMT are greater
in the whole range, except the initial range, where the behavior is reversed.

Figure 4 shows that the values of amplitude ratio |Z3| for MMT increase in the intervals 8◦ < θ0 <
20◦, 68◦ < θ0 < 90◦ and decrease in the interval 20◦ < θ0 < 68◦. The values for WMT oscillate in the whole
range and attain maximum value in the range 8◦ < θ0 < 20◦.

Figure 5 indicates that the values of amplitude ratio |Z4| in the absence of micropolarity effect are greater
than the values in the presence of micropolarity effect. The amplitude ratio in the absence of micropolarity
effect attains maximum value in the range 37◦ < θ0 < 41◦. It is clear from Fig. 6 that the behavior of oscillation
of |Z5| is similar to |Z4| with difference in their magnitude values.
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Fig. 12 Variation of |Z2| with the angle of incidence (SV-Wave)
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Fig. 13 Variation of |Z3| with the angle of incidence (SV-wave)

Figure 7 shows that the values of |Z6| for MMT increase in the range 0◦ < θ0 < 20◦ to attain maximum
value, then decrease in the range 20◦ < θ0 < 55◦ and again increases in the further range. The values of
amplitude ratio for WMT attain maximum value at the grazing incidence. In this case, the micropolarity effect
decreases the magnitude of amplitude ratio.

It is noticed from Fig. 8 that the values of |Z7| for MMT start with minimum value at the grazing incidence
and then increase to attain maximum value at the grazing incidence. It is seen that the values for WMT decrease
in the initial range 0◦ < θ0 < 5◦ and then increase sharply upto θ0 < 41◦ and the values of amplitude ratio
fluctuate in the further range. The values for WMT are greater than the values for MMT in the whole range
that reveals the effect of micropolarity.

It is noticed from Fig. 9 that values of amplitude ratio |Z8| for WMT get increased from normal incidence
to grazing incidence. Figure 10 depicts that the values of amplitude ratio |Z9| for WMT show fluctuating
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Fig. 14 Variation of |Z4| with the angle of incidence (SV-Wave)
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Fig. 15 Variation of |Z5| with the angle of incidence (SV-wave)

behavior in the whole range and attain maximum value in the range 34◦ < θ0 < 37◦. On the other hand, the
values for MMT increase rapidly from θ0 = 0◦ from θ0 = 90◦.

7.2 Incident SV-Wave

Variations of amplitude ratios |Zi | ; 1 ≤ i ≤ 9 with the angle of incidence θ0, for incident SV-wave are shown
in Figs. 11, 12, 13, 14, 15, 16, 17, 18 and 19.

From Fig. 11, it is evident that the values of |Z1| for MMT increase slowly till θ0 < 10◦, and afterward, it
decreases very slowly upto θ0 < 13◦. Beyond θ0 ≥ 13◦, the amplitude increases very smoothly till θ0 < 46◦,
and thereafter, it decreases frequently and attains minimum value at the grazing incidence. The amplitude ratio
for WMT increase with angle of incidence till θ0 < 52◦; then, it gradually decreases upto grazing incidence.
Moreover, the values of amplitude ratio for MMT are greater than the values for WMT in the whole range.
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Fig. 16 Variation of |Z6| with the angle of incidence (SV-Wave)
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Fig. 17 Variation of |Z7| with the angle of incidence (SV-wave)

It is clear from Fig. 12 that the values of |Z2| for MMT increase slowly till θ0 = 10◦, and afterward, its
value decrease gradually in the range 10◦ < θ0 < 22◦. After θ0 = 22◦, the values of |Z2| increase. On the
other hand, the values for WMT decrease gradually in the range 0◦ < θ0 < 5◦ and then increase till grazing
incidence.

Figure 13 indicates that the values of amplitude ratio |Z3| for MMT firstly show oscillating behavior
in range 0◦ < θ0 < 28◦ and then decrease continuously in the further range. It is seen that the values of
amplitude ratio for WMT increase in the range 0◦ < θ0 < 37◦ and then decrease with further increase in angle
of incidence. In this case, the micropolarity effect increases the magnitude of amplitude ratio near the normal
and grazing incidence.

It is noticed from Fig. 14 that values of |Z4| for MMT increase in the range 0◦ < θ0 < 50◦ and then
decrease in the further range. It is evident that the values for WMT decrease sharply in the whole range and
are greater in comparison with the values for MMT in the range 0◦ < θ0 < 37◦ and behavior is opposite in
the remaining range.
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Fig. 18 Variation of |Z8| with the angle of incidence (SV-Wave)
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Fig. 19 Variation of |Z9| with the angle of incidence (SV-wave)

Figure 15 depicts that the amplitude |Z5| begins with the value 0.00698 near the normal incidence, it
increases till θ0 = 10◦, and afterward, it decreases gradually upto θ0 = 19◦. Beyond θ0 = 19◦, the amplitude
increases very smoothly till θ0 = 31◦, and thereafter, it decreases frequently and attains the minimum value.

It is clear from Fig. 16 that the values of |Z6| for MMT increase slowly with increase in angle of incidence till
θ0 = 10◦; then, its value decreases till θ0 = 90◦. The value of amplitude ratio |Z6| increases with increase in the
angle of incidence till θ0 = 28◦, and then, it gradually decreases to attain minimum value at grazing incidence.

Figure 17 shows that the values of |Z7| for MMT increase in the range 0◦ < θ0 < 34◦ and attain maximum
value. Afterward, its value decreases to attain minimum value at the grazing incidence. Moreover, the values
for WMT increase gradually with angle of incidence till θ0 = 13◦, and thereafter, its value decreases sharply
as θ0 approaches to 90◦. The micropolarity effect decreases the magnitude of amplitude ratio |Z7|. Figure 18
indicates that the values of amplitude ratio |Z8| for WMT increase with increase in angle of incidence and attain
their maximum values near θ0 = 37◦. Thereafter, they decrease and attain minimum value at grazing incidence.
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Figure 8 shows that initially, the values of amplitude ratio |Z9| for MMT increase with increase in angle of
incidence till θ0 = 40◦, and then, it gradually decreases till grazing incidence. The values of amplitude ratio
for WMT increase gradually till θ0 = 13◦ and then decreases to attain minimum value at the grazing incidence.

8 Conclusion

The reflection and refraction coefficients at the interface of an elastic solid half-space and microstretch ther-
moelastic solid half-space with microtemperatures have been discussed in the present article. The amplitude
ratios of various reflected and refracted waves have been calculated numerically and their variations have been
shown graphically with respect to angle of incidence. It is concluded that for incidence of SV-wave, the values
for WMT (without microrotational effect) are smaller as compared to the values for MMT (with microrota-
tional effect). The values of amplitude ratio of refracted LD, LT, CD-I, and CD-II waves in the absence of
micropolarity effect are greater than the values in presence of micropolarity effect that reveals the effect of
microrotation (when P-wave is incident). It is clearly depicted that when P-wave is incident, the values of
amplitude ratios in the absence of microrotations effect are more oscillatory near the normal incidence and
grazing incidence due to the complex structure. It is noticed that microrotational effect becomes more promi-
nent with increase in angle of incidence. The above problem is of geophysical interest and finds applications
in the problems related to seismology.
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