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Abstract The effect of gravity, heterogeneity and internal friction on propagation of SH-waves (horizontally
polarised shear waves) in viscoelastic layer over a half-space has been studied. Using the method of separation
of variables, dispersion equation has been obtained and used to recover the damped velocity of SH-waves. Both
the real and imaginary parts of dispersion equation are in well agreement with the classical Love wave equation.
It has been observed that heterogeneity of the medium affects the velocity profile of SH-wave significantly.
Some other peculiarities have been observed and discussed in our study.
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1 Introduction

The earth is considered to be a layered elastic medium with a variation in density and rigidity in constituent’s
layers. The study of body waves in a half-space is important to seismologists due to its possible applications
in geophysical prospecting and in understanding the cause and estimation of damage due to earthquakes.

In seismological studies, the phenomenon ‘liquefaction’ denotes a state in which solid deposit of sands
inside the ground is transformed into a state of suspension, so that they behave as a viscous liquid. Studies
of wave propagation in the earth stratum under loads have been done with assumption that the earth behaves
to a first approximation as an ideal elastic or viscoelastic material. The theory of viscoelasticity is of great
importance in the broad field of solid mechanics and particularly in seismology, exploration geophysics, etc.
Geophysical studies reveal the fact that the interior of earth, similar to the outer, is layered. To study the effect of
viscoelasticity in wave propagation, some attempts have been done earlier. Several papers have been published
on the propagation of seismic waves in elastic medium with different types of inhomogeneity. Bhattacharya [1]
pointed out some possible exact solution of SH-wave equation for inhomogeneous media. Cooper [2], Shaw
and Bugl [3], Schoenberg [4], Borcherdt [5], Kaushik and Chopra [6], Gogna and Chander[7] and Romeo [8]
have studied the propagation of SH-waves in viscoelastic media. The propagation of waves in a homogeneous
viscoelastic layer overlying a viscoelastic medium was studied by Kanai [9].

Lockett [10] discussed the reflection and refraction of waves in viscoelastic materials. Cerveny [11] studied
the propagation of SH-waves in viscoelastic media with and without heterogeneity. Chattopadhyay et al. [12]
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studied the propagation of torsional surface waves in heterogeneous anisotropic half-space under initial stress.
Wang et al. [13] studied the wave propagation in an inhomogeneous transversely isotropic material obeying
the generalized power law model. Roy [14] studied the propagation of SH-wave in laterally heterogeneous
medium. The asthenosphere that forms the transition zone between the low dense crust and higher density
mantle is viscous in nature, and most of the dynamic earth processes responsible for the earthquake take place
in this zone. These together with the basic characteristic of the earth (anisotropy, heterogeneity and gravity)
motivate us towards the present study.

This paper studies the effect of gravity, internal friction and heterogeneity on the propagation of SH-waves
in a viscoelastic layer. The dispersion equation has been derived and found to be in agreement with the Love
wave equation.

2 Formulation and solution of the problem

We consider a medium consisting of a viscoelastic layer of thickness H lying over a half- space with self-
weight, which generates the initial hydrostatic stress S′

11 = S′
33 = −ρ2gz. Rectangular coordinates with the

origin at the interface and the z-axis towards the interior of the elastic half-space have been used. The interface
between the layer and half-space is given by z = 0, and the upper boundary may be described as z = −H .
Let ρ,μ and η be the density, elastic constant and viscosity of the layer, respectively.

2.1 Solution for layer

For the heterogeneity of the layer, we have considered that the properties of the medium change only in
z-direction.

For SH-wave propagating in the x-direction and causing displacement in the y-direction only, we shall
assume that

u1 = w1 = 0, v1 = v1 (x, z, t) and
∂

∂y
≡ 0. (1)

The only non-vanishing equation of motion in the absence of body force due to above assumption [15] is given
as

∂

∂x
pxy + ∂

∂z
pyz = ρ

∂2v1

∂t2 (2)

where

pxy =
(
μ+ η

∂

∂t

)
∂v1

∂x
and pyz =

(
μ+ η

∂

∂t

)
∂v1

∂z
. (3)

In the upper layer, ρ,μ and η are assumed to be function of depth only and are given by (Bhattacharya [1])

μ = μ0 (1 − sin αz)

η = η0 (1 − sin αz) (4)

and

ρ = ρ0 (1 − sin αz)

where ρ0, μ0 and η0 are the constant values of ρ,μ and η at the interface, and α is an arbitrary constant having
dimension inverse of the length.

For heterogeneous viscoelastic layer, Eq. (2) becomes
(
μ+ η

∂

∂t

)
∂2v1

∂x2 + ∂

∂z

[(
μ+ η

∂

∂t

)
∂v1

∂z

]
= ρ

∂2v1

∂t2 . (5)

Assuming that

v1 = V (z)ei(ωt−kx) (6)
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corresponding to a wave propagating in the positive x-direction and with amplitude which depends only on
depth z, we find from Eq. (5) the following equation for V

d2V

dz2 + 1

μ1

dμ1

dz

dV

dz
+

{
ω2ρ

μ1
− k2

}
V = 0 (7)

where

μ1 = μ+ iωη.

Now, we take the following substitution

V (z) = Y1(z)√
μ1

the above substitution transforms the Eq. (7) into the form

d2Y1

dz2 +
[

1

4μ2
1

(
dμ1

dz

)2

− 1

2μ1

d2μ1

dz2 +
(
ω2ρ

μ1

)
− k2

]
Y1 = 0. (8)

Now, with the help of Eq. (4), Eq. (8) becomes

d2Y1

dz2 + m2Y1 = 0 (9)

where

m2 = α2

4
+ ω2ρ0

μ0
− k2 and μ0 = μ0 + iωη0. (10)

The solution of Eq. (9) is

Y1 = A cos(mz)+ B sin(mz)

where A and B are arbitrary constants.
Therefore, we get solution for viscoelastic layer as

v1 = 1√
μ0
(1 − sin αz)

−1
2 [A cos mz + B sin mz] ei(ωt−kx). (11)

2.2 Solution for half-space

The initial stresses in the half-space with self-weight are hydrostatic and are given by

S′
11 = S′

33 = −ρ2gz, S′
22 = S′

12 = S′
23 = S′

31 = 0 (12)

where ρ2 is the density of the half-space, g is the acceleration due to gravity and components of the body
forces are X = 0,Y = 0 and Z = g.

The dynamical non-vanishing equations of motion of initially stressed half-space due to gravity is given
by Biot [16]

∂S′
12

∂x
+ ∂S′

22

∂y
+ ∂S′

23

∂z
− ρ2gω̃′

23 − ρ2gz
∂ω̃′

23

∂z
+ ρ2gz

∂ω̃′
12

∂x
= ρ2

∂2v2

∂t2 (13)

where S′
i j are the incremental stresses, ω̃′

i j are rotational components in the half-space and (u2, v2, w2) are the
displacement components.

The stress-strain relations under the hydrostatic initial stress are given by

S′
i j = λ2eδi j + 2μ2ei, j (14)
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where δi j , e, λ2andμ2 are Kronecker delta, the cubical dilatation and elastic constants of the half-space,
respectively, given by

2ei, j = ui, j + u j,i , e = ∂u2

∂x
+ ∂v2

∂y
+ ∂w2

∂z
and ω̃′

i j = 1

2
(ui, j − u j,i ). (15)

Now, again with the conditions of SH-wave propagation, we take v2 = f2(z)e−i(ωt−kx) and using Eqs. (14),
(15) and (16), Eq. (13) becomes

f ′′
2 (z)+ b

a + bz
f ′
2(z)+ k2

(
c2

a + bz
− 1

)
f2(z) = 0 (16)

where

a = μ2

ρ2
= β2

2 , b = −g

2
. (17)

Substituting f2 (z) = ψ(z)
(a+bz)1/2

in Eq. (16), we obtain

ψ ′′(z)+
{

b2

4(a + bz)2
+ k2

(
c2

a + bz
− 1

)}
ψ(z) = 0 (18)

taking σ = − 2k
b (a + bz) and s = − c2k

2b Eq. (18) changes to

ψ ′′(σ )+
{
−1

4
+ s

σ
+ 1

4σ 2

}
ψ(σ) = 0 (19)

which is Whittaker’s equation.
The solution of the Eq. (19) can be written as

ψ(σ) = DWs,0(σ )+ EW−s,0(−σ) (20)

where Ws,0 (σ ) and W−s,0 (−σ) are Whittaker’s functions.
We consider the appropriate solution in view of the condition ψ → 0 as z → ∞

ψ(σ) = EW−s,0(−σ). (21)

Hence, we get the solution of Eq. (19) as

v2 = E

(
2a − gz

2

)− 1
2

W−s,0

(
−2k (2a − gz)

g

)
e−i(ωt−kx)· (22)

Now, introducing Biot’s gravity parameter G = ρ2g
μ2k , the Eq. (22) may be written as

v2 = E

(
2a − gz

2

)− 1
2

W−s,0

{
−

(
4

G
− 2kz

)}
e−i(ωt−kx). (23)

Now, using the asymptotic expansion (Whittaker and Watson, [17]) of Whittaker’s function for large argument

and retaining up to the second term, W−s,0

(
− 2k(2a−gz)

g

)
may be approximated as

W−s,0

{
−

(
4

G
− 2kz

)}
∼ e

−
(

kz− 2
G

) (
2kz − 4

G

)−s
[

1 − (s + 0.5)2(
2kz − 4

G

)
]
. (24)
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3 Boundary conditions

For the SH-wave propagation, the following boundary conditions are to be satisfied

(i) The upper layer is stress free, i.e.
(
μ+ η

∂

∂t

)
∂v1

∂z
= 0 at z = −H. (25)

(ii) Displacements are continuous at the interface, i.e.

v1 = v2 at z = 0. (26)

(iii) Stresses are continuous at the interface, i.e.
(
μ+ η

∂

∂t

)
∂v1

∂z
= μ2

∂v2

∂z
at z = 0. (27)

Using Eqs. (11) and (24) with above boundary conditions, we get

A

B
= α cosαH sin m H − 2m (1 + sin αH) cos m H

α cosαH cos m H + 2m (1 + sin αH) sin m H
(28)

A√
μ0

= E D∗ (29)

√
μ0

(
α

A

2
+ m B

)
= μ2 N∗. (30)

Now, eliminating the constants A, B and E from Eqs. (28), (29) and (30), we get the dispersion equation as

α2 cosαH sin m H − 2mα cos m H (1 + sin αH)+ 2mα cos m H cosαH + 4m2(1 + sin αH) sin m H

= 2 (η1 + iη2) [α cosαH sin m H − 2m (1 + sin αH) cos m H ]
N∗

D∗ . (31)

By separating the real and imaginary parts from Eq. (31), we have finally the dispersion equation as

tan

(√
r H cos

θ

2

)

=
(1 + sin αH)

[
2αx + 8xy tanh y H − 4η1x N∗

D∗ + 4η2
N∗
D∗

]
− 2αx cosαH − 2αη2 tanh y H cosαH N∗

D∗

(1 + sin αH)
[
4

(
x2 − y2

) − 4yη1 tanh y H N∗
D∗ − 2αy tanh y H + 4xη2 tanh y H N∗

D∗
] − 2αη1 cosαH N∗

D∗ + α cosαH [α + 2y tanh y H ]

(32)

and

tan

(√
r H cos

θ

2

)

=
(1 + sin αH)

[
2αy − 4(x2 − y2) tanh y H − 4η1 y N∗

D∗ − 4η2x N∗
D∗

]
− 2αy cosαH + 2αη1 tanh y H cosαH N∗

D∗ − α2 tanh y H cosαH

(1 + sin αH)
[
8xy − 4xη1 tanh y H N∗

D∗ + 2αx tanh y H − 4yη2 tanh y H N∗
D∗

]
− 2αη2 cosαH N∗

D∗ − 2α cosαH tanh y H

(33)

where

m =
(

reiθ
) 1

2
,

x = √
r cos

θ

2
, y = √

r sin
θ

2
,

r cos θ = α2

4
− k2 + ρ0

μ0ω
2(

μ2
0 + η2

0ω
2
) ,
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r sin θ = −ρ0
η0ω

3(
μ2

0 + η2
0ω

2
) ,

N∗

D∗ =
d
dz

((
2a−gz

2

)− 1
2

W−s,0

(
− 2k(2a−gz)

g

)
e−i(ωt−kx)

)}
z=0((

2a−gz
2

)− 1
2

W−s,0

(
− 2k(2a−gz)

g

)
e−i(ωt−kx)

)}
z=0

,

η1 = μ0(
μ2

0 + η2
0ω

2
)

and

η2 = − ωη0(
μ2

0 + η2
0ω

2
) .

4 Particular cases

Considering α = 0, η0 = 0 and neglecting the higher-order terms in the expansion of Whittaker’s function,
Eqs. (32) and (33) reduce to standard Love wave equation

tan

⎡
⎣k H

{
c2

β2
1

− 1

}1/2
⎤
⎦ =

μ2

{
1 − c2

β2
2

}1/2

μ0

{
c2

β2
1

− 1

}1/2

where

β2
1 = μ0

ρ0
.

5 Numerical results and discussion

We have obtained the phase velocity and damping coefficient of SH-wave from Eq. (31). The following data
have been used for viscoelastic layer and gravitational half-space (Fig. 1).

z H= −

       viscoelastic layer        

0z = x

                                               Half-space under gravity                                                     

2gzρ y 2gzρ

z

Fig. 1 Geometry of the problem
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Fig. 2 Variation in dimensionless phase velocity (c/β1) against dimensionless wave number (k H ) for different values of inho-
mogeneity parameter (αH )

Fig. 3 Variation in dimensionless phase velocity (c/β1) against dimensionless wave number (k H ) for different values of Biot
gravity parameter G

(i) Viscoelastic layer [18]

ρ0 = 3323
kg

m3 , μ0 = 6.77 × 1010 N

m2 ,
μ0

η0
= 50 s−1
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Fig. 4 Variation in dimensionless phase velocity (c/β1) against dimensionless wave number (k H ) for different values of internal
friction (μ/η)

Fig. 5 Variation in dimensionless damping velocity (c/β1) against dimensionless wave number (k H ) for different values of
inhomogeneity parameter (αH )

(ii) Half-space under gravity [19]

ρ2 = 2.72 × 103 kg

m3 , μ2 = 4.53 × 1010 N

m2

Using the above numerical data and Eqs. (32) and (33), we have the following graphs.
From Fig. 2, we conclude that increment in inhomogeneity parameter increases the phase velocity. By

Figs. 3 and 4, we observe that increment in gravity and internal friction decreases the phase velocity of SH-
wave. In Figs. 5 and 6, it can be observed that damping velocity of the wave increases with the increase in wave
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Fig. 6 Variation in dimensionless damping velocity (c/β1) against dimensionless wave number (k H ) for different values of Biot
gravity parameter

Fig. 7 Variation in dimensionless damping velocity (c/β1) against dimensionless wave number (k H ) for different values of
internal friction (μ/η)

number. It is also observed that the inhomogeneity and gravity decrease the damping velocity of SH-wave.
From Fig. 7, it is clear that damping velocity of the wave increases with the increase in wave number; then,
there is a decrease in phase velocity to a greater extent for the value of internal frictionμ/η = 50S−1. Keeping
in mind the dependence of phase velocity (c/β1) on wave number(k H ), surface plot of phase velocity against
varying wave number, heterogeneity parameter and gravity has been shown in Figs. 8 and 9, respectively.
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Fig. 8 Variation in dimensionless phase velocity (c/β1) with respect to dimensionless wave number (k H ) and inhomogeneity
parameter (αH )

Fig. 9 Variation in dimensionless phase velocity (c/β1) with respect to dimensionless wave number (k H ) and garvity parameter G

6 Conclusions

It is found that the heterogeneity, gravity and internal friction have significant effect on the propagation of
SH-waves in viscoelastic layer over half-space with self-weight. The dispersion equation has been obtained,
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which coincides with the classical result of Love wave when the initial stresses and inhomogeneity parameters
are neglected. Graphical representations reveal that inhomogeneity of the medium increases the phase velocity,
whereas increment of gravity and internal friction decreases the phase velocity of SH-waves. We observed
that increment in inhomogeneity and gravity decreases the damping velocity of SH-waves, whereas internal
friction decreases the damping velocity up to greater extent. This study may have possible applications in the
field of seismology and geophysics.
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