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Abstract Based on England’s expansion formula for displacements, the elastic field in a transversely isotropic
functionally graded annular plate subjected to biharmonic transverse forces on its top surface is investigated
using the complex variables method. The material parameters are assumed to vary along the thickness direction
in an arbitrary fashion. The problem is converted to determine the expressions of four analytic functions
α(ζ ), β(ζ ), φ(ζ ) and ψ(ζ ) under certain boundary conditions. A series of simple and practical biharmonic
loads are presented. The four analytic functions are constructed carefully in a biconnected annular region
corresponding to the presented loads, which guarantee the single-valuedness of the mid-plane displacements
of the plate. The unknown constants contained in the analytic functions can be determined from the boundary
conditions that are similar to those in the plane elasticity as well as those in the classical plate theory. Numerical
examples show that the material gradient index and boundary conditions have a significant influence on the
elastic field.

Keywords Functionally graded materials · Annular plates · Transversely isotropic · Biharmonic load ·
Elasticity solutions

1 Introduction

Functionally graded materials (FGMs) are a new type of inhomogeneous materials, which can be used to meet
different requirements for material service performance at different locations in structures due to the exhibiting
gradient change of macroscopic properties in space. Therefore, a large number of research activities have been
directed to the study of elastic responses of FGM plates under various conditions.
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There are several methods that have been proposed to analyze the bending of FGM plates, among which
analytical and numerical methods based on certain simplified theories are frequently used. For example,
Reddy et al. [1] examined the axisymmetric bending of functionally graded circular and annular plates by
developing exact relationships between the solutions of the classical plate theory (CPT) and the first-order shear
deformation plate theory (FSDT). Two refined displacement models, RSDT1 and RSDT2, were developed by
Tounsi et al. [2] for a bending analysis of functionally graded sandwich plates. Exact analytical solutions
directly based on the elasticity theory can only be derived for a relatively few problems, but they can serve
as benchmarks for accessing the validity of various approximate plate theories or numerical methods. Cheng
and Batra [3] used an asymptotic expansion method to analyze the isotropic FGM elliptic plate with clamped
edges based on the three-dimensional (3D) elasticity theory. A 3D elasticity solution for an isotropic FGM
rectangular plate with simply supported edges subject to transverse loading was developed by Kashtalyan [4].
Wang et al. [5] investigated the axisymmetric bending of transversely isotropic FGM circular plates subject
to arbitrarily transverse loads. More works on FGM plate theories and their applications may be found in the
review paper of Birman and Byrd [6].

It is noted that Mian and Spencer [7] developed an ingenious method to obtain a class of 3D solutions
for isotropic FGM plates with traction-free surfaces, in which the material properties are assumed to vary
arbitrarily with the thickness coordinate. Yang et al. [8] extended the above method to a transversely isotropic
FGM annular plate with uniform loads applied on the top and bottom surfaces. Using the complex variables
method, England [9] made a noticeable generalization of Mian and Spencer’s method [7] by including the
effect of top-surface pressure, which satisfies the biharmonic equation or higher-order ones. Recently, Yang
et al. [10] extended England’s method to the case of functionally graded plates with materials characterizing
transverse isotropy; they obtained the elasticity solutions of an FGM rectangular plate with opposite edges
simply supported and subject to a special family of biharmonic polynomial loads (totally 12 different types).

To the authors’ knowledge, no analytical solution based on the 3D elasticity theory is found, which can be
used to predict the asymmetric behavior of functionally graded annular plates. In the present study, a series
of biharmonic loads are given using the Fourier expansion technology. Corresponding to different loads, four
analytic functions α(ζ ), β(ζ ), φ(ζ ) and ψ(ζ ) that meet the single-valuedness of the mid-plane displacements
are constructed by the complex variables method, which is a generalization of England’s method. Finally, 3D
elasticity solutions are obtained for a transversely isotropic FGM annular plate subject to biharmonic loads
under different boundary conditions.

2 Basic formulations

In the Cartesian coordinate system (x, y, z), the equations of equilibrium in the absence of body forces can be
written as

σi j, j = 0, (1)

where the comma denotes differentiation with respect to the indicated variable.
The stress–displacement relations for transversely isotropic materials are expressed as [11]:

σx = c11u,x + c12v,y + c13w,z, σy = c12u,x + c11v,y + c13w,z, σzx = c44
(
w,x + u,z

)
,

σz = c13u,x + c13v,y + c33w,z, σyz = c44
(
v,z + w,y

)
, σxy = c66

(
u,y + v,x

)
, (2)

where u, v andw are the displacement components, and ci j with 2c66 = c11 −c12 are the elastic constants. For
FGMs, they are functions of z, i.e., ci j = ci j (z). If c11 = c33, c12 = c13, and c44 = c66, the material becomes
isotropic. The xy plane is an isotropic plane, coinciding with the mid-plane of the plate. The positive z-axis is
upward and perpendicular to the mid-plane.

According to England [9], we seek the following solution of (1) and (2):

u (x, y, z) = ū + R1Δ,x + R0w̄,x + R2∇2w̄,x + R3∇4w̄,x + R4∇6w̄,x ,

v (x, y, z) = v̄ + R1Δ,y + R0w̄,y + R2∇2w̄,y + R3∇4w̄,y + R4∇6w̄,y,

w (x, y, z) = w̄ + T1Δ+ T2∇2w̄ + T3∇4w̄ + T4∇6w̄, (3)
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where R0, . . . R4, T1, . . . T4 are functions of z, ū = ū(x, y), v̄ = v̄(x, y), and w̄ = w̄(x, y) are the mid-plane
displacements, and

Δ = ū,x + v̄,y, ∇2 = ∂2

∂x2 + ∂2

∂y2 , ∇4 = ∇2∇2, ∇6 = ∇2∇4. (4)

Suppose that the plate is free from shear tractions at the upper and lower surfaces, i.e., σzx = σzy = 0 at
z = ±h/2. Moreover, we have σz = 0 at z = −h/2, and σz = −p(x, y) at z = h/2, where p is a biharmonic
load. By substituting Eq. (3) into Eq. (2), then into Eq. (1) and making use of the stress boundary conditions on
the upper and lower surfaces of the plate, the expressions of functions R0, T1, T2, R1, R2, T3, R3, T4, R4 can
be determined (see the Appendix A of [10]) and eventually the following general solution of the mid-plane
displacements has been obtained [10]:

w̄ = ζ̄ β(ζ )+ ζβ(ζ )+ α(ζ )+ α(ζ )+ W
(
ζ, ζ̄

)
, (5)

D = κ1 + 1

κ1 − 1
φ(ζ )− ζφ′(ζ )− ψ(ζ )− 2

κ2

κ1

[
β(ζ )+ ζβ ′(ζ )

]

− 2

κ1

(
κ2 + κ3∇2 + κ4∇4) ∂W

∂ζ̄
, (6)

where a prime denotes the derivative with respect to ζ, D = ū + i v̄, ζ = x + iy, α(ζ ), β(ζ ), φ(ζ ) and ψ(ζ )
are four analytic functions of the complex variable ζ, κ1, κ2, κ3 and κ4 are constants, and

W
(
ζ, ζ̄

) = ζ̄ 3 Q(ζ )+ ζ 3 Q(ζ )+ 3ζ̄ 2 P(ζ )+ 3ζ 2 P(ζ )

−12S21

[
ζ̄ 2 Q′(ζ )+ ζ 2 Q′(ζ )

]
. (7)

where S21 is a constant, and Q(ζ ) and P(ζ ) are analytic functions, which are relevant to the following
biharmonic load p(x, y):

p (x, y) = −
[
ζ̄Q′′(ζ )+ ζQ′′(ζ )+ P ′′(ζ )+ P ′′(ζ )

]
96S1 (h/2) , (8)

where S1(h/2) is also a constant.
Substituting Eqs. (5) and (6) into Eqs. (3) and (2) gives rise to the displacements and stress components,

respectively, all expressed in terms of the four analytic functions α(ζ ), β(ζ ), φ(ζ ) and ψ(ζ ). The following
expressions of the resultant forces and moments are obtained by integrating the stress components:

Nx + Ny = a1

[
φ′(ζ )+ φ′(ζ )

]
+ 4a2

[
β ′(ζ )+ β ′(ζ )

]
+ a2∇2W − a3∇4W − a4∇6W,

Ny − Nx + 2i Nxy = a1
[
ζ̄ φ′′(ζ )+ ψ ′(ζ )

] − a5φ
′′′(ζ )+ 4a2ζ̄ β

′′(ζ )+ 2a6α
′′(ζ )− a7β

′′′(ζ )

+4
∂2

∂ζ 2

(
a2W − a3∇2W − a4∇4W − a8∇6W

)
. (9)

Mx + My = −b1

[
φ′(ζ )+ φ′(ζ )

]
+ 4b2

[
β ′(ζ )+ β ′(ζ )

]
+ b2∇2W + b3∇4W + b4∇6W,

My − Mx + 2i Mxy = a6
[
ζ̄ φ′′(ζ )+ ψ ′(ζ )

] − b5φ
′′′(ζ )+ b6ζ̄ β

′′(ζ )+ b7α
′′(ζ )

−b8β
′′′(ζ )+ ∂2

∂ζ 2

(
b6W − b9∇2W − b0∇4W − a9∇6W

)
. (10)

Qxz − i Qyz = 4

κ1 − 1
Qz1φ

′′(ζ )+ 8Qz2β
′′(ζ )+ 2

∂

∂ζ

(
Qz2∇2W + Qz3∇4W + Qz4∇6W

)
, (11)

where ak(k = 1, . . . , 9), b j ( j = 0, . . . , 9), Qz1, Qz2, Qz3 and Qz4 are real constants.
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3 FGM annular plates subject to biharmonic loads

Consider a transversely isotropic FGM annular plate subject to a transverse biharmonic load with inner radius
r0, outer radius r1 and thickness h. In the cylindrical coordinate system (r, θ, z), the r − θ plane coincides
with the mid-plane of the plate, and the z-axis is vertical to the r − θ plane. Denote ur , uθ and w as the
displacement components in the r -, θ - and z-directions, respectively; and σr , σθ , σz, σrθ , σr zand σθ z as the
stress components.

The following transform relations for the physical quantities between the Cartesian coordinates and cylin-
drical coordinates hold:

ūr + i ūθ = De−iθ , Nr + Nθ = Nx + Ny, Mr + Mθ = Mx + My,

Nθ − Nr + 2i Nrθ = (
Ny − Nx + 2i Nxy

)
e2iθ ,

Mθ − Mr + 2i Mrθ = (
My − Mx + 2i Mxy

)
e2iθ ,

Qrz − i Qθ z = (Qxz − i Qyz)e
iθ . (12)

The biharmonic load p(r, θ) can be expanded into Fourier series in the circumferential direction as follows:

p(r, θ) =
∞∑

−∞
Tk(r)e

ikθ =
∞∑

k=0

pk(r, θ), Tk(r) = 1

2π

2π∫

0

p(r, θ)e−ikθdθ, (13)

where p0 = T0(r), and pk(r, θ) = Tk(r)eikθ + T−k(r)e−ikθ = Tk(r)eikθ + Tk(r)e−ikθ .
Substituting Eq. (13) into the biharmonic equation yields the following:

2
k Tk(r) = 0,k = d2

dr2 + 1

r

d

dr
− k2

r2 , k = 0, ±1, ±2, . . . (14)

Let Tk(r) = akrλ. Substituting it into Eq. (14) leads to the following characteristic equation:
[
(λ− 2)2 − k2] (

λ2 − k2) = 0. (15)

Therefore, the general solution of Tk(r) has the following form:

Tk(r) = ak1rk + ak2r−k + ak3rk+2 + ak4r2−k . (16)

Notice that there are multiple roots in Eq. (15) if k = 0 or k = ±1, for which

T0(r) = a01 + a02 ln
r

a
+ a03r2 + a04r2 ln

r

a
, (17)

T1(r) = a11r + a12r ln
r

a
+ a13r−1 + a14r3, T−1(r) = T1(r), (18)

where a is a known real constant, which can be taken to be a = r1 for instance, and a0 j and ak j ( j =
1, 2, 3, 4; k = ±1,±2, . . .) are real constants and complex constants, respectively. Therefore, a series of
biharmonic loads pk(r, θ) can be obtained, which give the complete set of periodic solutions in the θ - direction
of the general solution of the biharmonic equation (see Timoshenko and Goodier [12]). Then, the response
corresponding to p(r, θ) can be converted to that of pk(r, θ) by using Eq. (13) and the principle of superposition.

(1) k = 0

This corresponds to the axisymmetric load case, for which we have

p0 = T0(r) = a01 + a02 ln
r

a
+ a03r2 + a04r2 ln

r

a

= a01 + a03ζ ζ + 1

2

(
a02 + a04ζ ζ

)
(

ln
ζ

a
+ ln

ζ

a

)

. (19)
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Comparing Eq. (19) with (8) leads to the following:

− 96S1 (h/2) P ′′(ζ ) = 1

2
a01 + 1

2
a02 ln

ζ

a
,

−96S1 (h/2) Q′′(ζ ) = 1

2
a03ζ + 1

2
a04ζ ln

ζ

a
. (20)

Integrating Eq. (20) gives

P(ζ ) = P01ζ
2 + P02ζ

2 ln
ζ

a
, Q(ζ ) = Q01ζ

3 + Q02ζ
3 ln

ζ

a
, (21)

where

P01 = 3a02 − 2a01

768S1 (h/2)
, P02 = − a02

384S1 (h/2)
,

Q01 = 5a04 − 6a03

6912S1 (h/2)
, Q02 = − a04

1152S1 (h/2)
. (22)

Substituting Eq. (21) into Eq. (7) leads to the following:

W0 = W01ζ
2ζ̄ 2 + W02ζ

3ζ̄ 3 + (
W03ζ

2ζ̄ 2 + W04ζ
3ζ̄ 3)

(

ln
ζ

a
+ ln

ζ

a

)

, (23)

where W0 is a single-valued function, and

W01 = 6 [P01 − 4S21 (3Q01 + Q02)] , W02 = 2Q01,

W03 = 3 (P02 − 12S21 Q02) , W04 = Q02. (24)

Let

α(ζ ) = α0 + γ0 ln
ζ

a
, β(ζ ) = β1ζ + γ1ζ ln

ζ

a
, φ(ζ ) = φ1ζ, ψ(ζ ) = ψ−1ζ

−1, (25)

where α0, γ0, β1, γ1, φ1 and ψ−1 are real constants to be determined.
By substituting Eqs. (25) and (23) into Eqs. (5) and (6) and making use of Eq. (12), we obtain

w̄ = 2α0 + 2β1ζ ζ̄ + W01ζ
2ζ̄ 2 + W02ζ

3ζ̄ 3

+ (
γ0 + γ1ζ ζ̄+W03ζ

2ζ̄ 2 + W04ζ
3ζ̄ 3)

(

ln
ζ

a
+ ln

ζ

a

)

. (26)

ūr + i ūθ = De−iθ = D0(r)r, (27)

in which the expression of the function D0(r) is given in Appendix A. w̄ and ūr are real functions of r , which
can be obtained from Eqs. (26) and (27), respectively, and ūθ ≡ 0. There are 6 real constants in the expressions
of w̄ and ūr , which can be determined from the cylindrical boundary conditions of the annular plate at r = r0
and r = r1 (see Yang et al. [8]).

(2) k = 1

p1(r, θ) = T1(r)e
iθ + T−1(r)e

−iθ = T1(r)e
iθ + T1(r)e

−iθ . (28)

Substituting Eq. (18) into Eq. (28) leads to the following:

p1(r, θ) = a11ζ + 1

2
a12ζ ln

ζ

a
+ ā13ζ

−1 + ā11ζ + 1

2
ā12ζ ln

ζ

a
+ a13ζ̄

−1

+ζ
(

1

2
ā12 ln

ζ

a
+ a14ζ

2
)

+ ζ

(
1

2
a12 ln

ζ

a
+ ā14ζ̄

2

)

. (29)
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Comparing Eq. (29) with (8) leads to the following:

− 96S1 (h/2) P ′′(ζ ) = a11ζ + 1

2
a12ζ ln

ζ

a
+ ā13ζ

−1,

−96S1 (h/2) Q′′(ζ ) = 1

2
ā12 ln

ζ

a
+ a14ζ

2. (30)

Integrating Eq. (30) gives

P(ζ ) = P11ζ
3 + P12ζ

3 ln
ζ

a
+ P13ζ

(
ln
ζ

a
− 1

)
,

Q(ζ ) = Q11ζ
2
(

ln
ζ

a
− 3

2

)
+ Q12ζ

4, (31)

where

P11 = 5a12 − 12a11

6912S1 (h/2)
, P12 = Q̄11/3, P13 = − ā13

96S1 (h/2)
,

Q11 = − ā12

384S1 (h/2)
, Q12 = − a14

1152S1 (h/2)
. (32)

Substituting Eq. (31) into Eq. (7) leads to the following:

W1 = A1
(
ζ, ζ̄

)
ζ + A1

(
ζ, ζ̄

)
ζ̄ , (33)

where W1 is a multi-valued function, and

A1
(
ζ, ζ̄

) = W̄13ζ ζ + W̄12ζ
2ζ̄ 2 + Q12ζ

3ζ̄ 3 + W̄11ζ ζ ln
ζ

a
+ Q̄11ζ

2ζ̄ 2

(

ln
ζ

a
+ ln

ζ

a

)

,

W11 = 3 (P13 − 8S21 Q11) , W12 = 3
(
P̄11 − Q11/2 − 16S21 Q̄12

)
, W13 = 3 (8S21 Q11 − P13)

(34)

Let

α(ζ ) = α1ζ + α−1ζ
−1 + B̄0ζ ln

ζ

a
, β(ζ ) = β2ζ

2 + B0 ln
ζ

a
+ W̄11ζ

2 ln
ζ

a
,

φ(ζ ) = φ2ζ
2 + C0 ln

ζ

a
,

ψ(ζ ) = ψ0 + ψ−2ζ
−2 +

(
2
κ2

κ1
B̄0 − κ1 + 1

κ1 − 1
C̄0

)
ln
ζ

a
+ 16

k3

k1
W̄11 ln

ζ

a
, (35)

where α−1, α1, β2, φ2, ψ−2, ψ0, B0 and C0 are complex constants. The terms related to W̄11 are particularly
introduced as the supplementary terms in order to ensure the single-valuedness of w̄ and D = ū + i v̄.

By substituting Eqs. (33) and (35) into Eqs. (5) and (6) and making use of Eq. (12), we obtain

w̄ = B1(r)ζ + B1(r)ζ̄ , (36)

ūr + i ūθ = De−iθ = C1(r)r
2eiθ + D1(r)e

−iθ , (37)

where the expressions of the functions B1(r),C1(r) and D1(r) are given in Appendix A. It is found from Eqs.
(36) and (37) that the mid-plane displacements are single-valued.

(3) k = 2

p2(r, θ) = T2(r)e
2iθ + T2(r)e

−2iθ = a21ζ
2 + ā21ζ̄

2 + a22ζ̄
−2 + ā22ζ

−2 + a23ζ ζ
3

+ā23ζ ζ̄
3 + a24ζ ζ̄

−1 + ā24ζ ζ
−1. (38)



FGM annular plates subject to biharmonic loads 57

Comparing Eq. (38) with (8) leads to the following:

− 96S1 (h/2) P ′′(ζ ) = a21ζ
2 + ā22ζ

−2, −96S1 (h/2) Q′′(ζ ) = a23ζ
3 + ā24ζ

−1· (39)

Integrating Eq. (39) gives

P(ζ ) = P21ζ
4 + P22 ln

ζ

a
, Q(ζ ) = Q21ζ

5 + Q22ζ

(
ln
ζ

a
− 1

)
, (40)

where

P21 = − a21

1152S1 (h/2)
, P22 = ā22

96S1 (h/2)
,

Q21 = − a23

1920S1 (h/2)
, Q22 = − ā24

96S1 (h/2)
. (41)

Substituting Eq. (40) into Eq. (7) leads to the following:

W2 = A2
(
ζ, ζ̄

)
ζ 2 + A2

(
ζ, ζ̄

)
ζ̄ 2, (42)

where W2 is a multi-valued function, and

A2
(
ζ, ζ̄

) = Q̄22ζ ζ̄ ln
ζ̄

a
+ W̄22 ln

ζ̄

a
+ Q21ζ

3ζ̄ 3 − Q̄22ζ ζ̄ + W21ζ
2ζ̄ 2,

W21 = 3 (P21 − 20S21 Q21) , W22 = 3 (P22 − 4S21 Q22) . (43)

Let

α(ζ ) = α2ζ
2 + α−2ζ

−2 + W̄22ζ
2 ln

ζ

a
,

β(ζ ) = β3ζ
3 + β−1ζ

−1 + Q̄22ζ
3 ln

ζ

a
, φ(ζ ) = φ3ζ

3 + φ−1ζ
−1,

ψ(ζ ) = ψ1ζ + ψ−3ζ
−3 + 4

(
κ2

κ1
W̄22 + 12

κ3

κ1
Q̄22

)
ζ ln

ζ

a
, (44)

where α−2, α2, β−1, β3, φ−1, φ3, ψ−3 and ψ1 are complex constants. The terms related to W̄22 and Q̄22 are
again particularly introduced as the supplementary terms in order to ensure the single-valuedness of w̄ and
D = ū + i v̄.

By substituting Eqs. (42) and (44) into Eqs. (5) and (6) and making use of Eq. (12), we obtain

w̄ = B2(r)ζ
2 + B2(r)ζ̄

2, (45)

ūr + i ūθ = De−iθ = C2(r)r
3e2iθ + D2(r)r

−1e−2iθ , (46)

where the expressions of the functions B2(r),C2(r) and D2(r) are given in Appendix A. It is found from Eqs.
(45) and (46) that the mid-plane displacements are single-valued.

(4) k = 3

p3(r, θ) = T3(r)e
3iθ + T3(r)e

−3iθ

= a31ζ
3 + a32ζ̄

−3 + a33ζ̄ ζ
4 + a34ζ̄

−2ζ + ā31ζ̄
3 + ā32ζ

−3 + ā33ζ ζ̄
4 + ā34ζ

−2ζ̄ . (47)

Comparing Eq. (47) with (8) leads to the following:

− 96S1 (h/2) P ′′(ζ ) = a31ζ
3 + ā32ζ

−3, −96S1 (h/2) Q′′(ζ ) = a33ζ
4 + ā34ζ

−2. (48)

Integrating Eq. (48) gives

P(ζ ) = P31ζ
5 + P32ζ

−1, Q(ζ ) = Q31ζ
6 + Q32 ln

ζ

a
, (49)
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where

P31 = − a31

1920S1 (h/2)
, P32 = − ā32

192S1 (h/2)
,

Q31 = − a33

2880S1 (h/2)
, Q32 = ā34

96S1 (h/2)
. (50)

Substituting Eq. (49) into Eq. (7) leads to the following:

W3 = A3
(
ζ, ζ̄

)
ζ 3 + A3

(
ζ, ζ̄

)
ζ̄ 3, (51)

where W3 is a multi-valued function, and

A3
(
ζ, ζ̄

) = Q31ζ
3ζ̄ 3 + W31ζ

2ζ̄ 2 + W̄32
(
ζ ζ̄

)−1 + Q̄32 ln
ζ̄

a
,

W31 = 3 (P31 − 24S21 Q31) , W32 = 3 (P32 − 4S21 Q32) . (52)

Let

α(ζ ) = α3ζ
3 + α−3ζ

−3 + Q̄32ζ
3 ln

ζ

a
, β(ζ ) = β4ζ

4 + β−2ζ
−2,

φ(ζ ) = φ4ζ
4 + φ−2ζ

−2, ψ(ζ ) = ψ2ζ
2 + ψ−4ζ

−4 + 6
κ2

κ1
Q̄32ζ

2 ln
ζ

a
, (53)

where α−3, α3, β−2, β4, φ−2, φ4, ψ−4 and ψ2 are complex constants. The terms related to Q̄32 are also partic-
ularly introduced as the supplementary terms in order to ensure the single-valuedness of w̄ and D = ū + i v̄.

By substituting Eqs. (51) and (53) into Eqs. (5) and (6) and making use of Eq. (12), we obtain

w̄ = B3(r)ζ
3 + B3(r)ζ̄

3, (54)

ūr + i ūθ = De−iθ = C3(r)r
4e3iθ + D3(r)r

−2e−3iθ , (55)

where the expressions of the functions B3(r),C3(r) and D3(r) are given in Appendix A. It is found from Eqs.
(54) and (55) that the mid-plane displacements are single-valued.

(5) k = 4, 5, …

pk(r, θ) = Tk(r)e
ikθ + Tk(r)e

−ikθ

= ak1ζ
k + āk1ζ̄

k + ak2ζ̄
−k + āk2ζ

−k + ak3ζ̄ ζ
k+1 + āk3ζ ζ̄

k+1 + ak4ζ ζ̄
1−k + āk4ζ̄ ζ

1−k . (56)

Comparing Eq. (56) with (8) leads to the following:

− 96S1 (h/2) P ′′(ζ ) = ak1ζ
k + āk2ζ

−k,

−96S1 (h/2) Q′′(ζ ) = ak3ζ
k+1 + āk4ζ

1−k . (57)

Integrating Eq. (57) gives

P(ζ ) = Pk1ζ
k+2 + Pk2ζ

−k+2, Q(ζ ) = Qk1ζ
k+3 + Qk2ζ

−k+3, (58)

where

Pk1 = − ak1

96 (k + 2) (k + 1) S1 (h/2)
, Pk2 = − āk2

96 (2 − k) (1 − k) S1 (h/2)
,

Qk1 = − ak3

96 (k + 3) (k + 2) S1 (h/2)
, Qk2 = − āk4

96 (3 − k) (2 − k) S1 (h/2)
. (59)

Substituting Eq. (58) into Eq. (7) leads to the following:

Wk = Ak(r)ζ
k + Ak(r)ζ̄

k, (60)
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where Wk is a single-valued function, and

Ak(r) = Qk1ζ
3ζ̄ 3 + Wk1ζ

2ζ̄ 2 + (
Q̄k2ζ

3ζ̄ 3 + W̄k2ζ
2ζ̄ 2) (

ζ ζ̄
)−k

,

Wk1 = 3 [Pk1 − 4S21 (k + 3) Qk1] , Wk2 = 3 [Pk2 − 4S21 (3 − k) Qk2] . (61)

Let

α(ζ ) = αkζ
k + α−kζ

−k, β(ζ ) = βk+1ζ
k+1 + β−k+1ζ

−k+1,

φ(ζ ) = φk+1ζ
k+1 + φ−k+1ζ

−k+1, ψ(ζ ) = ψk−1ζ
k−1 + ψ−k−1ζ

−k−1, (62)

where α−k, αk, β−k+1, βk+1, φ−k+1, φk+1, ψ−k−1 and ψk−1 are complex constants.
By substituting Eqs. (60) and (62) into Eqs. (5) and (6) and making use of Eq. (12), we obtain

w̄ = Bk(r)ζ
k + Bk(r)ζ̄

k, (63)

ūr + i ūθ = De−iθ = Ck(r)r
1+keikθ + Dk(r)r

1−ke−ikθ , (64)

where the expressions of the functions Bk(r),Ck(r) and Dk(r) are given in Appendix A.

4 Determination of real or complex constants

The real or complex constants contained in the elastic field corresponding to each kind of load can be determined
from the cylindrical boundary conditions of the annular plate at r = ri (i = 0, 1). The procedure of fixing
these constants is shown below for k = 1, just as an example.

4.1 The expressions of resultant forces in cylindrical coordinates

By substituting Eqs. (33) and (35) into Eqs. (9–11) and making use of Eq. (12), we obtain the expressions of
the resultant forces and moments for k = 1 as follows:

Nr + Nθ = Nx + Ny = N1(r)reiθ + N1(r) re−iθ . (65)

Nθ − Nr + 2i Nrθ = (
Ny − Nx + 2i Nxy

)
e2iθ = N−1(r)reiθ + N−3(r)r

3e−iθ . (66)

Mr + Mθ = Mx + My = M1(r)reiθ + M1(r) re−iθ . (67)

Mθ − Mr + 2i Mrθ = (
My − Mx + 2i Mxy

)
e2iθ = M−1(r)reiθ + M−3(r)r

3e−iθ . (68)

Qrz − i Qθ z = (
Qxz − i Qyz

)
eiθ = Q0(r)e

iθ + Q−2(r)r
2e−iθ , (69)

in which the expressions of N1(r), N−1(r), N−3(r),M1(r),M−1(r),M−3(r), Q0(r) and Q−2(r) are given in
Appendix B.

4.2 Boundary conditions

For the FGM annular plate, there are three types of cylindrical boundary conditions at r = ri (i = 0, 1); these
include simply-supported (S), clamped (C) and free (F), which are expressed respectively as:

S : w̄ = 0, ūθ = 0, Nr = 0, Mr = 0. (70)

C : w̄ = 0, ūθ = 0, ūr = 0, w̄,r = 0. (71)

F : Nr = 0, Mr = 0, Nrθ = 0, Qrz + 1

r

∂Mrθ

∂θ
= 0. (72)

We find from Eq. (36) that the following equations are satisfied if w̄ (ri , θ) = 0 and w̄,r (ri , θ) = 0

B1(ri ) = 0,
dB1(r)

dr
r

∣∣
∣∣
r=ri

+ B1(ri ) = 0. (73)
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From Eq. (37), the following equations hold if ūr (ri , θ) = ūθ (ri , θ) = 0,

C1(ri ) = 0, D1(ri ) = 0. (74)

It follows from the condition of ūθ (ri , θ) = 0 that

C1(ri )r
2
i − D1(ri ) = 0. (75)

The following equations are satisfied if Nr (ri , θ) = 0 and Nrθ (ri , θ) = 0

2N1(ri )− N−1(ri )− r2
i N−3(ri ) = 0, N−1(ri )− r2

i N−3(ri ) = 0, (76)

which are obtained from Eqs. (65) and (66), respectively.
We find from Eqs. (67) and (68) that the following equation holds if Mr (ri , θ) = 0

2M1(ri )− M−1(ri )− r2
i M−3(ri ) = 0. (77)

The following equation is equivalent to the condition of Qrz(ri , θ)+ ∂Mrθ (r, θ)/(r∂θ)|r=ri
= 0, which can

be found from Eqs. (68) and (69)

2Q0(ri )+ M−1(ri )+
[
2Q−2(ri )− M−3(ri )

]
r2

i = 0. (78)

There are 8 different kinds of combination of the cylindrical boundary conditions as shown in Eqs. (70–72),
namely SS, CC, SC, CS, CF, FC, SF and FS; here, the first letter denotes the conditions at the inner edge and
the second signifies those at the outer edge. Any of the eight types of cylindrical boundary conditions of the
annular plate are sufficient to determine the unknown constants α−1, α1, β2, φ−2, ψ−2, ψ0, B0 and C0, and
hence, the displacements and stress components at any position in the plate can be obtained completely for
k = 1.

5 Numerical results and discussion

The following dimensionless quantities are introduced to show the numerical results:
Ŵ =wD0/qr4

1 , W̃ =w/h, σ̄i j = σi j/q, β=h/r2, r̄ = (r0 + r1)/2, r2 = r1 − r0, D0 = Eh3/

12(1 − ν2), q = 1 × 106N/m2.
Example 1: Simply supported homogeneous isotropic annular plate subject to uniform load q
In order to validate the present method, the numerical results are compared in Table 1 with the CPT solution

[13] for a simply supported homogeneous isotropic annular plate subject to a uniform load on the top surface,
with h = 0.002m, r1 = 0.1m and ν = 0.3. In this case, the elasticity solution for axisymmetric bending can
be obtained by letting a01 = q and a02 = a03 = a04 = 0 in Eq. (19).

It can be found from Table 1 that the present elasticity solution agrees well with the classical plate theory
prediction.

Example 2: Transversely isotropic FGM annular plate subject to load qr3 cos θ
The elasticity solutions can be obtained for a transversely isotropic FGM annular plate subject to the load

qr3 cos θ by letting a14 = q/2 and a11 = a12 = a13 = 0 in Eq. (29). Take r0 = 0.25m, r1 = 1m and the FG
model in the following form [1]:

Ci j = C0(A)
i j (0.5 − z/h)λ + C0(T )

i j

[
1 − (0.5 − z/h)λ

]
(i, j = 1, 2, 3, 4, 5, 6) ,

Table 1 Dimensionless deflection Ŵ (r̄ , 0)

r0/r1

0.1 0.3 0.5 0.7

CPT 0.0060 0.0029 0.0008 0.0001
Present 0.00607 0.00286 0.00079 0.00011



FGM annular plates subject to biharmonic loads 61

Table 2 Elastic constants of Al2O3 and Titanium (Unit: GPa)

Materials c0
11 c0

12 c0
13 c0

33 c0
55

Al2O3 460.2 174.7 127.4 509.5 126.9
Titanium 162.4 92 69 180.7 46.7

Table 3 Dimensionless deflection and stresses (β = 0.2)

W̃ (r̄ , π/4, 0)(×10−5) σ̄r (r̄ , π/4, h/2) σ̄r z(r̄ , π/4, 0)
λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4 λ = 0 λ = 2 λ = 4

SS −4.3915 −8.2590 −9.1450 3.2167 −2.3867 −2.5806 −0.2286 −0.2108 −0.2038
CC −0.7956 −1.5654 −1.6760 −0.7900 −0.6781 −0.6967 −0.0363 −0.0454 −0.0370
SC −1.1457 −2.2518 −2.4176 −0.9784 −0.8187 −0.8445 0.0480 0.0378 0.0436
CS −2.6780 −4.9759 −5.4943 −2.1476 −1.5713 −1.6773 −0.3878 −0.3660 −0.3592
FC −1.6958 −3.3862 −3.6153 −0.8693 −0.7298 −0.7419 0.1151 0.1063 0.1078
CF −40.8639 −78.3916 −85.2512 7.9226 6.4045 6.9280 −2.0978 −2.0384 −1.9928
FS −7.5979 −14.3237 −15.7451 −3.7417 −2.8200 −3.0363 −0.0983 −0.0911 −0.0884
SF −180.587 −377.580 −422.052 4.2316 4.0488 4.2658 −2.0500 −1.9940 −1.9489

where C0(A)
i j are those of Al2O3 at z = −h/2, and C0(T )

i j are those of Titanium at z = h/2, both given in
Table 2. The parameter λ is the gradient index, which reflects the degree of material inhomogeneity. Obviously,
λ = 0 corresponds to the homogeneous material.

Table 3 gives the dimensionless deflection W̃ , radial normal stress σ̄r and shear stress σ̄r z of the FGM
annular plate for all 8 kinds of combination of the boundary conditions and three values of λ. The thickness-
to-span ratio is fixed at β = 0.2. The following observations can be obtained from the results:

1. The deflection increases with λ, regardless of the boundary conditions. This is simply because the whole
rigidity of the FGM plate decreases withλ. The deflections of the SF and CC annular plates are, respectively,
the largest and smallest among the plates with different boundary conditions.

2. With the increase of λ, the absolute value of the normal stress decreases firstly and then increases gradually.
The normal stress at z = h/2 is tensile for the CF and SF boundary conditions, and compressive for the
other kinds of boundary conditions.

3. With the increase of λ, the absolute value of the shear stress decreases for the SS, CS, CF, FS and SF annular
plates, but first decreases and then gradually increases for the SC and FC plates. For the CC annular plate,
the absolute value of the shear stress first increases and then gradually decreases. In addition, the shear
stress for the SC and FC plates shows a reverse sign compared with the other 6 plates.

4. The outer boundary conditions have a stronger influence on the deflection and stresses than the inner
boundary conditions, as can be seen from the comparison between the SC plate and the CS plate, the FC
plate and the CF plate or that between the FS plate and the SF plate.

6 Conclusions

The bending of transversely isotropic functionally graded annular plates subject to biharmonic transverse loads
is investigated based on a generalization of the England’s method. General solutions of the basic equations of
elasticity are presented and the elasticity solutions corresponding to a series of biharmonic loads pk(r, θ) in the
cylindrical coordinate system are determined from the boundary conditions similar to that in plane elasticity and
the classical plate theory. Numerical examples show that the material gradient index and boundary conditions
have a significant influence on the elastic field, which can provide guidance for optimizing the design in
engineering applications.

Annular plates are biconnected so that the four analytic functions α(ζ ), β(ζ ), φ(ζ ) andψ(ζ ) in the general
solutions and the particular solutions Wk corresponding to pk(r, θ)may be multi-valued. This situation is quite
different from the simply connected region (e.g., a circular plate). Therefore, in addition to match the particular
solutions Wk and introduce enough arbitrary constants to satisfy the boundary conditions, the single-valuedness
of the mid-plane displacements of the plate must be guaranteed when constructing the expressions of the four
analytic functions α(ζ ), β(ζ ), φ(ζ ) andψ(ζ ). There are two kinds of multi-valued functions in the expressions
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of these four analytic functions. The first one is coordinated completely among the four analytic functions
and ensures the single-valuedness of the mid-plane displacements, while the other is called the supplementary
solutions, from which the multiple values of the mid-plane displacements can be counterbalanced with that
from the particular solutions Wk , thus making the final mid-plane displacements single-valued. As a result,
the supplementary solutions should be introduced if Wk is a multi-valued function (for k = 1, 2, 3). The
supplementary solutions are known functions that do not contain any arbitrary constant. In this paper, Eqs.
(25), (35), (44), (53) and (62) are the sets of expressions of the four analytic functions constructed in accordance
with the above considerations.
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Appendix A: Expressions of functions related to the mid-plane displacements

D0(r) = 2

κ1 − 1
φ1 − 2

κ2

κ1
(2β1 + γ1)− 32

κ3

κ1
(W01 + 2W03)− 384

κ4

κ1
(3W02 + 8W04)

− 2

κ1
[κ2 (2W01 + W03)+ 12κ3 (6W02 + 7W04)] ζ ζ̄

−2
κ2

κ1
(3W02 + W04) ζ

2ζ̄ 2 − 2

κ1

[
κ2γ1 + 16 (κ3W03 + 36κ4W04)

+ 2 (κ2W03 + 36κ3W04) ζ ζ̄ + 3κ2W04ζ
2ζ̄ 2]

(

ln
ζ

a
+ ln

ζ

a

)

−
(
ψ−1 + 128

κ4

κ1
W03

) (
ζ ζ̄

)−1
. (A.1)

B1(r) = α1 + (
β2 + W̄13

)
ζ ζ + ᾱ−1

(
ζ ζ̄

)−1 + W̄12ζ
2ζ̄ 2 + Q12ζ

3ζ̄ 3

+ (
B̄0 + W̄11ζ ζ + Q̄11ζ

2ζ̄ 2)
(

ln
ζ

a
+ ln

ζ̄

a

)
. (A.2)

C1(r) = k1 + 1

k1 − 1
φ2 − 2

k2

k1

(
β2 + W̄11 + W̄13

) − 8
k3

k1

(
11Q̄11 + 6W̄12

) − 2304
k4

k1
Q12

− 2

k1

[
k2

(
Q̄11 + 2W̄12

) − 96k3 Q12
]
ζ ζ − 6

k2

k1
Q12

(
ζ ζ

)2

− 2

k1

[
k2

(
W̄11 + 2Q̄11ζ ζ

) + 24k3 Q̄11
]
(

ln
ζ

a
+ ln

ζ

a

)

−
[

16

k1

(
k3W̄11 + 24k4 Q̄11

) +
(

C̄0 + 2
κ2

κ1
B̄0

)] (
ζ ζ

)−1 +
(

64
k4

k1
W̄11 − ψ̄−2

) (
ζ ζ

)−2
. (A.3)

D1(r) = −ψ̄0 − 16
k3

k1
(W11 + W13)− 128

k4

k1
(10Q11 + 3W12)

−2

[
φ̄2 + k2

k1

(
2β̄2 + 2W13 + W11

) + 16
k3

k1
(4Q11 + 3W12)+ 2304

k4

k1
Q̄12

]
ζ ζ

− 2

k1

[
k2 (Q11 + 3W12)+ 144k3 Q̄12

] (
ζ ζ

)2 − 8
k2

k1
Q̄12

(
ζ ζ

)3 +
(
κ1 + 1

κ1 − 1
C0

− 2
k2

k1
B0

)(

ln
ζ

a
+ ln

ζ

a

)

− 2

k1

[
8k3W11 + k2

(
2W11 + 3Q11ζ ζ̄

)
ζ ζ

+ 48k3 Q11ζ ζ + 192k4 Q11
]
(

ln
ζ

a
+ ln

ζ

a

)

. (A.4)
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B2(r) = α2 + ᾱ−2
(
ζ ζ̄

)−2 + β̄−1
(
ζ ζ̄

)−1 + Q21ζ
3ζ̄ 3 + (

β3 − Q̄22
)
ζ ζ̄ + W21ζ

2ζ̄ 2

+ (
Q̄22ζ ζ̄ + W̄22

)
(

ln
ζ

a
+ ln

ζ̄

a

)
. (A.5)

C2(r) = κ1 + 1

κ1 − 1
φ3 − 2

κ1
(κ2β3 + 32κ3W21 + 1920κ4 Q21)− 4

κ1
(κ2W21 + 60κ3 Q21) ζ ζ̄

− 6
κ2

κ1
Q21ζ

2ζ̄ 2 − 2
κ2

κ1
Q̄22

(
ln
ζ

a
+ ln

ζ̄

a

)
− 2

κ1

(
κ2W̄22 + 12κ3 Q̄22

) (
ζ ζ̄

)−1

+
(
φ̄−1 + 2

κ2

κ1
β̄−1 + 16

κ3

κ1
W̄22 + 192

κ4

κ1
Q̄22

)
(
ζ ζ̄

)−2

−
(

128
κ4

κ1
W̄22 + ψ̄−3

)
(
ζ ζ̄

)−3
. (A.6)

D2(r) = κ1 + 1

κ1 − 1
φ−1 − 2

κ1
(κ2β−1 + 8κ3W22 + 96κ4 Q22)−

(
1536

κ4

κ1
W̄21 + ψ̄1

)
ζ ζ̄

−
[

2
κ2

κ1

(
3β̄3 − 2Q22

) + 192
κ3

κ1
W̄21 + 11520

κ4

κ1
Q̄21 + 3φ̄3

]
(
ζ ζ̄

)2

− 8

κ1

(
κ2W̄21 + 60κ3 Q̄21

) (
ζ ζ̄

)3 − 10
κ2

κ1
Q̄21

(
ζ ζ̄

)4

− 2

κ1

(
3κ2 Q22ζ ζ̄ + 2κ2W22 + 24κ3 Q22

)
ζ ζ̄

(
ln
ζ

a
+ ln

ζ̄

a

)
. (A.7)

B3(r) = α3 + ᾱ−3
(
ζ ζ̄

)−3 + β4ζ ζ̄ + β̄−2
(
ζ ζ̄

)−2 + Q31
(
ζ ζ̄

)3 + W31
(
ζ ζ̄

)2

+W̄32
(
ζ ζ̄

)−1 + Q̄32

(
ln
ζ

a
+ ln

ζ̄

a

)
. (A.8)

C3(r) = κ1 + 1

κ1 − 1
φ4 − 2

κ2

κ1
β4 − 80

κ3

κ1
W31 − 5760

κ4

κ1
Q31

− 4

κ1
(κ2W31 + 72κ3 Q31) ζ ζ̄ − 6

κ2

κ1
Q31

(
ζ ζ̄

)2 − 2
κ2

κ1
Q̄32

(
ζ ζ̄

)−1

+ 2

κ1

(
κ2W̄32 + 12κ3 Q̄32

) (
ζ ζ̄

)−2 +
(

384
κ4

κ1
W̄32 − ψ̄−4

) (
ζ ζ̄

)−4

+
(

2φ̄−2 + 4
κ2

κ1
β̄−2 − 32

κ3

κ1
W̄32 − 384

κ4

κ1
Q̄32

)
(
ζ ζ̄

)−3
. (A.9)

D3(r) = κ1 + 1

κ1 − 1
φ−2 − 2

κ2

κ1
β−2 + 16

κ3

κ1
W32 + 192

κ4

κ1
Q32

− 4

κ1
(κ2W32 + 12κ3 Q32) ζ ζ̄ −

(
ψ̄2 + 3840

κ4

κ1
W̄31

) (
ζ ζ̄

)2

−
(

4φ̄4 + 8
κ2

κ1
β̄4 + 320

κ3

κ1
W̄31 + 23040

κ4

κ1
Q̄31

)
(
ζ ζ̄

)3

−10

(
κ2

κ1
W̄31 + 72

κ3

κ1
Q̄31

) (
ζ ζ̄

)4 − 12
κ2

κ1
Q̄31

(
ζ ζ̄

)5

−6
κ2

κ1
Q32

(
ζ ζ̄

)2
(

ln
ζ

a
+ ln

ζ̄

a

)
. (A.10)

Bk(r) = αk + ᾱ−k
(
ζ ζ̄

)−k + βk+1ζ ζ̄ + β̄−k+1
(
ζ ζ̄

)−k+1 + Ak(r) (A.11)

Ck(r) = κ1 + 1

κ1 − 1
φk+1 − 2

κ2

κ1
βk+1 − 16

κ3

κ1
(k + 2)Wk1 − 192

κ4

κ1
(k + 3) (k + 2) Qk1

− 4

κ1
[κ2Wk1 + 12κ3 (k + 3) Qk1] ζ ζ̄ − 6

κ2

κ1
Qk1

(
ζ ζ̄

)2 − [
ψ̄−k−1−
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− 64
κ4

κ1
(2 − k) (1 − k) kW̄k2

]
(
ζ ζ̄

)−k−1 − (1 − k)

[
φ̄−k+1 + 2

κ2

κ1
β̄−k+1

+ 16
κ3

κ1
(2 − k) W̄k2 + 192

κ4

κ1
(3 − k) (2 − k) Q̄k2

] (
ζ ζ̄

)−k

− 2

κ1
(2 − k)

[
κ2W̄k2 + 12κ3 (3 − k) Q̄k2

] (
ζ ζ̄

)1−k − 2
κ2

κ1
(3 − k) Q̄k2

(
ζ ζ̄

)2−k
. (A.12)

Dk(r) = κ1 + 1

κ1 − 1
φ−k+1 − 2

κ2

κ1
β−k+1 − 16

κ3

κ1
(2 − k)Wk2 − 192

κ4

κ1
(3 − k) (2 − k) Qk2

− 4

κ1
[κ2Wk2 + 12κ3 (3 − k) Qk2] ζ ζ̄ − 6

κ2

κ1
Qk2

(
ζ ζ̄

)2 − [
ψ̄k−1

+ 64
κ4

κ1
(k + 2) (k + 1) kW̄k1

] (
ζ ζ̄

)k−1 − (k + 1)

[
φ̄k+1 + 2

κ2

κ1
β̄k+1

+ 16
κ3

κ1
(k + 2) W̄k1 + 192

κ4

κ1
(k + 3) (k + 2) Q̄k1

]
(
ζ ζ̄

)k

− 2

κ1
(k + 2)

[
κ2W̄k1 + 12κ3 (k + 3) Q̄k1

] (
ζ ζ̄

)k+1 − 2
κ2

κ1
(k + 3) Q̄k1

(
ζ ζ̄

)k+2
. (A.13)

Appendix B. Expressions of functions related to the resultant forces for k=1

N1(r) = 2a1φ2 + 4a2
(
2β2 + 3W 11 + 2W 13

) − 64a3
(
3W 12 + 7Q11

) − 9216a4 Q12

+4
[
a2

(
6W 12 + 5Q11

) − 288a3 Q12
]
ζ ζ + 48a2 Q12

(
ζ ζ

)2

− [
32

(
a3W 11 + 24a4 Q11

) − a1C̄0 − 4a2 B̄0
] (
ζ ζ

)−1
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(
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)
(

ln
ζ
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+ ln
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)

. (B.1)

N−1(r) = 2
[
a1φ2 + 2a2

(
2β2 + 3W 11 + 2W 13

) − 32a3
(
3W 12 + 7Q11

) − 4608a4 Q12
]
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(
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) − 288a3 Q12
]
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(
ζ ζ

)2
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)
W 11 − 384a4 Q11 + 2a2 B̄0 − κ1 + 1
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)−1
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)
(

ln
ζ
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+ ln

ζ
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)

. (B.2)

N−3(r) = 4
[
a2 (2W12 + 3Q11)− 96a3 Q12

] + 24a2 Q12ζ ζ

+ 4 (a2W11 − 24a3 Q11)
(
ζ ζ
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(
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)−2
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(
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(

ln
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+ ln
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. (B.3)
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) + 64b3
(
3W 12 + 7Q11
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(

ln
ζ
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)

. (B.4)
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M−1(r) = 2a6φ2 + b6
(
2β2 + 3W 11 + 2W 13

) − 16b9
(
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(
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+
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W 11 − 2b8W 11 − 192b0 Q11 + b6 B̄0 − κ1 + 1
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) (
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)−1
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(
b6W 11 + 3b6 Q11ζ ζ − 24b9 Q11

)
(

ln
ζ

a
+ ln

ζ

a

)

. (B.5)

M−3(r) = b6 (2W12 + 3Q11)− 96b9 Q12 + 6b6 Q12ζ ζ + (b6W11 − 24b9 Q11)
(
ζ ζ

)−1

+ [8 (b9W11 + 24b0 Q11)− a6C0 − b6 B0]
(
ζ ζ

)−2 + 2b6 Q11

(

ln
ζ

a
+ ln

ζ

a

)

+ 2 (b7α−1 − a6ψ−2 − 32b0W11 − 768a9 Q11 − b5C0 − b8 B0)
(
ζ ζ

)−3
. (B.6)

Q0(r) = 8

[
1

κ1 − 1
Qz1φ2 + Qz2

(
2β2 + 5W 11 + 2W 13

) + 16Qz3
(
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)
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]
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[
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(
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]
ζ ζ
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(
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[
Qz2

(
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]
(

ln
ζ

a
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ζ

a

)

. (B.7)

Q−2(r) = 8Qz2 (6W12 + 11Q11)+ 2304Qz3 Q12 + 192Qz2 Q12ζ ζ

+16 (Qz2W11 + 24Qz3 Q11)
(
ζ ζ

)−1 −
[

64 (Qz3W11 + 24Qz4 Q11)

+ 4

κ1 − 1
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]
(
ζ ζ

)−2 + 48Qz2 Q11

(

ln
ζ

a
+ ln

ζ

a

)

. (B.8)
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