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Abstract In this paper, the nonlinear free vibration of a stringer shell is studied. The mathematical model of
the string shell, which is the most convenient for frequency analysis, is considered. Due to the geometrical
properties of the vibrating shell, strong nonlinearities are evident. Approximate analytical expressions for the
nonlinear vibration are provided by introducing the extended version of the Hamiltonian approach. The method
suggested in the paper gives the approximate solution for the differential equation with dissipative term for
which the Lagrangian exists. The aim of this study is to provide engineers and designers with an easy method for
determining the shell nonlinear vibration frequency and nonlinear behavior. The effects of different parameters
on the ratio of nonlinear to linear natural frequency of shells are studied. This analytical representation gives
excellent approximations to the numerical solutions for the whole range of the oscillation amplitude, reducing
the respective error of the angular frequency in comparison with the Hamiltonian approach. This study shows
that a first-order approximation of the Hamiltonian approach leads to highly accurate solutions that are valid
for a wide range of vibration amplitudes.
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List of Symbols
φ Airy function
w Normal displacement
E Young’s modulus of shell
E1 Young’s modulus of rib
ν Poisson’s ratio
h Shell thickness
t Time
R Shell radius
ρ0 Densities of shell
ρ1 Densities of rib
N Number of stringer
F Square stringer cross-section
I Statical moment of stringer cross-section
A Dimensionless maximum amplitude of oscillation
ωNL Nonlinear frequency
ωL Linear frequency
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1 Introduction

Nonlinear vibrations of shell-type structures have occurred in many branches of engineering sciences. Most
of the studies on the shell-type structures have been done on the buckling of cylindrical shells under axial
step loading of infinite or finite duration and impulse loads [1–3]. Liew et al. [4] considered the doubly
tapered cylindrical shells and their flexural vibration. Mikulas et al. [5] analyzed the free vibration of the
eccentrically stiffened cylindrical shells and flat plates. Finding the modal characteristics of the free and forced
vibration of shell-type structures by considering the complicating parameters is an interest area in engineering
vibration. In fact, linear analysis is not sufficient to describe the behavior of physical systems. To obtain
improved performance of these structures, it is better to consider the nonlinear effects in the design process.
The governing equations of the nonlinear vibrations of shells are presented by linear and nonlinear partial
differential equations in space and time. Generally, it is very difficult to find an exact solution for nonlinear
equations; therefore, many researchers have worked on the analytical approximate methods for nonlinear
equations.

Recently, some approximate methods have been proposed to solve nonlinear equations such as homo-
topy perturbation [6–8], energy balance [9–13], variational approach [14–16], iteration perturbation method
[17], max-min approach [18,19], variational iteration method [20], Hamiltonian approach [21,22] and other
analytical and numerical methods [23,24].

In this study, we extended and adopted the analytical method called Hamiltonian approach (HA) to solve
the nonlinear vibration of a stringer shell. Namely, the generalization to the HA is done to give the approximate
analytical solution even for the differential equation which has dissipative terms. The method can be used for
all of the problems for which the Lagrange function exists.

The paper has the following sections: After the Introduction, in Sect. 2., the mathematical formulation of
the problem of vibration of the stringer shell is given. In Sect. 3., the HA is extended and adopted for solving
the differential equation with dissipative terms. The extended Hamiltonian approach (EHA) developed in the
paper is applied for solving the governing nonlinear equation (Sect. 4). To show the applicability and accuracy
of the proposed approach, some comparisons between analytical and numerical solutions are presented in
Sect. 5. The paper ends with Conclusions (Sect. 6).

2 Governing equation of stringer shell

We consider a closed circle cylindrical shell supported in two principal directions. Supporting ribs are the one-
dimensional elastic elements, situated uniformly with the same constant distance between them. We assume
that the ribs height is small in comparison with the curvature radius. There is no interaction between the two ribs
lying in two directions. Therefore, we can define with high-accuracy displacements and vibration frequencies.

Dynamics of a structurally orthotropic stringer shell for large displacements (achieving its thickness order)
is analyzed. Applying the semi-inextensional theory, the following governing equations are used [25,26].

L1 (w) = ∇4
1w − R

∂2φ

∂x2 + ρ
∂2w

∂t2
1

− L (w, φ) = 0 (1)
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and coefficients of Eqs. (1)–(4) are presented in Appendix A.
We suppose that the ribs are symmetric with respect to the shell middle surface [27–34] and the shell is

simply supported.
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After some mathematical transformation and using the assumption of the space distribution function, the
following second-order differential equation with constant coefficient is obtained [29]:

d2W

dt2 + αW

(
dW

dt

)2

+ αW 2 d2W

dt2 + βW + ηW 3 + λW 5 = 0, (5)

where coefficients of Eq. (5) are presented in Appendix B, and W is an unknown time-dependent function.
Since the periodic solutions are considered, the following initial conditions can be applied:

for t = 0W = A,
dW

dt
= 0 (6)

3 Extended Hamiltonian approach (EHA)

The Hamiltonian approach is a method that was proposed by He [21] and recently widely applied (see for
example [35]). The Hamiltonian approach is one of the simple and effective approaches for conservative
oscillatory systems.

Here, we give the generalization of this approach to the differential equation

Ẅ + f (W, Ẇ , Ẅ ) = 0 (7)

with initial conditions:

W (0) = A, Ẇ (0) = 0, (8)

where f is the implicit function of W and its time derivatives (.) = d/dt and (..) = d2/dt2. The necessary
condition is the existence of the Lagrangian for (5)

� = 1

2
Ẇ 2 − F(W, Ẇ ), (9)

where the function F has to satisfy the relation

∂ F

∂W
− d

dt

(
∂ F

∂Ẇ

)
+ ∂ F

∂W
= f (W, Ẇ , Ẅ ) (10)

Based on (9), the ‘Hamiltonian function’ reads

H = 1

2
Ẇ 2 + F(W, Ẇ ) = H0 ≡ const. (11)

Using the standard procedure [21], a new function is introduced

H̄ =
T/4∫
0

(
1

2
Ẇ 2 + F(W, Ẇ )

)
dt, (12)

which is the integral of the function (11) for the period of vibration T , i.e.,

H = ∂ H̄

∂T
. (13)

Oscillatory systems contain two important physical parameters, i.e., the frequency ω and the amplitude of
oscillation A. Assuming the approximate solution of (7) in the form of a periodic function W (ωt, A) and
substituting into (12), the obtained function is H̄(ω, A). Substituting this function into (13) and using the
relation (11), we obtain the following:

H0 = ∂ H̄

∂ (1/ω)
(14)
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The difference between H0 and ∂ H̄/∂(1/ω) gives the residual function

R(A) ≡ H0 − ∂ H̄

∂ (1/ω)
(15)

Using the condition of the minimum of the residual function ∂ R/∂ A = 0, i.e.,

∂

∂ A

(
∂ H̄

∂(1/ω)

)
= 0, (16)

the approximate frequency of vibration ω is obtained.

4 Application of the extended Hamiltonian approach

The ‘Hamiltonian’ of Eq. (5) is constructed as

H = 1

2
Ẇ 2 + 1

2
αW 2Ẇ 2 + 1

2
βW 2 + 1

4
ηW 4 + 1

6
λW 6. (17)

Integrating Eq. (17) with respect to t from 0 to T/4, we have the following:

H̄ =
T/4∫
0

(
1

2
Ẇ 2 + 1

2
αW 2Ẇ 2 + 1

2
βW 2 + 1

4
ηW 4 + 1

6
λW 6

)
dt. (18)

Let us assume the approximate solution as

W (t) = A cos(ωt) (19)

Substituting Eq. (19) into Eq. (18) and integrating, we obtain the following:

H̄ = ωA2π

8

(
1 + αA2

4

)
+ A2π

8ω

(
β + 3

8
ηA2 + 5

24
λA4

)
. (20)

Setting (20) into (16), it follows

∂

∂ A

(
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)
≡ − Aω2

4

(
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8

)
+ A

4

(
β + 3

4
ηA2 + 5

8
λA4

)
= 0 (21)

Solving the above equation, an approximate nonlinear frequency as a function of amplitude is obtained as
follows:

ω = 1

2

√
8β + 6ηA2 + 5λA4

2 + αA2 (22)

Hence, the approximate solution yields the following:

W (t) = A cos

⎛
⎝t

1

2

√
8β + 6ηA2 + 5λA4

2 + αA2

⎞
⎠ . (23)

Comparing the frequency (22) with the linear one (ωL = √
β), the frequency ratio is

ω

ωL
= 1

2

√
8β + 6ηA2 + 5λA4

(2 + αA2)β
. (24)
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5 Results and discussion

To show the accuracy of the EHA results, the numerically obtained solutions, obtained by the Runge-Kutta
procedure (RK), are compared with analytical ones. In Fig. 1, the W − t diagrams for two certain groups of
parameter values are obtained analytically (EHA) and numerically (RKM). The curves are in a good agreement.
Figures 2 and 3 show the effect of various values of the parameters α, η, λ, β on the ratio of nonlinear to linear
frequency versus nondimensional amplitude ratio for different cases. The effects of different parameters A, α
and A, β and A, η are studied in Figs. 4 and 5 simultaneously. For small amplitudes, the rate of increase
in nonlinear fundamental frequency is quite small. The effect of nonlinearity becomes more obvious when
the maximum amplitude increases. It is evident that the result of EHA shows agreement with the numerical
solution and is a quickly convergent function and valid for a wide range of vibration amplitudes and initial
conditions. The accuracy of the results shows that EHA is very suitable for the analysis of the strong nonlinear
oscillation problems. The limitation of EHA is that this method is valid for conservative nonlinear problems
and nonlinear problems without damping. When we have damping, EHA and also the other analytical methods
cannot be applied. EHA provides most minimum residual function resulting in more accurate approximate
frequency.
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Fig. 1 Comparison of W (t) versus time diagrams: EHA analytical and Runge–Kutta solution a for A = 0.5, α = 0.1, β =
1, η = 0.5, λ = 0.2 b for A = 4, α = 0.5, β = 2, η = 0.2, λ = 0.1
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Fig. 2 Comparison of nonlinear to linear frequency corresponding to various parameters of α for a β = 0.5, η = 2, λ = 0.5
and η for b α = 1, β = 0.5, λ = 0.1
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Fig. 3 Comparison of nonlinear to linear frequency corresponding to various parameters of λ for a α = 4, β = 2, η = 2 and β
for b α = 1, η = 0.5, λ = 0.2

Fig. 4 Sensitivity analysis of nonlinear to linear frequency for a β = 4, η = 1, λ = 2 and b α = 2, η = 4, λ = 2

Fig. 5 Sensitivity analysis of nonlinear to linear frequency for a α = 2, β = 0.5, λ = 1 and b α = 1, β = 0.2, η = 0.5
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6 Conclusions

It can be concluded:

1. The EHA developed in the paper has been successfully applied to obtain an accurate analytical solution
for the nonlinear vibration of a stringer shell.

2. It has illustrated that the results of EHA are in an agreement with those obtained by the numerical method.
3. The influence of the stringer shell parameters on the vibration are as follows: As it is shown, the amplitude

of the oscillation has a great effect on the vibrations of the shell. From the relationships of the parameters
in Appendix A and B, the radius, thickness and densities of the shell also have great effects on the response
of the vibration.

4. EHA does not need any linearization or small perturbation. The method can be a powerful mathematical
tool for studying nonlinear oscillators.

Appendix A

D1 = D + N E1 I

(2π R)
, D = Eh3(

12
(
1 − ν2

)) ;

ρ = ρ0h + Nρ1 F

(2π R)
; B1 = Eh(

1 − ν2
) + N E1 F

(2π R)
,

Appendix B

t =
√

B1

ρ

t1
R

, β = ε1 + 2ε2 p−2 + ε2 p−4 + n−4

η = 0.0625 + 0.5n2ε1 − 0.75, λ = 0.25n4, α = 0.09375n4

p = m1/n, ε1 = D1/
(
B1 R2), ε1 = D2/

(
B1 R2), ε3 = D3/

(
B1 R2)
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